Ioannis Spanopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7593393/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc -MOF for CH ₄ , O ₂ , and CO ₂ Storage. Journal of the American Chemical Society, 2015, 137, 13308-13318.	13.7	632
2	Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI ₃ . Science Advances, 2017, 3, e1701293.	10.3	325
3	Myths and reality of HPbI3 in halide perovskite solar cells. Nature Communications, 2018, 9, 4785.	12.8	238
4	Efficient Lead-Free Solar Cells Based on Hollow {en}MASnI ₃ Perovskites. Journal of the American Chemical Society, 2017, 139, 14800-14806.	13.7	230
5	Compositional and Solvent Engineering in Dion–Jacobson 2D Perovskites Boosts Solar Cell Efficiency and Stability. Advanced Energy Materials, 2019, 9, 1803384.	19.5	219
6	CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy \hat{I}^3 -rays. Nature Photonics, 2021, 15, 36-42.	31.4	210
7	Reticular Synthesis of HKUST-like tbo-MOFs with Enhanced CH ₄ Storage. Journal of the American Chemical Society, 2016, 138, 1568-1574.	13.7	193
8	Uniaxial Expansion of the 2D Ruddlesden–Popper Perovskite Family for Improved Environmental Stability. Journal of the American Chemical Society, 2019, 141, 5518-5534.	13.7	193
9	Conjugated Organic Cations Enable Efficient Self-Healing FASnI3 Solar Cells. Joule, 2019, 3, 3072-3087.	24.0	190
10	Dopant-Free Tetrakis-Triphenylamine Hole Transporting Material for Efficient Tin-Based Perovskite Solar Cells. Journal of the American Chemical Society, 2018, 140, 388-393.	13.7	163
11	Tripleâ€Cation and Mixedâ€Halide Perovskite Single Crystal for Highâ€Performance Xâ€ray Imaging. Advanced Materials, 2021, 33, e2006010.	21.0	163
12	Unraveling the Chemical Nature of the 3D "Hollow―Hybrid Halide Perovskites. Journal of the American Chemical Society, 2018, 140, 5728-5742.	13.7	132
13	Conventional Solvent Oxidizes Sn(II) in Perovskite Inks. ACS Energy Letters, 2020, 5, 1153-1155.	17.4	127
14	Improved Environmental Stability and Solar Cell Efficiency of (MA,FA)PbI ₃ Perovskite Using a Wide-Band-Gap 1D Thiazolium Lead Iodide Capping Layer Strategy. ACS Energy Letters, 2019, 4, 1763-1769.	17.4	118
15	Diammonium Cations in the FASnI ₃ Perovskite Structure Lead to Lower Dark Currents and More Efficient Solar Cells. ACS Energy Letters, 2018, 3, 1470-1476.	17.4	114
16	A Straight Forward Route for the Development of Metal–Organic Frameworks Functionalized with Aromatic â~'OH Groups: Synthesis, Characterization, and Gas (N ₂ , Ar, H ₂ ,) Tj ETQq0 0	0 rgBT /O	verlock 10 Ti
	855-862.		
17	Narrow-Bandgap Mixed Lead/Tin-Based 2D Dion–Jacobson Perovskites Boost the Performance of Solar Cells. Journal of the American Chemical Society, 2020, 142, 15049-15057.	13.7	103
18	Reticular Chemistry at Its Best: Directed Assembly of Hexagonal Building Units into the Awaited Metal-Organic Framework with the Intricate Polybenzene Topology, pbz-MOF. Journal of the American Chemical Society, 2016, 138, 12767-12770.	13.7	101

#	Article	IF	CITATIONS
19	Cation Engineering in Two-Dimensional Ruddlesden–Popper Lead Iodide Perovskites with Mixed Large A-Site Cations in the Cages. Journal of the American Chemical Society, 2020, 142, 4008-4021.	13.7	101
20	Ethylenediammonium-Based "Hollow―Pb/Sn Perovskites with Ideal Band Gap Yield Solar Cells with Higher Efficiency and Stability. Journal of the American Chemical Society, 2019, 141, 8627-8637.	13.7	93
21	Drastic Enhancement of the CO ₂ Adsorption Properties in Sulfone-Functionalized Zr- and Hf-UiO-67 MOFs with Hierarchical Mesopores. Inorganic Chemistry, 2014, 53, 679-681.	4.0	87
22	Alternative Organic Spacers for More Efficient Perovskite Solar Cells Containing Ruddlesden–Popper Phases. Journal of the American Chemical Society, 2020, 142, 19705-19714.	13.7	83
