
Ji-Yuan Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7596007/publications.pdf Version: 2024-02-01

Ιι-ΥΠΑΝ ΖΗΟΠ

#	Article	IF	CITATIONS
1	Incidence, clinical course and risk factor for recurrent PCR positivity in discharged COVID-19 patients in Guangzhou, China: A prospective cohort study. PLoS Neglected Tropical Diseases, 2020, 14, e0008648.	3.0	42
2	Effect of the 2008 cold spell on preterm births in two subtropical cities of Guangdong Province, Southern China. Science of the Total Environment, 2018, 642, 307-313.	8.0	26
3	Detection of Parent-of-Origin Effects Based on Complete and Incomplete Nuclear Families with Multiple Affected Children. Human Heredity, 2009, 67, 1-12.	0.8	20
4	HLA Polymorphism and Susceptibility to End-Stage Renal Disease in Cantonese Patients Awaiting Kidney Transplantation. PLoS ONE, 2014, 9, e90869.	2.5	19
5	Migrant population is more vulnerable to the effect of air pollution on preterm birth: Results from a birth cohort study in seven Chinese cities. International Journal of Hygiene and Environmental Health, 2019, 222, 1047-1053.	4.3	19
6	A statistical measure for the skewness of X chromosome inactivation based on case-control design. BMC Bioinformatics, 2019, 20, 11.	2.6	16
7	The transmission disequilibrium test and imprinting effects test based on caseâ€parent pairs. Genetic Epidemiology, 2007, 31, 273-287.	1.3	13
8	Detection of parentâ€ofâ€origin effects using general pedigree data. Genetic Epidemiology, 2010, 34, 151-158.	1.3	13
9	An Extension of the Transmission Disequilibrium Test Incorporating Imprinting. Genetics, 2007, 175, 1489-1504.	2.9	12
10	Detection of Parent-of-Origin Effects for Quantitative Traits in Complete and Incomplete Nuclear Families With Multiple Children. American Journal of Epidemiology, 2011, 174, 226-233.	3.4	12
11	A robust and powerful test for case–control genetic association study on X chromosome. Statistical Methods in Medical Research, 2019, 28, 3260-3272.	1.5	12
12	A powerful approach for association analysis incorporating imprinting effects. Bioinformatics, 2011, 27, 2571-2577.	4.1	11
13	Fluorescent wood sponge toward selective detection and efficient removal of Cr(<scp>vi</scp>). Environmental Science: Nano, 2021, 8, 3331-3342.	4.3	9
14	A powerful parent-of-origin effects test for qualitative traits incorporating control children in nuclear families. Journal of Human Genetics, 2012, 57, 500-507.	2.3	8
15	Likelihood Ratio Test for Excess Homozygosity at Marker Loci on X Chromosome. PLoS ONE, 2015, 10, e0145032.	2.5	7
16	A powerful parent-of-origin effects test for qualitative traits on X chromosome in general pedigrees. BMC Bioinformatics, 2018, 19, 8.	2.6	7
17	Detection of Parent-of-Origin Effects in Complete and Incomplete Nuclear Families with Multiple Affected Children Using Multiple Tightly Linked Markers. Human Heredity, 2009, 67, 116-127.	0.8	6
18	A statistical measure for the skewness of X chromosome inactivation based on family trios. BMC Genetics, 2018, 19, 109.	2.7	6

JI-YUAN ZHOU

#	Article	IF	CITATIONS
19	Repetitive transcranial magnetic stimulation for depression after basal ganglia ischaemic stroke: protocol for a multicentre randomised double-blind placebo-controlled trial. BMJ Open, 2018, 8, e018011.	1.9	5
20	Detection of imprinting effects for qualitative traits on X chromosome based on nuclear families. Statistical Methods in Medical Research, 2018, 27, 2329-2343.	1.5	5
21	A statistical measure for the skewness of X chromosome inactivation for quantitative traits and its application to the MCTFR data. BMC Genomic Data, 2021, 22, 24.	1.7	5
22	A robust test for X-chromosome genetic association accounting for X-chromosome inactivation and imprinting. Genetical Research, 2020, 102, e2.	0.9	4
23	Powerful Haplotype-Based Hardy-Weinberg Equilibrium Tests for Tightly Linked Loci. PLoS ONE, 2013, 8, e77399.	2.5	4
24	X-chromosome genetic association test incorporating X-chromosome inactivation and imprinting effects. Journal of Genetics, 2019, 98, 1.	0.7	3
25	Inferring Haplotype/Disease Association by Joint Use of Caseâ€Parents Trios and Caseâ€Parent Pairs. Annals of Human Genetics, 2010, 74, 263-274.	0.8	2
26	Powerful tests for association on quantitative trait loci incorporating imprinting effects. Journal of Human Genetics, 2013, 58, 384-390.	2.3	2
27	Detection of parent-of-origin effects for quantitative traits using general pedigree data. Journal of Genetics, 2014, 93, 339-347.	0.7	2
28	Detection of Imprinting Effects for Quantitative Traits on X Chromosome Using Nuclear Families with Multiple Daughters. Annals of Human Genetics, 2017, 81, 147-160.	0.8	2
29	Simple-to-use nomogram for predicting the risk of syphilis among MSM in Guangdong Province: results from a serial cross-sectional study. BMC Infectious Diseases, 2021, 21, 1199.	2.9	2
30	BEXCIS: Bayesian methods for estimating the degree of the skewness of X chromosome inactivation. BMC Bioinformatics, 2022, 23, .	2.6	2
31	A powerful association test for qualitative traits incorporating imprinting effects using general pedigree data. Journal of Human Genetics, 2015, 60, 77-83.	2.3	1
32	Photodynamic therapy for synovial hyperplasia in patients with refractory rheumatoid arthritis: a study protocol for a randomized, double-blind, blank-controlled prospective trial. Trials, 2021, 22, 685.	1.6	1
33	X-chromosome genetic association test incorporating X-chromosome inactivation and imprinting effects. Journal of Genetics, 2019, 98, .	0.7	1
34	Robust Joint Analysis with Data Fusion in Two-Stage Quantitative Trait Genome-Wide Association Studies. Computational and Mathematical Methods in Medicine, 2013, 2013, 1-12.	1.3	0
35	Generalized disequilibrium test for association in qualitative traits incorporating imprinting effects based on extended pedigrees. BMC Genetics, 2017, 18, 90.	2.7	0
36	Efficient Monte Carlo evaluation of resampling-based hypothesis tests with applications to genetic epidemiology. Statistical Methods in Medical Research, 2018, 27, 1437-1450.	1.5	0

JI-YUAN ZHOU

#	Article	IF	CITATIONS
37	Two Powerful Tests for Parent-of-Origin Effects at Quantitative Trait Loci on the X Chromosome. Human Heredity, 2018, 83, 250-273.	0.8	0
38	Title is missing!. , 2020, 14, e0008648.		0
39	Title is missing!. , 2020, 14, e0008648.		0
40	Title is missing!. , 2020, 14, e0008648.		0
41	Title is missing!. , 2020, 14, e0008648.		0
42	Detection of Parent-of-Origin Effects for the Variants Associated With Behavioral Disinhibition in the MCTFR Data. Frontiers in Genetics, 2022, 13, 831685.	2.3	0
43	Gene-Based Methods for Estimating the Degree of the Skewness of X Chromosome Inactivation. Genes, 2022, 13, 827.	2.4	0