Giuseppe Nasti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7596408/publications.pdf

Version: 2024-02-01

		516710	414414
38	1,029	16	32
papers	citations	h-index	g-index
39	39	39	1207
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Energy Distribution in Tin Halide Perovskite. Solar Rrl, 2022, 6, 2100825.	5.8	8
2	Environmental lead exposure from halide perovskites in solar cells. Trends in Ecology and Evolution, 2022, 37, 281-283.	8.7	26
3	An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles. Nature Energy, 2022, 7, 107-115.	39.5	136
4	Perovskite Singleâ€Crystal Solar Cells: Advances and Challenges. Solar Rrl, 2022, 6, .	5.8	19
5	Solvents for Processing Stable Tin Halide Perovskites. ACS Energy Letters, 2021, 6, 959-968.	17.4	76
6	Advanced technology for the fabrication of optical microstructures and their interferometric characterization. , 2021, , .		0
7	Fluoridchemie in Zinnâ€Halogenidâ€Perowskiten. Angewandte Chemie, 2021, 133, 21753-21762.	2.0	5
8	Fluoride Chemistry in Tin Halide Perovskites. Angewandte Chemie - International Edition, 2021, 60, 21583-21591.	13.8	68
9	lonic Liquid Stabilizing Highâ€Efficiency Tin Halide Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2101539.	19.5	117
10	Innenrücktitelbild: Fluoridchemie in Zinnâ€Halogenidâ€Perowskiten (Angew. Chem. 39/2021). Angewandte Chemie, 2021, 133, 21763-21763.	2.0	0
11	Transmitting Light Through Biocompatible and Biodegradable Drug Delivery Micro Needles. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-8.	2.9	5
12	Tin Halide Perovskite (ASnX ₃) Solar Cells: A Comprehensive Guide toward the Highest Power Conversion Efficiency. Advanced Energy Materials, 2020, 10, 1902467.	19.5	114
13	Pyroelectric Tweezers for Handling Liquid Unit Volumes. Advanced Intelligent Systems, 2020, 2, 2000044.	6.1	9
14	Origin of Sn(<scp>ii</scp>) oxidation in tin halide perovskites. Materials Advances, 2020, 1, 1066-1070.	5.4	106
15	Layered 3D Printing by Tethered Pyro-Electrospinning. Advances in Polymer Technology, 2020, 2020, 1-9.	1.7	18
16	Quick liquid packaging: Encasing water silhouettes by three-dimensional polymer membranes. Science Advances, 2019, 5, eaat5189.	10.3	14
17	On the Complex and Reversible Pathways of CdSe Quantum Dots Driven by Pyroelectric-Dielectrophoresis. Langmuir, 2018, 34, 2198-2204.	3.5	6
18	Single fibres of pyro-electrospinned PVDF-HFP/MWCNT unveal high electrical conductivity. Polymer, 2018, 159, 157-161.	3.8	5

#	Article	IF	CITATIONS
19	On the Spraying Modality of Liquids by Pyroelectrohydrodynamics. ACS Omega, 2018, 3, 17707-17716.	3.5	10
20	Temperature dependent two-photon photoluminescence of CH ₃ NH ₃ PbBr ₃ : structural phase and exciton to free carrier transition. Optical Materials Express, 2018, 8, 511.	3.0	26
21	From electrohydrodynamic instabilities of liquids to the high-resolution ink-jet printing through pyroelectric driving power. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2018, 17, 1.	0.9	2
22	Self-assembling of functionalized micro-optical element driven by pyro-electrohydrodynamic forces. , $2018, , .$		0
23	Patterning of perovskite–polymer films by wrinkling instabilities. Soft Matter, 2017, 13, 1654-1659.	2.7	12
24	Direct Writing of Microfluidic Footpaths by Pyro-EHD Printing. ACS Applied Materials & Samp; Interfaces, 2017, 9, 16488-16494.	8.0	47
25	Direct self-assembling and patterning of semiconductor quantum dots on transferable elastomer layer. Applied Surface Science, 2017, 399, 160-166.	6.1	11
26	Direct fabrication of polymer micro-lens array. Proceedings of SPIE, 2017, , .	0.8	1
27	Pyro-EHD 3D printing at microscale. , 2017, , .		0
28	Double percolation of multiwalled carbon nanotubes in polystyrene/polylactic acid blends. Polymer, 2016, 99, 193-203.	3.8	53
29	Twofold Self-Assembling of Nanocrystals Into Nanocomposite Polymer. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 1-7.	2.9	7
30	Polymer nanocomposites: functionalisation of the nanofiller and control of the interface. Advances in Materials and Processing Technologies, 2015, 1, 423-434.	1.4	1
31	Electrohydrodynamic Assembly of Multiscale PDMS Microlens Arrays. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 399-406.	2.9	21
32	Epoxy elastomers reinforced with functionalized multi-walled carbon nanotubes as stimuli-responsive shape memory materials. , 2014, , .		1
33	Influence of melt annealing on rheological and electrical properties of compatibilized multiwalled carbon nanotubes in polypropylene. , 2014, , .		0
34	Polymer self-assembling of light converting microlenses arrays. , 2014, , .		0
35	One-step fabrication of free-standing flexible membranes reinforced with self-assembled arrays of carbon nanotubes. Applied Physics Letters, 2014, 105, 153101.	3 . 3	6
36	Hybrid ferroelectric–polymer microfluidic device for dielectrophoretic self-assembling of nanoparticles. RSC Advances, 2014, 4, 2851-2857.	3.6	29

#	Article	lF	CITATIONS
37	Pros and cons of melt annealing on the properties of AMWCNT/polypropylene composites. Polymer Degradation and Stability, 2014, 110, 56-64.	5.8	18
38	Tethered Pyro-Electrohydrodynamic Spinning for Patterning Well-Ordered Structures at Micro- and Nanoscale. Chemistry of Materials, 2014, 26, 3357-3360.	6.7	50