23	Insight on the Stability of Thick Layers in 2D Ruddlesden–Popper and Dion–Jacobson Lead Iodide Perovskites. Journal of the American Chemical Society, 2021, 143, 2523-2536.	13.7	79
24	High Figure of Merit in Gallium-Doped Nanostructured n-Type PbTe- <i>x</i> GeTe with Midgap States. Journal of the American Chemical Society, 2019, 141, 16169-16177.	13.7	76
25	Enhancement of Thermoelectric Performance for n-Type PbS through Synergy of Gap State and Fermi Level Pinning. Journal of the American Chemical Society, 2019, 141, 6403-6412.	13.7	67
26	Out-of-Plane Mechanical Properties of 2D Hybrid Organic–Inorganic Perovskites by Nanoindentation. ACS Applied Materials & Interfaces, 2018, 10, 22167-22173.	8.0	64
27	Organic Cation Alloying on Intralayer A and Interlayer A' sites in 2D Hybrid Dion–Jacobson Lead Bromide Perovskites (A')(A)Pb ₂ Br ₇ . Journal of the American Chemical Society, 2020, 142, 8342-8351.	13.7	64
28	Stretching and Breaking of Ultrathin 2D Hybrid Organic–Inorganic Perovskites. ACS Nano, 2018, 12, 10347-10354.	14.6	60
29	Amphoteric Indium Enables Carrier Engineering to Enhance the Power Factor and Thermoelectric Performance in <i>n</i> â€₹ype Ag <i>_n</i> Pb ₁₀₀ In <i>_n</i> Te ₁₀₀₊₂ <i>_n</i> (LIST). Advanced Energy Materials, 2019, 9, 1900414.	19.5	60
30	Water-Stable 1D Hybrid Tin(II) Iodide Emits Broad Light with 36% Photoluminescence Quantum Efficiency. Journal of the American Chemical Society, 2020, 142, 9028-9038.	13.7	57
31	Exceptional TcO ₄ ^{â^'} sorption capacity and highly efficient ReO ₄ ^{â''} luminescence sensing by Zr ⁴⁺ MOFs. Journal of Materials Chemistry A, 2018, 6, 20813-20821.	10.3	54
32	Liquid phase epitaxial growth of heterostructured hierarchical MOF thin films. Chemical Communications, 2017, 53, 6191-6194.	4.1	53
33	Light-activated interlayer contraction in two-dimensional perovskites for high-efficiency solar cells. Nature Nanotechnology, 2022, 17, 45-52.	31.5	52
34	Benzodithiophene Holeâ€Transporting Materials for Efficient Tinâ€Based Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1905393.	14.9	49
35	Probing Strain-Induced Band Gap Modulation in 2D Hybrid Organic–Inorganic Perovskites. ACS Energy Letters, 2019, 4, 796-802.	17.4	47
36	Exploring the Factors Affecting the Mechanical Properties of 2D Hybrid Organic–Inorganic Perovskites. ACS Applied Materials & Interfaces, 2020, 12, 20440-20447.	8.0	47

#	Article	IF	CITATIONS
37	Understanding Instability in Formamidinium Lead Halide Perovskites: Kinetics of Transformative Reactions at Grain and Subgrain Boundaries. ACS Energy Letters, 2022, 7, 1534-1543.	17.4	45
38	Nanotechnology for catalysis and solar energy conversion. Nanotechnology, 2021, 32, 042003.	2.6	44
39	Understanding the adsorption mechanism of noble gases Kr and Xe in CPO-27-Ni, CPO-27-Mg, and ZIF-8. Physical Chemistry Chemical Physics, 2014, 16, 23908-23914.	2.8	43
40	3D-printed lab-in-a-syringe voltammetric cell based on a working electrode modified with a highly efficient Ca-MOF sorbent for the determination of Hg(II). Sensors and Actuators B: Chemical, 2020, 321, 128508.	7.8	43
41	Exceptional gravimetric and volumetric CO2 uptake in a palladated NbO-type MOF utilizing cooperative acidic and basic, metal–CO2 interactions. Chemical Communications, 2016, 52, 10559-10562.	4.1	40
42	Heterometallic In(III)–Pd(II) Porous Metal–Organic Framework with Square-Octahedron Topology Displaying High CO ₂ Uptake and Selectivity toward CH ₄ and N ₂ . Inorganic Chemistry, 2018, 57, 7244-7251.	4.0	37
43	Tunable Broad Light Emission from 3D "Hollow―Bromide Perovskites through Defect Engineering. Journal of the American Chemical Society, 2021, 143, 7069-7080.	13.7	37
44	Enhanced gas-sorption properties of a high surface area, ultramicroporous magnesium formate. CrystEngComm, 2015, 17, 532-539.	2.6	32
45	Incorporated Guanidinium Expands the CH ₃ NH ₃ PbI ₃ Lattice and Enhances Photovoltaic Performance. ACS Applied Materials & Interfaces, 2020, 12, 43885-43891.	8.0	31
46	Shedding Light on the Stability and Structure–Property Relationships of Two-Dimensional Hybrid Lead Bromide Perovskites. Chemistry of Materials, 2021, 33, 5085-5107.	6.7	29
47	Strong Valence Band Convergence to Enhance Thermoelectric Performance in PbSe with Two Chemically Independent Controls. Angewandte Chemie - International Edition, 2021, 60, 268-273.	13.8	28
48	Chalcogenide Aerogels as Sorbents for Noble Gases (Xe, Kr). ACS Applied Materials & Interfaces, 2017, 9, 33389-33394.	8.0	25
49	Reticular Chemistry and the Discovery of a New Family of Rare Earth (4, 8)-Connected Metal-Organic Frameworks with csq Topology Based on RE ₄ (μ ₃ -O) ₂ (COO) ₈ Clusters. ACS Applied Materials &: Interfaces 2017 9 44560-44566	8.0	25
50	A Microporous Co ²⁺ Metal Organic Framework with Single-Crystal to Single-Crystal Transformation Properties and High CO ₂ Uptake. Crystal Growth and Design, 2015, 15, 185-193.	3.0	24
51	Tuning Ionic and Electronic Conductivities in the "Hollow―Perovskite { <i>en</i> }MAPbI ₃ . Chemistry of Materials, 2021, 33, 719-726.	6.7	24
52	A microporous Cu ²⁺ MOF based on a pyridyl isophthalic acid Schiff base ligand with high CO ₂ uptake. Inorganic Chemistry Frontiers, 2016, 3, 1527-1535.	6.0	22
53	Entropy Stabilization Effects and Ion Migration in 3D "Hollow―Halide Perovskites. Journal of the American Chemical Society, 2022, 144, 8223-8230.	13.7	18
54	High-phase purity two-dimensional perovskites with 17.3% efficiency enabled by interface engineering of hole transport layer. Cell Reports Physical Science, 2021, 2, 100601.	5.6	17

#	Article	IF	CITATIONS
55	Polariton Dynamics in Two-Dimensional Ruddlesden–Popper Perovskites Strongly Coupled with Plasmonic Lattices. ACS Nano, 2022, 16, 3917-3925.	14.6	17
56	In Quest of Environmentally Stable Perovskite Solar Cells: A Perspective. Helvetica Chimica Acta, 2021, 104, .	1.6	15
57	In-Plane Mechanical Properties of Two-Dimensional Hybrid Organic–Inorganic Perovskite Nanosheets: Structure–Property Relationships. ACS Applied Materials & Interfaces, 2021, 13, 31642-31649.	8.0	15
58	Polaron Plasma in Equilibrium with Bright Excitons in 2D and 3D Hybrid Perovskites. Advanced Optical Materials, 2021, 9, 2100295.	7.3	14
59	Thick-Layer Lead Iodide Perovskites with Bifunctional Organic Spacers Allylammonium and Iodopropylammonium Exhibiting Trap-State Emission. Journal of the American Chemical Society, 2022, 144, 6390-6409.	13.7	13
60	High-quality graphene sheets decorated with ZIF-8 nanocrystals. Microporous and Mesoporous Materials, 2018, 262, 68-76.	4.4	12
61	Selective Capture Mechanism of Radioactive Thorium from Highly Acidic Solution by a Layered Metal Sulfide. ACS Applied Materials & amp; Interfaces, 2021, 13, 37308-37315.	8.0	11
62	A "turn-onâ€â€"turning-to-ratiometric sensor for zinc(<scp>ii</scp>) ions in aqueous media. RSC Advances, 2014, 4, 693-696.	3.6	10
63	Antiferromagnetic Semiconductor BaFMn _{0.5} Te with Unique Mn Ordering and Red Photoluminescence. Journal of the American Chemical Society, 2019, 141, 17421-17430.	13.7	10
64	Directed assembly of a high surface area 2D metal–organic framework displaying the augmented "kagomé dual―(kgd-a) layered topology with high H ₂ and CO ₂ uptake. Inorganic Chemistry Frontiers, 2017, 4, 825-832.	6.0	8
65	Hidden Complexity in the Chemistry of Ammonolysis-Derived "γ-Mo ₂ Nâ€ŧ An Overlooked Oxynitride Hydride. