
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7595120/publications.pdf Version: 2024-02-01

SIL RYON SHIN

#	Article	IF	CITATIONS
1	Recent trends in gelatin methacryloyl nanocomposite hydrogels for tissue engineering. Journal of Biomedical Materials Research - Part A, 2022, 110, 708-724.	2.1	55
2	Effects of electrically conductive nano-biomaterials on regulating cardiomyocyte behavior for cardiac repair and regeneration. Acta Biomaterialia, 2022, 139, 141-156.	4.1	28
3	Mimicking Native Heart Tissue Physiology and Pathology in Silk Fibroin Constructs through a Perfusionâ€Based Dynamic Mechanical Stimulation Microdevice. Advanced Healthcare Materials, 2022, 11, e2101678.	3.9	6
4	Selection of natural biomaterials for <scp>microâ€tissue</scp> and <scp>organâ€onâ€chip</scp> models. Journal of Biomedical Materials Research - Part A, 2022, 110, 1147-1165.	2.1	11
5	A review on 3D printing functional brain model. Biomicrofluidics, 2022, 16, 011501.	1.2	11
6	Emerging Biopolymerâ€Based Bioadhesives. Macromolecular Bioscience, 2022, 22, e2100340.	2.1	26
7	Enzymeâ€Mediated Alleviation of Peroxide Toxicity in Selfâ€Oxygenating Biomaterials. Advanced Healthcare Materials, 2022, 11, e2102697.	3.9	3
8	Wirelessly Powered 3D Printed Hierarchical Biohybrid Robots with Multiscale Mechanical Properties. Advanced Functional Materials, 2022, 32, .	7.8	16
9	Injectable hydrogel derived from chitosan with tunable mechanical properties via hybrid-crosslinking system. Carbohydrate Polymers, 2021, 251, 117036.	5.1	41
10	A Heartâ€Breast Cancerâ€onâ€aâ€Chip Platform for Disease Modeling and Monitoring of Cardiotoxicity Induced by Cancer Chemotherapy. Small, 2021, 17, e2004258.	5.2	57
11	Designing Gelatin Methacryloyl (GelMA)â€Based Bioinks for Visible Light Stereolithographic 3D Biofabrication. Macromolecular Bioscience, 2021, 21, e2000317.	2.1	51
12	Tissue adhesives: From research to clinical translation. Nano Today, 2021, 36, 101049.	6.2	90
13	Engineering bioactive synthetic polymers for biomedical applications: a review with emphasis on tissue engineering and controlled release. Materials Advances, 2021, 2, 4447-4478.	2.6	40
14	Oxygen-Releasing Biomaterials: Current Challenges and Future Applications. Trends in Biotechnology, 2021, 39, 1144-1159.	4.9	44
15	Lightâ€Controlled Growth Factors Release on Tetrapodal ZnOâ€Incorporated 3Dâ€Printed Hydrogels for Developing Smart Wound Scaffold. Advanced Functional Materials, 2021, 31, 2007555.	7.8	65
16	Suturable elastomeric tubular grafts with patterned porosity for rapid vascularization of 3D constructs. Biofabrication, 2021, 13, 035020.	3.7	11
17	Organâ€onâ€aâ€Chip: A Heartâ€Breast Cancerâ€onâ€aâ€Chip Platform for Disease Modeling and Monitoring of Cardiotoxicity Induced by Cancer Chemotherapy (Small 15/2021). Small, 2021, 17, 2170070.	5.2	0
18	Microfluidic integration of regeneratable electrochemical affinity-based biosensors for continual monitoring of organ-on-a-chip devices. Nature Protocols, 2021, 16, 2564-2593.	5.5	80

#	Article	IF	CITATIONS
19	3D bioprinted human iPSC-derived somatosensory constructs with functional and highly purified sensory neuron networks. Biofabrication, 2021, 13, 035046.	3.7	11
20	Synthesis and characterization of C2C12-laden gelatin methacryloyl (GelMA) from marine and mammalian sources. International Journal of Biological Macromolecules, 2021, 183, 918-926.	3.6	29
21	Tethering Cells via Enzymatic Oxidative Crosslinking Enables Mechanotransduction in Non ellâ€Adhesive Materials. Advanced Materials, 2021, 33, e2102660.	11.1	10
