
Paul S Frenette

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7594300/publications.pdf Version: 2024-02-01

DALLI S EDENETTE

#	Article	IF	CITATIONS
1	The microbiota regulates hematopoietic stem cell fate decisions by controlling iron availability in bone marrow. Cell Stem Cell, 2022, 29, 232-247.e7.	5.2	41
2	VCAM1 confers innate immune tolerance on haematopoietic and leukaemic stem cells. Nature Cell Biology, 2022, 24, 290-298.	4.6	19
3	Tet-mediated DNA demethylation regulates specification of hematopoietic stem and progenitor cells during mammalian embryogenesis. Science Advances, 2022, 8, eabm3470.	4.7	13
4	Brain motor and fear circuits regulate leukocytes during acute stress. Nature, 2022, 607, 578-584.	13.7	69
5	Nociceptors protect sickle cell disease mice from vaso-occlusive episodes and chronic organ damage. Journal of Experimental Medicine, 2021, 218, .	4.2	12
6	Nociceptive nerves regulate haematopoietic stem cell mobilization. Nature, 2021, 589, 591-596.	13.7	99
7	Using CT-guided stereotactic prostate radiation therapy (CT-SPRT) to assess sustained murine prostate ablation. Scientific Reports, 2021, 11, 6571.	1.6	0
8	Bone marrow NG2+/Nestin+ mesenchymal stem cells drive DTC dormancy via TGF-β2. Nature Cancer, 2021, 2, 327-339.	5.7	68
9	Olinciguat, a stimulator of soluble guanylyl cyclase, attenuates inflammation, vasoâ€occlusion and nephropathy in mouse models of sickle cell disease. British Journal of Pharmacology, 2021, 178, 3463-3475.	2.7	12
10	MAEA is an E3 ubiquitin ligase promoting autophagy and maintenance of haematopoietic stem cells. Nature Communications, 2021, 12, 2522.	5.8	27
11	Niche derived netrin-1 regulates hematopoietic stem cell dormancy via its receptor neogenin-1. Nature Communications, 2021, 12, 608.	5.8	39
12	Very low incidence of <i>Clostridioides difficile</i> infection in pediatric sickle cell disease patients. Haematologica, 2021, 106, 1489-1490.	1.7	3
13	In Situ Hematopoietic Stem Cell Imaging. Methods in Molecular Biology, 2021, 2185, 373-382.	0.4	0
14	Future directions in preclinical and translational cancer neuroscience research. Nature Cancer, 2020, 1, 1027-1031.	5.7	19
15	The Gut Microbiome Regulates Psychological-Stress-Induced Inflammation. Immunity, 2020, 53, 417-428.e4.	6.6	78
16	Snai2 Maintains Bone Marrow Niche Cells by Repressing Osteopontin Expression. Developmental Cell, 2020, 53, 503-513.e5.	3.1	14
17	Clinically Actionable Strategies for Studying Neural Influences in Cancer. Cancer Cell, 2020, 38, 11-14.	7.7	30
18	Randomized phase 2 trial of Intravenous Gamma Globulin (IVIG) for the treatment of acute vaso-occlusive crisis in patients with sickle cell disease: Lessons learned from the midpoint analysis. Complementary Therapies in Medicine, 2020, 52, 102481.	1.3	5

#	Article	IF	CITATIONS
19	Beneficial Effects of Soluble Guanylyl Cyclase Stimulation and Activation in Sickle Cell Disease Are Amplified by Hydroxyurea: In Vitro and In Vivo Studies. Journal of Pharmacology and Experimental Therapeutics, 2020, 374, 469-478.	1.3	10
20	Nerves in cancer. Nature Reviews Cancer, 2020, 20, 143-157.	12.8	229
21	Use of beta-blocker types and risk of incident prostate cancer in a multiethnic population. Urologic Oncology: Seminars and Original Investigations, 2020, 38, 794.e11-794.e16.	0.8	11
22	Roadmap for the Emerging Field of Cancer Neuroscience. Cell, 2020, 181, 219-222.	13.5	182
23	Artery-Associated Sympathetic Innervation Drives Rhythmic Vascular Inflammation of Arteries and Veins. Circulation, 2019, 140, 1100-1114.	1.6	37
24	Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell, 2019, 178, 1102-1114.e17.	13.5	254
25	The good side of inflammation: Staphylococcus aureus proteins SpA and Sbi contribute to proper abscess formation and wound healing during skin and soft tissue infections. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2657-2670.	1.8	12
26	Nestin+NG2+ Cells Form a Reserve Stem Cell Population in the Mouse Prostate. Stem Cell Reports, 2019, 12, 1201-1211.	2.3	7
27	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	1.6	766
28	Maea expressed by macrophages, but not erythroblasts, maintains postnatal murine bone marrow erythroblastic islands. Blood, 2019, 133, 1222-1232.	0.6	44
29	Cross talk between neutrophils and the microbiota. Blood, 2019, 133, 2168-2177.	0.6	87
30	The bone marrow microenvironment at single-cell resolution. Nature, 2019, 569, 222-228.	13.7	624
31	Engineering a haematopoietic stem cell niche by revitalizing mesenchymal stromal cells. Nature Cell Biology, 2019, 21, 560-567.	4.6	74
32	Seasonal manifestations of sickle cell disease activity. Nature Medicine, 2019, 25, 536-537.	15.2	4
33	Haematopoietic stem cell activity andÂinteractions with the niche. Nature Reviews Molecular Cell Biology, 2019, 20, 303-320.	16.1	588
34	Macrophage Transfer to HSCs Assigns Residence in Bone Marrow. Blood, 2019, 134, 276-276.	0.6	1
35	Engineering a Hematopoietic Stem Cell Niche By Revitalizing Mesenchymal Stem Cells with Five Transcription Factors. Blood, 2019, 134, 5004-5004.	0.6	0
36	VCAM1 Confers Innate Immune Tolerance on Hematopoietic and Leukemic Stem Cells. Blood, 2019, 134, 524-524.	0.6	0

