
Darin Zerti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7595689/publications.pdf Version: 2024-02-01

DADIN ZEDTI

#	Article	IF	CITATIONS
1	SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nature Medicine, 2020, 26, 681-687.	30.7	2,182
2	Co-expression of SARS-CoV-2 entry genes in the superficial adult human conjunctival, limbal and corneal epithelium suggests an additional route of entry via the ocular surface. Ocular Surface, 2021, 19, 190-200.	4.4	122
3	Deconstructing Retinal Organoids: Single Cell RNA-Seq Reveals the Cellular Components of Human Pluripotent Stem Cell-Derived Retina. Stem Cells, 2019, 37, 593-598.	3.2	106
4	A single cell atlas of human cornea that defines its development, limbal progenitor cells and their interactions with the immune cells. Ocular Surface, 2021, 21, 279-298.	4.4	102
5	Cellular regeneration strategies for macular degeneration: past, present and future. Eye, 2018, 32, 946-971.	2.1	76
6	An integrated transcriptional analysis of the developing human retina. Development (Cambridge), 2019, 146, .	2.5	75
7	Systematic Comparison of Retinal Organoid Differentiation from Human Pluripotent Stem Cells Reveals Stage Specific, Cell Line, and Methodological Differences. Stem Cells Translational Medicine, 2019, 8, 694-706.	3.3	71
8	Decellularised extracellular matrix-derived peptides from neural retina and retinal pigment epithelium enhance the expression of synaptic markers and light responsiveness of human pluripotent stem cell derived retinal organoids. Biomaterials, 2019, 199, 63-75.	11.4	53
9	CRX Expression in Pluripotent Stem Cell-Derived Photoreceptors Marks a Transplantable Subpopulation of Early Cones. Stem Cells, 2019, 37, 609-622.	3.2	51
10	Developing a simple method to enhance the generation of cone and rod photoreceptors in pluripotent stem cell-derived retinal organoids. Stem Cells, 2020, 38, 45-51.	3.2	42
11	Modulation of Type-1 and Type-2 Cannabinoid Receptors by Saffron in a Rat Model of Retinal Neurodegeneration. PLoS ONE, 2016, 11, e0166827.	2.5	36
12	Extracellular matrix component expression in human pluripotent stem cell-derived retinal organoids recapitulates retinogenesis in vivo and reveals an important role for IMPG1 and CD44 in the development of photoreceptors and interphotoreceptor matrix. Acta Biomaterialia, 2018, 74, 207-221.	8.3	34
13	Transplanted Pluripotent Stem Cell-Derived Photoreceptor Precursors Elicit Conventional and Unusual Light Responses in Mice With Advanced Retinal Degeneration. Stem Cells, 2021, 39, 882-896.	3.2	32
14	Understanding the complexity of retina and pluripotent stem cell derived retinal organoids with single cell RNA sequencing: current progress, remaining challenges and future prospective. Current Eye Research, 2020, 45, 385-396.	1.5	22
15	Dissecting the Transcriptional and Chromatin Accessibility Heterogeneity of Proliferating Cone Precursors in Human Retinoblastoma Tumors by Single Cell Sequencing—Opening Pathways to New Therapeutic Strategies?. , 2021, 62, 18.		16
16	pRB-Depleted Pluripotent Stem Cell Retinal Organoids Recapitulate Cell State Transitions of Retinoblastoma Development and Suggest an Important Role for pRB in Retinal Cell Differentiation. Stem Cells Translational Medicine, 2022, 11, 415-433.	3.3	15
17	IGFBPs mediate IGF-1's functions in retinal lamination and photoreceptor development during pluripotent stem cell differentiation to retinal organoids. Stem Cells, 2021, 39, 458-466.	3.2	12
18	Characterization of SARS-CoV-2 Entry Factors' Expression in Corneal and Limbal Tissues of Adult Human Donors Aged from 58 to 85. Journal of Ocular Pharmacology and Therapeutics, 2022, 38, 56-65.	1.4	4