22	Toward a neurospheroid niche model: optimizing embedded 3D bioprinting for fabrication of neurospheroid brain-like co-culture constructs. Biofabrication, 2021, 13, 015014.	3.7	32
23	Tethering Cells via Enzymatic Oxidative Crosslinking Enables Mechanotransduction in Non ellâ€Adhesive Materials (Adv. Mater. 42/2021). Advanced Materials, 2021, 33, 2170333.	11.1	0
24	Nanoengineered Shear-Thinning Hydrogel Barrier for Preventing Postoperative Abdominal Adhesions. Nano-Micro Letters, 2021, 13, 212.	14.4	28
25	Photo-Cross-Linkable Human Albumin Colloidal Gels Facilitate In Vivo Vascular Integration for Regenerative Medicine. ACS Omega, 2021, 6, 33511-33522.	1.6	7
26	Characterization of Leptin Receptor+ Stromal Cells in Lymph Node. Frontiers in Immunology, 2021, 12, 730438.	2.2	3
27	Kidney-Draining Lymph Node Fibrosis Following Unilateral Ureteral Obstruction. Frontiers in Immunology, 2021, 12, 768412.	2.2	2
28	Transcriptomic Mapping of Neural Diversity, Differentiation and Functional Trajectory in iPSC-Derived 3D Brain Organoid Models. Cells, 2021, 10, 3422.	1.8	7
29	Ferritin Nanocage Conjugated Hybrid Hydrogel for Tissue Engineering and Drug Delivery Applications. ACS Biomaterials Science and Engineering, 2020, 6, 277-287.	2.6	25
30	Customizable Composite Fibers for Engineering Skeletal Muscle Models. ACS Biomaterials Science and Engineering, 2020, 6, 1112-1123.	2.6	29
31	A 3Dâ€Printed Hybrid Nasal Cartilage with Functional Electronic Olfaction. Advanced Science, 2020, 7, 1901878.	5.6	61
32	<i>In Situ</i> Printing of Adhesive Hydrogel Scaffolds for the Treatment of Skeletal Muscle Injuries. ACS Applied Bio Materials, 2020, 3, 1568-1579.	2.3	86
33	Development of bentonite-gelatin nanocomposite hybrid hydrogels for tissue engineering. Applied Clay Science, 2020, 199, 105860.	2.6	17
34	Kappa-Carrageenan-Based Dual Crosslinkable Bioink for Extrusion Type Bioprinting. Polymers, 2020, 12, 2377.	2.0	38
35	Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues. Acta Biomaterialia, 2020, 117, 60-76.	4.1	115
36	Immune Organs and Immune Cells on a Chip: An Overview of Biomedical Applications. Micromachines, 2020, 11, 849.	1.4	37

#	Article	IF	CITATIONS
37	Engineering Smart Targeting Nanovesicles and Their Combination with Hydrogels for Controlled Drug Delivery. Pharmaceutics, 2020, 12, 849.	2.0	75
38	Cell-Laden Gelatin Methacryloyl Bioink for the Fabrication of Z-Stacked Hydrogel Scaffolds for Tissue Engineering. Polymers, 2020, 12, 3027.	2.0	7
39	Novel Cell-Based and Tissue Engineering Approaches for Induction of Angiogenesis as an Alternative Therapy for Diabetic Retinopathy. International Journal of Molecular Sciences, 2020, 21, 3496.	1.8	8
40	Myocardial Tissue Engineering: Nonmulberry Silk Based Ink for Fabricating Mechanically Robust Cardiac Patches and Endothelialized Myocardiumâ€onâ€aâ€Chip Application (Adv. Funct. Mater. 12/2020). Advanced Functional Materials, 2020, 30, 2070079.	7.8	2
41	Bioinspired Soft Robot with Incorporated Microelectrodes. Journal of Visualized Experiments, 2020, , .	0.2	6
42	Materials and technical innovations in 3D printing in biomedical applications. Journal of Materials Chemistry B, 2020, 8, 2930-2950.	2.9	124
43	Silver Nanoparticles-Composing Alginate/Gelatine Hydrogel Improves Wound Healing In Vivo. Nanomaterials, 2020, 10, 390.	1.9	138
44	Nonmulberry Silk Based Ink for Fabricating Mechanically Robust Cardiac Patches and Endothelialized Myocardiumâ€onâ€a hip Application. Advanced Functional Materials, 2020, 30, 1907436.	7.8	42
45	Hydrogel Production Platform with Dynamic Movement Using Photo-Crosslinkable/Temperature Reversible Chitosan Polymer and Stereolithography 4D Printing Technology. Tissue Engineering and Regenerative Medicine, 2020, 17, 423-431.	1.6	53
46	Combinatorial screening of biochemical and physical signals for phenotypic regulation of stem cell–based cartilage tissue engineering. Science Advances, 2020, 6, eaaz5913.	4.7	42
47	Lymph node fibroblastic reticular cells deposit fibrosis-associated collagen following organ transplantation. Journal of Clinical Investigation, 2020, 130, 4182-4194.	3.9	16
48	Multiscale bioprinting of vascularized models. Biomaterials, 2019, 198, 204-216.	5.7	191
49	Modular fabrication of intelligent material-tissue interfaces for bioinspired and biomimetic devices. Progress in Materials Science, 2019, 106, 100589.	16.0	72
50	Nanoparticle-Based Hybrid Scaffolds for Deciphering the Role of Multimodal Cues in Cardiac Tissue Engineering. ACS Nano, 2019, 13, 12525-12539.	7.3	101
51	3D Printed Cartilageâ€Like Tissue Constructs with Spatially Controlled Mechanical Properties. Advanced Functional Materials, 2019, 29, 1906330.	7.8	66
52	A Foreign Body Responseâ€onâ€a hip Platform. Advanced Healthcare Materials, 2019, 8, e1801425.	3.9	51
53	Flexible and Stretchable PEDOTâ€Embedded Hybrid Substrates for Bioengineering and Sensory Applications. ChemNanoMat, 2019, 5, 729-737.	1.5	15
54	Biocompatible Carbon Nanotube-Based Hybrid Microfiber for Implantable Electrochemical Actuator and Flexible Electronic Applications. ACS Applied Materials & Interfaces, 2019, 11, 20615-20627.	4.0	36

#	Article	IF	CITATIONS
55	3D Printed Tissues: 3D Printed Cartilageâ€Like Tissue Constructs with Spatially Controlled Mechanical Properties (Adv. Funct. Mater. 51/2019). Advanced Functional Materials, 2019, 29, 1970350.	7.8	3
56	Cardiac Fibrotic Remodeling on a Chip with Dynamic Mechanical Stimulation. Advanced Healthcare Materials, 2019, 8, e1801146.	3.9	54
57	Tissue Regeneration: A Multifunctional Polymeric Periodontal Membrane with Osteogenic and Antibacterial Characteristics (Adv. Funct. Mater. 3/2018). Advanced Functional Materials, 2018, 28, 1870021.	7.8	6
58	Electrically Driven Microengineered Bioinspired Soft Robots. Advanced Materials, 2018, 30, 1704189.	11.1	140
59	Interconnectable Dynamic Compression Bioreactors for Combinatorial Screening of Cell Mechanobiology in Three Dimensions. ACS Applied Materials & Interfaces, 2018, 10, 13293-13303.	4.0	36
60	Protein/polysaccharideâ€based scaffolds mimicking native extracellular matrix for cardiac tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2018, 106, 769-781.	2.1	79
61	A Dualâ€Layered Microfluidic System for Longâ€Term Controlled In Situ Delivery of Multiple Antiâ€Inflammatory Factors for Chronic Neural Applications. Advanced Functional Materials, 2018, 28, 1702009.	7.8	25
62	A Multifunctional Polymeric Periodontal Membrane with Osteogenic and Antibacterial Characteristics. Advanced Functional Materials, 2018, 28, 1703437.	7.8	152
63	Marine Biomaterial-Based Bioinks for Generating 3D Printed Tissue Constructs. Marine Drugs, 2018, 16, 484.	2.2	48
64	pH-Responsive DNA Nanolinker Conjugated Hybrid Materials for Electrochemical Microactuator and Biosensor Applications. ACS Applied Nano Materials, 2018, 1, 6630-6640.	2.4	11
65	Bioprinting: Microfluidicsâ€Enabled Multimaterial Maskless Stereolithographic Bioprinting (Adv. Mater.) Tj ETQq1	1.0.7843 11.1	314 rgBT /O
66	Reversible Redox Activity by Ion-pH Dually Modulated Duplex Formation of i-Motif DNA with Complementary G-DNA. Nanomaterials, 2018, 8, 226.	1.9	3
67	Microfluidicsâ€Enabled Multimaterial Maskless Stereolithographic Bioprinting. Advanced Materials, 2018, 30, e1800242.	11.1	277
68	Delivery of Cargo with a Bioelectronic Trigger. ACS Applied Materials & Interfaces, 2018, 10, 21782-21787.	4.0	13
69	3D Bioprinting for Tissue and Organ Fabrication. Annals of Biomedical Engineering, 2017, 45, 148-163.	1.3	507
70	Bioprinting: Rapid Continuous Multimaterial Extrusion Bioprinting (Adv. Mater. 3/2017). Advanced Materials, 2017, 29, .	11.1	9
71	Gold Nanocomposite Bioink for Printing 3D Cardiac Constructs. Advanced Functional Materials, 2017, 27, 1605352.	7.8	278
72	Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2293-E2302.	3.3	570

#	Article	IF	CITATIONS
73	Labelâ€Free and Regenerative Electrochemical Microfluidic Biosensors for Continual Monitoring of Cell Secretomes. Advanced Science, 2017, 4, 1600522.	5.6	131
74	Engineered 3D Cardiac Fibrotic Tissue to Study Fibrotic Remodeling. Advanced Healthcare Materials, 2017, 6, 1601434.	3.9	85
75	4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials. Biofabrication, 2017, 9, 012001.	3.7	271
76	Bioprinted Osteogenic and Vasculogenic Patterns for Engineering 3D Bone Tissue. Advanced Healthcare Materials, 2017, 6, 1700015.	3.9	310
77	Tissue Engineering: Engineered 3D Cardiac Fibrotic Tissue to Study Fibrotic Remodeling (Adv.) Tj ETQq1 1 0.7843	14.ŗgBT /C	Overlock 10
78	Biosensors: Labelâ€Free and Regenerative Electrochemical Microfluidic Biosensors for Continual Monitoring of Cell Secretomes (Adv. Sci. 5/2017). Advanced Science, 2017, 4, .	5.6	3
79	Tissue Engineering: Gold Nanocomposite Bioink for Printing 3D Cardiac Constructs (Adv. Funct.) Tj ETQq1 1 0.78	4314 rgBT 7.8	/Qverlock
80	Single Cell Microgel Based Modular Bioinks for Uncoupled Cellular Micro―and Macroenvironments. Advanced Healthcare Materials, 2017, 6, 1600913.	3.9	84
81	Spatially and temporally controlled hydrogels for tissue engineering. Materials Science and Engineering Reports, 2017, 119, 1-35.	14.8	151
82	Integrinâ€Mediated Interactions Control Macrophage Polarization in 3D Hydrogels. Advanced Healthcare Materials, 2017, 6, 1700289.	3.9	169
83	Nanostructured Fibrous Membranes with Rose Spike-Like Architecture. Nano Letters, 2017, 17, 6235-6240.	4.5	72
84	In vitro and in vivo analysis of visible light crosslinkable gelatin methacryloyl (GelMA) hydrogels. Biomaterials Science, 2017, 5, 2093-2105.	2.6	218
85	Rapid Continuous Multimaterial Extrusion Bioprinting. Advanced Materials, 2017, 29, 1604630.	11.1	275
86	Cold Water Fish Gelatin Methacryloyl Hydrogel for Tissue Engineering Application. PLoS ONE, 2016, 11, e0163902.	1.1	115
87	Reduced Graphene Oxideâ€GelMA Hybrid Hydrogels as Scaffolds for Cardiac Tissue Engineering. Small, 2016, 12, 3677-3689.	5.2	385
88	Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Lowâ€Viscosity Bioink. Advanced Materials, 2016, 28, 677-684.	11.1	677
89	A Bioactive Carbon Nanotubeâ€Based Ink for Printing 2D and 3D Flexible Electronics. Advanced Materials, 2016, 28, 3280-3289.	11.1	199
90	Automated microfluidic platform of bead-based electrochemical immunosensor integrated with bioreactor for continual monitoring of cell secreted biomarkers. Scientific Reports, 2016, 6, 24598.	1.6	132

#	Article	IF	CITATIONS
91	Graphene-based materials for tissue engineering. Advanced Drug Delivery Reviews, 2016, 105, 255-274.	6.6	537
92	Highly Elastic and Conductive Humanâ€Based Protein Hybrid Hydrogels. Advanced Materials, 2016, 28, 40-49.	11.1	226
93	Platinum nanopetal-based potassium sensors for acute cell death monitoring. RSC Advances, 2016, 6, 40517-40526.	1.7	15
94	Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials, 2016, 106, 58-68.	5.7	727
95	Aptamer-Based Microfluidic Electrochemical Biosensor for Monitoring Cell-Secreted Trace Cardiac Biomarkers. Analytical Chemistry, 2016, 88, 10019-10027.	3.2	181
96	Cell-microenvironment interactions and architectures in microvascular systems. Biotechnology Advances, 2016, 34, 1113-1130.	6.0	49
97	A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication, 2016, 8, 014101.	3.7	466
98	Nanoengineered biomimetic hydrogels for guiding human stem cell osteogenesis in three dimensional microenvironments. Journal of Materials Chemistry B, 2016, 4, 3544-3554.	2.9	149
99	Elastomeric free-form blood vessels for interconnecting organs on chip systems. Lab on A Chip, 2016, 16, 1579-1586.	3.1	79
100	Aligned Carbon Nanotube–Based Flexible Gel Substrates for Engineering Biohybrid Tissue Actuators. Advanced Functional Materials, 2015, 25, 4486-4495.	7.8	146
101	Layerâ€byâ€Layer Assembly of 3D Tissue Constructs with Functionalized Graphene. Advanced Functional Materials, 2014, 24, 6136-6144.	7.8	151
102	Controlling Mechanical Properties of Cell‣aden Hydrogels by Covalent Incorporation of Graphene Oxide. Small, 2014, 10, 514-523.	5.2	183
103	Microfluidics-Assisted Fabrication of Gelatin-Silica Core–Shell Microgels for Injectable Tissue Constructs. Biomacromolecules, 2014, 15, 283-290.	2.6	133
104	Surgical materials: Current challenges and nano-enabled solutions. Nano Today, 2014, 9, 574-589.	6.2	158
105	Injectable Graphene Oxide/Hydrogel-Based Angiogenic Gene Delivery System for Vasculogenesis and Cardiac Repair. ACS Nano, 2014, 8, 8050-8062.	7.3	449
106	Tough and flexible CNT–polymeric hybrid scaffolds for engineering cardiac constructs. Biomaterials, 2014, 35, 7346-7354.	5.7	249
107	Chitin nanofiber micropatterned flexible substrates for tissue engineering. Journal of Materials Chemistry B, 2013, 1, 4217.	2.9	68
108	Cellâ€laden Microengineered and Mechanically Tunable Hybrid Hydrogels of Gelatin and Graphene Oxide. Advanced Materials, 2013, 25, 6385-6391.	11.1	266

#	Article	IF	CITATIONS
109	Carbon-Nanotube-Embedded Hydrogel Sheets for Engineering Cardiac Constructs and Bioactuators. ACS Nano, 2013, 7, 2369-2380.	7.3	789
110	Carbon-Based Nanomaterials: Multifunctional Materials for Biomedical Engineering. ACS Nano, 2013, 7, 2891-2897.	7.3	693
111	Carbon Nanotube Reinforced Hybrid Microgels as Scaffold Materials for Cell Encapsulation. ACS Nano, 2012, 6, 362-372.	7.3	400
112	DNA-coated MWNT microfibers for electrochemical actuator. Sensors and Actuators B: Chemical, 2012, 162, 173-177.	4.0	12
113	Enhanced actuation of PPy/CNT hybrid fibers using porous structured DNA hydrogel. Sensors and Actuators B: Chemical, 2010, 145, 89-92.	4.0	28
114	Effect of C60 Fullerene on the Duplex Formation of i-Motif DNA with Complementary DNA in Solution. Journal of Physical Chemistry B, 2010, 114, 4783-4788.	1.2	23
115	Nanocomposite Hydrogel with High Toughness for Bioactuators. Advanced Materials, 2009, 21, 1712-1715.	11.1	197
116	Fullerene Attachment Enhances Performance of a DNA Nanomachine. Advanced Materials, 2009, 21, 1907-1910.	11.1	48
117	DNA Hybrid Nanomachines: Fullerene Attachment Enhances Performance of a DNA Nanomachine (Adv.) Tj ETQq1	1,0,78431 11:1	4 rgBT /Ove
118	Macromol. Rapid Commun. 6/2009. Macromolecular Rapid Communications, 2009, 30, NA-NA.	2.0	0