#	Article	IF	CITATIONS
37	No Evidence for Hematopoietic Stem Cell Self-Renewal in-Vivo Following Inflammatory Challenge. Blood, 2019, 134, 456-456.	0.6	1
38	The Gut Microbiome Regulates Psychological Stress-Induced Inflammation in Sickle Cell Disease. Blood, 2019, 134, 205-205.	0.6	0
39	Neural Regulation of Bone and Bone Marrow. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031344.	2.9	63
40	Niches for Hematopoietic Stem Cells and Their Progeny. Immunity, 2018, 48, 632-648.	6.6	290
41	Lineage-Biased Hematopoietic Stem Cells Are Regulated by Distinct Niches. Developmental Cell, 2018, 44, 634-641.e4.	3.1	154
42	CD150high Bone Marrow Tregs Maintain Hematopoietic Stem Cell Quiescence and Immune Privilege via Adenosine. Cell Stem Cell, 2018, 22, 445-453.e5.	5.2	188
43	The hematopoietic stem cell niche: from embryo to adult. Development (Cambridge), 2018, 145, .	1.2	155
44	A non-cell-autonomous role for Pml in the maintenance of leukemia from the niche. Nature Communications, 2018, 9, 66.	5.8	25
45	Granulocyte-derived TNFα promotes vascular and hematopoietic regeneration in the bone marrow. Nature Medicine, 2018, 24, 95-102.	15.2	78
46	The Majority of CD45–ÂTer119–ÂCD31– Bone Marrow Cell Fraction Is of Hematopoietic Origin and Contains Erythroid and Lymphoid Progenitors. Immunity, 2018, 49, 627-639.e6.	6.6	36
47	Stem cell factor is selectively secreted by arterial endothelial cells in bone marrow. Nature Communications, 2018, 9, 2449.	5.8	145
48	Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nature Medicine, 2018, 24, 782-791.	15.2	253
49	Maea is a Critical Regulator of Hematopoietic Stem Cell and Erythroblastic Island Macrophage Maintenance. Experimental Hematology, 2018, 64, S46.	0.2	0
50	Microbiota and Neutrophil Development. Blood, 2018, 132, SCI-31-SCI-31.	0.6	0
51	Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nature Cell Biology, 2017, 19, 214-223.	4.6	332
52	Cholinergic Signals from the CNS Regulate G-CSF-Mediated HSC Mobilization from Bone Marrow via a Glucocorticoid Signaling Relay. Cell Stem Cell, 2017, 20, 648-658.e4.	5.2	68
53	Complexity of bone marrow hematopoietic stem cell niche. International Journal of Hematology, 2017, 106, 45-54.	0.7	109
54	T-Regulating Hair Follicle Stem Cells. Immunity, 2017, 46, 979-981.	6.6	15

4

#	Article	IF	CITATIONS
55	Guidelines for the use of flow cytometry and cell sorting in immunological studies [*] . European Journal of Immunology, 2017, 47, 1584-1797.	1.6	505
56	Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science, 2017, 358, 321-326.	6.0	304
57	Stimulation of adrenergic activity by desipramine enhances hematopoietic stem and progenitor cell mobilization along with Gâ€CSF in multiple myeloma: A pilot study. American Journal of Hematology, 2017, 92, 1047-1051.	2.0	11
58	Abstract 1821: Sympathetic nerves regulate a metabolic switch promoting angiogenesis through adrenergic signaling in prostate cancer. , 2017, , .		0
59	Adenosine from Niche-Associated Tregs Maintains Hematopoietic Stem Cell Quiescence. Blood, 2017, 130, 91-91.	0.6	2
60	A Time Bomb for Leukemia. Cell, 2016, 165, 262-263.	13.5	1
61	Neutrophils, platelets, and inflammatory pathways at the nexus of sickle cell disease pathophysiology. Blood, 2016, 127, 801-809.	0.6	288
62	Self-renewal of a purified <i>Tie2</i> ⁺ hematopoietic stem cell population relies on mitochondrial clearance. Science, 2016, 354, 1156-1160.	6.0	251
63	Hematopoietic stem cell niche through the ages. Experimental Hematology, 2016, 44, S33.	0.2	0
64	Targeting Mac-1-mediated leukocyte–RBC interactions uncouples the benefits for acute vaso-occlusion and chronic organ damage. Experimental Hematology, 2016, 44, 940-946.	0.2	15
65	HSC Contribution in Making Steady-State Blood. Immunity, 2016, 45, 464-466.	6.6	7
66	Niche heterogeneity in the bone marrow. Annals of the New York Academy of Sciences, 2016, 1370, 82-96.	1.8	235
67	Fetal liver hematopoietic stem cell niches associate with portal vessels. Science, 2016, 351, 176-180.	6.0	193
68	Activated Neutrophils Are Associated with Pediatric Cerebral Malaria Vasculopathy in Malawian Children. MBio, 2016, 7, e01300-15.	1.8	70
69	Leukocytes in the Vaso-Occlusive Process. , 2016, , 91-107.		2
70	Sympathetic neural regulation of angiogenesis through Adrb2 in prostate cancer: A novel therapeutic target Journal of Clinical Oncology, 2016, 34, 11524-11524.	0.8	0
71	Vcam1 Is a "Don't-Eat-Me" Signal on Healthy Hematopoietic and Leukemic Stem Cells. Blood, 2016, 128, 565-565.	0.6	0
72	F4/80 Identifies a Subset of Non-Mobilizable Bone Marrow HSCs Involved in Stress-Induced Hematopoiesis. Blood, 2016, 128, 569-569.	0.6	0

#	Article	IF	CITATIONS
73	Hematopoietic Stem Cells Fail to Regenerate In Vivo Following Inflammatory Stress. Blood, 2016, 128, 1472-1472.	0.6	0
74	Loss of Adrenergic Nerves in the Bone Marrow Microenvironment Drives an Aging HSC Niche Phenotype. Blood, 2016, 128, 169-169.	0.6	9
75	Singleâ€dose intravenous gammaglobulin can stabilize neutrophil <scp>M</scp> acâ€1 activation in sickle cell pain crisis. American Journal of Hematology, 2015, 90, 381-385.	2.0	34
76	Regulation of leucocyte homeostasis in the circulation. Cardiovascular Research, 2015, 107, 340-351.	1.8	79
77	Neural Regulation of Hematopoiesis, Inflammation, and Cancer. Neuron, 2015, 86, 360-373.	3.8	184
78	Making sense of hematopoietic stem cell niches. Blood, 2015, 125, 2621-2629.	0.6	342
79	Neutrophil ageing is regulated by the microbiome. Nature, 2015, 525, 528-532.	13.7	627
80	No "Kindlin,―it's all about HSC balance. Journal of Experimental Medicine, 2015, 212, 1341-1342.	4.2	0
81	Macrophage Erythroblast Attacher (MAEA), but Not VCAM1, Is Required for the Bone Marrow Erythroblastic Niche. Blood, 2015, 126, 2128-2128.	0.6	13
82	Stimulation of Adrenergic Activity By Desipramine Enhances Hematopoietic Stem and Progenitor Cell Mobilization Along with G-CSF in Multiple Myeloma - a Pilot Study of Safety and Efficacy. Blood, 2015, 126, 3101-3101.	0.6	0
83	Distinct Contributions By Perivascular Niche Cells in Hematopoietic Stem Cell Maintenance. Blood, 2015, 126, 661-661.	0.6	1
84	Targeting Neutrophil Aging and the Microbiota for the Treatment of Sickle Cell Disease. Blood, 2015, 126, 279-279.	0.6	0
85	Muscarinic Receptor Type-1 Regulates Centrally Hematopoietic Stem Cell Mobilization By Granulocyte-Colony Stimulating Factor Via the Hypothalamic-Pituitary Axis. Blood, 2015, 126, 898-898.	0.6	0
86	Alternative CD44 splicing in intestinal stem cells and tumorigenesis. Oncogene, 2014, 33, 537-538.	2.6	41
87	Influences of vascular niches on hematopoietic stem cell fate. International Journal of Hematology, 2014, 99, 699-705.	0.7	32
88	Small RNAs derived from IncRNA RNase MRP have gene-silencing activity relevant to human cartilage–hair hypoplasia. Human Molecular Genetics, 2014, 23, 368-382.	1.4	83
89	Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nature Medicine, 2014, 20, 1315-1320.	15.2	483
90	Acute Myelogenous Leukemia-Induced Sympathetic Neuropathy Promotes Malignancy in an Altered Hematopoietic Stem Cell Niche. Cell Stem Cell, 2014, 15, 365-375.	5.2	308

#	Article	IF	CITATIONS
91	Megakaryocytes regulate hematopoietic stem cell quiescence via CXCL4 secretion. Experimental Hematology, 2014, 42, S18.	0.2	3
92	Ductus venosus-associated pericytes form a niche regulating hematopoietic stem cell proliferation in the fetal liver. Experimental Hematology, 2014, 42, S19.	0.2	0
93	Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nature Medicine, 2014, 20, 833-846.	15.2	628
94	Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease. Blood, 2014, 123, 3818-3827.	0.6	281
95	Reprogramming finds its niche. Nature, 2014, 511, 301-302.	13.7	5
96	Osterix Marks Distinct Waves of Primitive and Definitive Stromal Progenitors during Bone Marrow Development. Developmental Cell, 2014, 29, 340-349.	3.1	365
97	Vasculature-Associated Cells Expressing Nestin in Developing Bones Encompass Early Cells in the Osteoblast and Endothelial Lineage. Developmental Cell, 2014, 29, 330-339.	3.1	160
98	Vaso-Occlusion-Promoting Neutrophil Mac-1 Integrin Activation in Human Sickle Cell Crises Is Stabilized By a Single Dose of Intravenous Gammaglobulin. Blood, 2014, 124, 4089-4089.	0.6	4
99	Prospective cohort study of the circadian rhythm pattern in allogeneic sibling donors undergoing standard granulocyte colony-stimulating factor mobilization. Stem Cell Research and Therapy, 2013, 4, 30.	2.4	7
100	Autonomic Nerve Development Contributes to Prostate Cancer Progression. Science, 2013, 341, 1236361.	6.0	851
101	Peri-vascular megakaryocytes restrain hematopoietic stem cell proliferation. Experimental Hematology, 2013, 41, S12.	0.2	Ο
102	Arteriolar niches maintain haematopoietic stem cell quiescence. Nature, 2013, 502, 637-643.	13.7	1,002
103	Vaso-occlusion in sickle cell disease: pathophysiology and novel targeted therapies. Blood, 2013, 122, 3892-3898.	0.6	281
104	The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nature Medicine, 2013, 19, 35-42.	15.2	1,032
105	Mesenchymal Stem Cell: Keystone of the Hematopoietic Stem Cell Niche and a Stepping-Stone for Regenerative Medicine. Annual Review of Immunology, 2013, 31, 285-316.	9.5	381
106	Endothelial Jagged-1 Is Necessary for Homeostatic and Regenerative Hematopoiesis. Cell Reports, 2013, 4, 1022-1034.	2.9	224
107	Circadian control of the immune system. Nature Reviews Immunology, 2013, 13, 190-198.	10.6	782
108	CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nature Medicine, 2013, 19, 429-436.	15.2	370

#	Article	IF	CITATIONS
109	MSC Niche for Hematopoiesis. , 2013, , 91-106.		Ο
110	Tissue-Resident Macrophages Self-Maintain Locally throughout Adult Life with Minimal Contribution from Circulating Monocytes. Immunity, 2013, 38, 792-804.	6.6	1,767
111	This Niche Is a Maze; An Amazing Niche. Cell Stem Cell, 2013, 12, 391-392.	5.2	47
112	Rhythmic Modulation of the Hematopoietic Niche through Neutrophil Clearance. Cell, 2013, 153, 1025-1035.	13.5	555
113	Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. Nature Medicine, 2013, 19, 695-703.	15.2	232
114	PDGFRα and CD51 mark human Nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. Journal of Experimental Medicine, 2013, 210, 1351-1367.	4.2	425
115	A novel role for factor VIII and thrombin/PAR1 in regulating hematopoiesis and its interplay with the bone structure. Blood, 2013, 122, 2562-2571.	0.6	38
116	Vaso-occlusion in sickle cell disease: pathophysiology and novel targeted therapies. Hematology American Society of Hematology Education Program, 2013, 2013, 362-369.	0.9	53
117	Megakaryocytes Regulate Hematopoietic Stem Cell Quiescence Via PF4 Secretion. Blood, 2013, 122, 3-3.	0.6	2
118	Nestin+ Pericytes In The Fetal Liver Are Necessary To Maintain HSCs. Blood, 2013, 122, 583-583.	0.6	2
119	Neutrophil Aging, Regulated By Microbiota-Derived Signals, Promotes Sickle Cell Vaso-Occlusion. Blood, 2013, 122, 324-324.	0.6	Ο
120	Acute Myeloid Leukemia Alters The Mesenchymal Stem Cell Potential Of The HSC Niche: Evidence For Modulation By β-Adrenergic Signals. Blood, 2013, 122, 342-342.	0.6	0
121	Heme-Induced Neutrophil Extracellular Traps (NETs) Formation Contributes To Sickle Cell Disease Pathogenesis. Blood, 2013, 122, 184-184.	0.6	1
122	Intravenous Immunoglobulins Modulate Neutrophil Activation and Vascular Injury Through FcγRIII and SHP-1. Circulation Research, 2012, 110, 1057-1066.	2.0	40
123	Norepinephrine reuptake inhibition promotes mobilization in mice: potential impact to rescue low stem cell yields. Blood, 2012, 119, 3962-3965.	0.6	86
124	Hydroxyurea and a cGMP-amplifying agent have immediate benefits on acute vaso-occlusive events in sickle cell disease mice. Blood, 2012, 120, 2879-2888.	0.6	86
125	Adrenergic Nerves Govern Circadian Leukocyte Recruitment to Tissues. Immunity, 2012, 37, 290-301.	6.6	406
126	GM-CSF Controls Nonlymphoid Tissue Dendritic Cell Homeostasis but Is Dispensable for the Differentiation of Inflammatory Dendritic Cells. Immunity, 2012, 36, 1031-1046.	6.6	365

#	Article	IF	CITATIONS
127	Deciphering the transcriptional network of the dendritic cell lineage. Nature Immunology, 2012, 13, 888-899.	7.0	688
128	The secrets of the bone marrow niche: Enigmatic niche brings challenge for HSC expansion. Nature Medicine, 2012, 18, 864-865.	15.2	36
129	Bone Marrow Arteriolar Niches Maintain Hematopoietic Stem Cell Quiescence. Blood, 2012, 120, 638-638.	0.6	1
130	An Anillin-Ect2 Complex Stabilizes Central Spindle Microtubules at the Cortex during Cytokinesis. PLoS ONE, 2012, 7, e34888.	1.1	73
131	PDGFRα and CD51 Mark Human Nestin+ Sphere-Forming Mesenchymal Stem Cells Capable of Robust Hematopoietic Stem Cell Expansion. Blood, 2012, 120, 505-505.	0.6	0
132	CD169+ Macrophages Regulate Erythropoiesis Under Homeostasis, Recovery From Erythron Injury and in JAK2V617F-Induced Polycythemia Vera. Blood, 2012, 120, 80-80.	0.6	0
133	Trafficking of Stem Cells. Methods in Molecular Biology, 2011, 750, 3-24.	0.4	23
134	Physiological Contribution of CD44 as a Ligand for E-Selectin during Inflammatory T-Cell Recruitment. American Journal of Pathology, 2011, 178, 2437-2446.	1.9	43
135	Rapid mobilization of hematopoietic progenitors by AMD3100 and catecholamines is mediated by CXCR4-dependent SDF-1 release from bone marrow stromal cells. Leukemia, 2011, 25, 1286-1296.	3.3	180
136	Bone Marrow Mesenchymal Stem and Progenitor Cells Induce Monocyte Emigration in Response to Circulating Toll-like Receptor Ligands. Immunity, 2011, 34, 590-601.	6.6	425
137	Pretransplant CSF-1 therapy expands recipient macrophages and ameliorates GVHD after allogeneic hematopoietic cell transplantation. Journal of Experimental Medicine, 2011, 208, 1069-1082.	4.2	145
138	Diabetes Impairs Hematopoietic Stem Cell Mobilization by Altering Niche Function. Science Translational Medicine, 2011, 3, 104ra101.	5.8	254
139	Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. Journal of Experimental Medicine, 2011, 208, 261-271.	4.2	732
140	CXCL1 and its receptor, CXCR2, mediate murine sickle cell vaso-occlusion during hemolytic transfusion reactions. Journal of Clinical Investigation, 2011, 121, 1397-1401.	3.9	37
141	Bone Marrow Neuropathy Prevents Hematopoietic Regeneration. Blood, 2011, 118, 139-139.	0.6	26
142	Urinary Excretion of Epinephrine and Dopamine Correlates with Efficiency of G-CSF Mobilized Stem Cells in Patients with AL Amyloidosis. Blood, 2011, 118, 316-316.	0.6	2
143	CXCL1 and its receptor, CXCR2, mediate murine sickle cell vasoâ€occlusion during hemolytic transfusion reactions. FASEB Journal, 2011, 25, 116.8.	0.2	0
144	Abstract 507: Autonomic intratumoral neo-nerves drive prostate cancer development and metastasis. , 2011, , .		1

#	Article	IF	CITATIONS
145	Local Adrenergic Nerves Regulate Diurnal Leukocyte Adhesion: Impact In Sickle Cell Disease. Blood, 2011, 118, 1099-1099.	0.6	6
146	Neutrophil microdomains: linking heterocellular interactions with vascular injury. Current Opinion in Hematology, 2010, 17, 25-30.	1.2	14
147	GMI-1070, a novel pan-selectin antagonist, reverses acute vascular occlusions in sickle cell mice. Blood, 2010, 116, 1779-1786.	0.6	205
148	Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature, 2010, 466, 829-834.	13.7	2,935
149	Bad Blood: A trigger for TRALI. Nature Medicine, 2010, 16, 382-383.	15.2	12
150	Cooperation of β ₂ ―and β ₃ â€adrenergic receptors in hematopoietic progenitor cell mobilization. Annals of the New York Academy of Sciences, 2010, 1192, 139-144.	1.8	163
151	Targeting CXCR4, SDF1 and Beta-Adrenergic Receptors In the AML Microenvironment by Novel Antagonist POL6326, G-CSF and Isoproterenol. Blood, 2010, 116, 2179-2179.	0.6	11
152	Leukocyte recruitment to the cremaster muscle exhibits circadian oscillations. FASEB Journal, 2010, 24, 355.6.	0.2	0
153	Circadian Adrenergic Regulation of Bone Marrow Endothelial Adhesion Molecule Expression Impacts Progenitor Recruitment and Engraftment Efficiency. Blood, 2010, 116, 398-398.	0.6	0
154	Heterotypic interactions enabled by polarized neutrophil microdomains mediate thromboinflammatory injury. Nature Medicine, 2009, 15, 384-391.	15.2	307
155	When integrins fail to integrate. Nature Medicine, 2009, 15, 249-250.	15.2	7
156	Gαs Uncouples Hematopoietic Stem Cell Homing and Mobilization. Cell Stem Cell, 2009, 4, 379-380.	5.2	9
157	Circadian rhythms influence hematopoietic stem cells. Current Opinion in Hematology, 2009, 16, 235-242.	1.2	114
158	Coordinated Regulation of Hematopoietic and Mesenchymal Stem Cells in a Bone Marrow Niche Blood, 2009, 114, 2-2.	0.6	6
159	The Hematopoietic Stem Cell Niche Blood, 2009, 114, SCI-49-SCI-49.	0.6	0
160	Haematopoietic stem cell release is regulated by circadian oscillations. Nature, 2008, 452, 442-447.	13.7	1,103
161	Mobilized Hematopoietic Stem Cell Yield Depends on Species-Specific Circadian Timing. Cell Stem Cell, 2008, 3, 364-366.	5.2	207
162	The vessel wall and its interactions. Blood, 2008, 111, 5271-5281.	0.6	301

#	Article	IF	CITATIONS
163	Intravenous immunoglobulins reverse acute vaso-occlusive crises in sickle cell mice through rapid inhibition of neutrophil adhesion. Blood, 2008, 111, 915-923.	0.6	88
164	Osteoblasts: yes, they can. Blood, 2008, 112, 455-455.	0.6	5
165	The Sympathetic Nervous System Regulates Hematopoietic Stem and Progenitor Cell Homing and Engraftment Blood, 2008, 112, 1387-1387.	0.6	1
166	Granulocyte Colony-Stimulating Factor (G-CSF) Stimulates Sympathetic Nervous System Activity in the Bone Marrow. Blood, 2008, 112, 2419-2419.	0.6	1
167	Mesenchymal Stem Cells, Regulated by the Sympathetic Nervous System, Form the Hematopoietic Stem Cell Niche. Blood, 2008, 112, 4-4.	0.6	5
168	Effects of Pan-Selectin Antagonist GMI-1070 on the Treatment of Vaso-Occlusion in Sickle Cell Mice. Blood, 2008, 112, 535-535.	0.6	2
169	Dynamic Pattern of Adhesion Receptor Expression during the Maturation of Ex-Vivo Generated Human Adult and Neonatal Erythroid Cells Blood, 2008, 112, 997-997.	0.6	2
170	A New Model of Acute Sickle Cell Vaso-Occlusion Elicited by IgGMediated Hemolytic Transfusion Reactions. Blood, 2008, 112, 122-122.	0.6	1
171	Circadian Expression of Endothelial Selectins, Regulated by the Sympathetic Nervous System, Controls Peripheral Leukocyte Homeostasis. Blood, 2008, 112, 548-548.	0.6	0
172	Contributions of Immune Cells to Vascular Occlusion in Sickle Cell Disease Blood, 2008, 112, sci-44.	0.6	1
173	Transfusion-Related Acute Lung Injury (TRALI) Requires Heterotypic Interactions of Platelets with Specific Neutrophil Microdomains. Blood, 2008, 112, 288-288.	0.6	0
174	Mobilized Hematopoietic Stem Cell Yield Depends on Species-Specific Circadian Timing. Blood, 2008, 112, 3494-3494.	0.6	1
175	Complete Identification of E-Selectin Ligands on Neutrophils Reveals Distinct Functions of PSGL-1, ESL-1, and CD44. Immunity, 2007, 26, 477-489.	6.6	264
176	Leukocyte Podosomes Sense Their Way through the Endothelium. Immunity, 2007, 26, 753-755.	6.6	18
177	Sickle cell disease: old discoveries, new concepts, and future promise. Journal of Clinical Investigation, 2007, 117, 850-858.	3.9	279
178	Imaging receptor microdomains on leukocyte subsets in live mice. Nature Methods, 2007, 4, 219-222.	9.0	79
179	Hematopoietic Stem Cell Trafficking. Annals of the New York Academy of Sciences, 2007, 1116, 392-413.	1.8	68
180	Sickle Cell Vaso-Occlusion Is Triggered by E-Selectin Ligand Signaling and Propagated by the Leukocyte Integrin Mac-1 Blood, 2007, 110, 145-145.	0.6	2

#	Article	IF	CITATIONS
181	Intravenous Immunoglobulins Reverse Acute Vaso-Occlusive Crises in Sickle Cell Mice through Rapid Inhibition of Neutrophil Adhesion Blood, 2007, 110, 146-146.	0.6	4
182	GMI-1070: A Small Pan-Selectin Antagonist That Inhibits Leukocyte Adhesion and Migration in Multple Disease Models In Vivo Blood, 2007, 110, 2410-2410.	0.6	1
183	A Novel Selectin Antagonist, GMI-1070, Prevents Vaso-Occlusion in Sickle Cell Mice by Inhibiting Leukocyte Adhesion and Activation Blood, 2007, 110, 2245-2245.	0.6	Ο
184	Circadian Traffic of Hematopoietic Stem Cells Is Orchestrated by the Molecular Clock and Mediated by β3 Adrenergic Signals from the Sympathetic Nervous System Blood, 2007, 110, 219-219.	0.6	0
185	Signals from the Sympathetic Nervous System Regulate Hematopoietic Stem Cell Egress from Bone Marrow. Cell, 2006, 124, 407-421.	13.5	1,211
186	B Cell-Driven Lymphangiogenesis in Inflamed Lymph Nodes Enhances Dendritic Cell Mobilization. Immunity, 2006, 24, 203-215.	6.6	395
187	B Cell-Driven Lymphangiogenesis in Inflamed Lymph Nodes Enhances Dendritic Cell Mobilization. Immunity, 2006, 25, 689.	6.6	4
188	Identification of a radio-resistant and cycling dermal dendritic cell population in mice and men. Journal of Experimental Medicine, 2006, 203, 2627-2638.	4.2	128
189	Real-Time Identification of Leukocyte Subsets and Cell Surface Receptor Microdomains in the Microvasculature of Wild-Type and Sickle Cell Mice In Vivo Blood, 2006, 108, 1229-1229.	0.6	0
190	ESL-1 Is a Major Physiological Leukocyte Ligand for E-Selectin That Cooperates with PSGL-1 and CD44, and Together Mediate All Binding Activity to Endothelial Selectins In Vivo Blood, 2006, 108, 1787-1787.	0.6	0
191	CD44 is a physiological E-selectin ligand on neutrophils. Journal of Experimental Medicine, 2005, 201, 1183-1189.	4.2	177
192	Enforced fucosylation of neonatal CD34+ cells generates selectin ligands that enhance the initial interactions with microvessels but not homing to bone marrow. Blood, 2005, 105, 567-575.	0.6	52
193	Sickle Cell Vaso-Occlusion. Hematology/Oncology Clinics of North America, 2005, 19, 771-784.	0.9	109
194	Homeostasis of Human Langerhans Cells after Allogeneic Hematopoietic Stem Cell Transplantation Blood, 2005, 106, 3092-3092.	0.6	0
195	Identification of the Circulating Langerhans Cell Precursor Blood, 2005, 106, 634-634.	0.6	0
196	Sickle Cell Vasoocclusion: Heterotypic, Multicellular Aggregations Driven by Leukocyte Adhesion. Microcirculation, 2004, 11, 167-177.	1.0	83
197	A Novel Model for Lymphocytic Infiltration of the Thyroid Gland Generated by Transgenic Expression of the CC Chemokine CCL21. Journal of Immunology, 2004, 173, 4791-4798.	0.4	81
198	Intravenous immune globulin prevents venular vaso-occlusion in sickle cell mice by inhibiting leukocyte adhesion and the interactions between sickle erythrocytes and adherent leukocytes. Blood, 2004, 103, 2397-2400.	0.6	82

#	Article	IF	CITATIONS
199	The integrin αMβ2 anchors hematopoietic progenitors in the bone marrow during enforced mobilization. Blood, 2004, 104, 993-1001.	0.6	41
200	Integrin α4β7 and its counterreceptor MAdCAM-1 contribute to hematopoietic progenitor recruitment into bone marrow following transplantation. Blood, 2004, 104, 2020-2026.	0.6	76
201	P-selectin and VWF tie the knot. Blood, 2004, 103, 1979-1980.	0.6	4
202	Galactocerebrosides, Essential for Hematopoietic Progenitor Mobilization, Regulate SDF-1 (CXCL12)-Mediated Attraction to Bone Blood, 2004, 104, 665-665.	0.6	6
203	Sickle cell vasoocclusion: heterotypic, multicellular aggregations driven by leukocyte adhesion. Microcirculation, 2004, 11, 167-77.	1.0	38
204	Galactocerebrosides Are Required Postnatally for Stromal-Dependent Bone Marrow Lymphopoiesis. Immunity, 2003, 18, 789-800.	6.6	26
205	Macrophages, not neutrophils, infiltrate skeletal muscle in mice deficient in P/E selectins after mechanical reloading. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 285, R727-R732.	0.9	28
206	PSGL-1 participates in E-selectin–mediated progenitor homing to bone marrow: evidence for cooperation between E-selectin ligands and α4 integrin. Blood, 2003, 102, 2060-2067.	0.6	170
207	Insights into leukocyte adhesion deficiency type 2 from a novel mutation in the GDP-fucose transporter gene. Blood, 2003, 101, 1705-1712.	0.6	95
208	Primary role for adherent leukocytes in sickle cell vascular occlusion: A new paradigm. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3047-3051.	3.3	412
209	Sickle cell vaso-occlusion: multistep and multicellular paradigm. Current Opinion in Hematology, 2002, 9, 101-106.	1.2	213
210	Phages that display P-selectin antagonism. Blood, 2002, 100, 3443-3444.	0.6	0
211	Functional selectin ligands mediating human CD34+ cell interactions with bone marrow endothelium are enhanced postnatally. Journal of Clinical Investigation, 2002, 110, 559-569.	3.9	106
212	Functional selectin ligands mediating human CD34+ cell interactions with bone marrow endothelium are enhanced postnatally. Journal of Clinical Investigation, 2002, 110, 559-569.	3.9	45
213	Locking a Leukocyte Integrin with Statins. New England Journal of Medicine, 2001, 345, 1419-1421.	13.9	64
214	Plaquettes et endothélium: un mariage de raison Medecine/Sciences, 2001, 17, 252.	0.0	0
215	Sulfated glycans induce rapid hematopoietic progenitor cell mobilization: evidence for selectin-dependent and independent mechanisms. Blood, 2000, 96, 2460-2468.	0.6	112
216	P-Selectin Glycoprotein Ligand 1 (Psgl-1) Is Expressed on Platelets and Can Mediate Platelet–Endothelial Interactions in Vivo. Journal of Experimental Medicine, 2000, 191, 1413-1422.	4.2	388

#	Article	IF	CITATIONS
217	Sulfated glycans induce rapid hematopoietic progenitor cell mobilization: evidence for selectin-dependent and independent mechanisms. Blood, 2000, 96, 2460-2468.	0.6	1
218	Multiple, targeted deficiencies in selectins reveal a predominant role for P-selectin in leukocyte recruitment. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 11452-11457.	3.3	186
219	Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nature Medicine, 1999, 5, 1010-1017.	15.2	519
220	P- and E-selectin-deficient mice are susceptible to cerebral ischemia–reperfusion injury. Brain Research, 1999, 835, 360-364.	1.1	21
221	Hematopoietic Progenitor Cell Rolling in Bone Marrow Microvessels: Parallel Contributions by Endothelial Selectins and Vascular Cell Adhesion Molecule 1. Journal of Experimental Medicine, 1998, 188, 465-474.	4.2	404
222	Role of P-Selectin Cytoplasmic Domain in Granular Targeting In Vivo and in Early Inflammatory Responses. Journal of Cell Biology, 1998, 143, 1129-1141.	2.3	109
223	Endothelial selectins and vascular cell adhesion molecule-1 promote hematopoietic progenitor homing to bone marrow. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 14423-14428.	3.3	354
224	A mouse model of severe von Willebrand disease: Defects in hemostasis and thrombosis. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9524-9529.	3.3	479
225	Overlapping Functions of E- and P-Selectin in Neutrophil Recruitment During Acute Inflammation. Blood, 1998, 92, 2345-2352.	0.6	64
226	Platelet-Endothelial Interactions in Inflamed Mesenteric Venules. Blood, 1998, 91, 1318-1324.	0.6	185
227	E and P Selectins Are Not Required for Resistance to Severe Murine Lyme Arthritis. Infection and Immunity, 1998, 66, 4557-4559.	1.0	6
228	The combined role of P- and E-selectins in atherosclerosis Journal of Clinical Investigation, 1998, 102, 145-152.	3.9	366
229	Overlapping Functions of E- and P-Selectin in Neutrophil Recruitment During Acute Inflammation. Blood, 1998, 92, 2345-2352.	0.6	Ο
230	E and P Selectins Are Not Required for Resistance to Severe Murine Lyme Arthritis. Infection and Immunity, 1998, 66, 4557-4559.	1.0	2
231	Generation and Characterization of a Novel Adhesion Function Blocking Monoclonal Antibody Recognizing Both Rat and Mouse E-Selectin. Hybridoma, 1997, 16, 355-361.	0.9	36
232	Experimental murine acid aspiration injury is mediated by neutrophils and the alternative complement pathway. Journal of Applied Physiology, 1997, 83, 1090-1095.	1.2	51
233	Insights into Selectin Function from Knockout Mice. Thrombosis and Haemostasis, 1997, 78, 060-064.	1.8	105
234	Adhesion Molecules — Blood Vessels and Blood Cells. New England Journal of Medicine, 1996, 335, 43-45.	13.9	265

#	Article	IF	CITATIONS
235	Adhesion Molecules. New England Journal of Medicine, 1996, 334, 1526-1529.	13.9	312
236	Susceptibility to Infection and Altered Hematopoiesis in Mice Deficient in Both P- and E-Selectins. Cell, 1996, 84, 563-574.	13.5	507
237	Cytokine-induced meningitis is dramatically attenuated in mice deficient in endothelial selectins Journal of Clinical Investigation, 1996, 97, 2485-2490.	3.9	127
238	Platelets roll on stimulated endothelium in vivo: an interaction mediated by endothelial P-selectin Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 7450-7454.	3.3	437
239	Granulocyte-Macrophage colony stimulating factor (GM-CSF) priming in the treatment of elderly patients with acute myelogenous leukemia. American Journal of Hematology, 1995, 49, 48-55.	2.0	21
240	The Diagnostic Value of CA 27-29, CA 15-3, Mucin-Like Carcinoma Antigen, Carcinoembryonic Antigen and CA 19-9 in Breast and Gastrointestinal Malignancies. Tumor Biology, 1994, 15, 247-254.	0.8	24
241	MULTIPLE MYELOMA PRESENTING AS MIGRATORY PANNICULITIS. International Journal of Dermatology, 1992, 31, 424-425.	0.5	0
242	DNA and protein components of nuclear acceptor sites for androgen receptors in the rat prostate. The Journal of Steroid Biochemistry, 1987, 27, 513-520.	1.3	13