119	Tough Supersoft Sponge Fibers with Tunable Stiffness from a DNA Selfâ€Assembly Technique. Angewandte Chemie - International Edition, 2009, 48, 5116-5120.	7.2	37
120	pH-Dependent Structures of an i-Motif DNA in Solution. Journal of Physical Chemistry B, 2009, 113, 1852-1856.	1.2	64
121	Switchable redox activity by proton fuelled DNA nano-machines. Chemical Communications, 2009, , 1240.	2.2	17
122	Hydrogel-Assisted Polyaniline Microfiber as Controllable Electrochemical Actuatable Supercapacitor. Journal of the Electrochemical Society, 2009, 156, A313.	1.3	61
123	DNA Hydrogel Fiber with Selfâ€Entanglement Prepared by Using an Ionic Liquid. Angewandte Chemie - International Edition, 2008, 47, 2470-2474.	7.2	53
124	Electrochemical actuation in chitosan/polyaniline microfibers for artificial muscles fabricated using an in situ polymerization. Sensors and Actuators B: Chemical, 2008, 129, 834-840.	4.0	137
125	Electrochemical pH Oscillations of Ethyl Viologen/Ionic Liquid. Langmuir, 2008, 24, 3562-3565.	1.6	3
126	A novel "dual mode―actuation in chitosan/polyaniline/carbon nanotube fibers. Sensors and Actuators B: Chemical, 2007, 121, 616-621.	4.0	70

#	Article	IF	CITATIONS
127	Mechanical properties of chitosan/CNT microfibers obtained with improved dispersion. Sensors and Actuators B: Chemical, 2006, 115, 678-684.	4.0	116
128	Fabrication of Polymeric Composite Nanostructures Containing Ferritin Nanoparticles and Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2006, 921, 1.	0.1	1
129	Synthesis and characteristics of semi-interpenetrating polymer network hydrogels based on chitosan and poly(hydroxy ethyl methacrylate). Journal of Applied Polymer Science, 2005, 96, 86-92.	1.3	30
130	Synthesis and characteristics of a semi-interpenetrating polymer network based on chitosan/polyaniline under different pH conditions. Journal of Applied Polymer Science, 2005, 96, 867-873.	1.3	57
131	Enhancement of the electromechanical behavior of IPMCs based on chitosan/polyaniline ion exchange membranes fabricated by freeze-drying. Smart Materials and Structures, 2005, 14, 889-894.	1.8	21
132	Synthesis of conducting polyaniline in semi-IPN based on chitosan. Synthetic Metals, 2005, 154, 213-216.	2.1	35
133	Swelling Behavior of Semiâ€Interpenetrating Polymer Network Hydrogels Based on Chitosan and Poly(acryl amide). Journal of Macromolecular Science - Pure and Applied Chemistry, 2005, 42, 1073-1083.	1.2	24
134	Electromechanical properties of hydrogels based on chitosan and poly(hydroxyethyl methacrylate) in NaCl solution. Smart Materials and Structures, 2004, 13, 1036-1039.	1.8	55
135	Synthesis and characteristics of polyelectrolyte complexes composed of chitosan and hyaluronic acid. Journal of Applied Polymer Science, 2004, 91, 2908-2913.	1.3	32
136	Electrical behavior of chitosan and poly(hydroxyethyl methacrylate) hydrogel in the contact system. Journal of Applied Polymer Science, 2004, 92, 915-919.	1.3	31
137	Swelling characterizations of chitosan and polyacrylonitrile semi-interpenetrating polymer network hydrogels. Journal of Applied Polymer Science, 2003, 87, 2011-2015.	1.3	58
138	Water and temperature response of semi-IPN hydrogels composed of chitosan and polyacrylonitrile. Journal of Applied Polymer Science, 2003, 88, 2721-2724.	1.3	14
139	Electrical response characterization of chitosan/polyacrylonitrile hydrogel in NaCl solutions. Journal of Applied Polymer Science, 2003, 90, 91-96.	1.3	53
140	Thermal Characteristics of Polyelectrolyte Complexes Composed of Chitosan and Hyaluronic Acid. Journal of Macromolecular Science - Pure and Applied Chemistry, 2003, 40, 807-815.	1.2	18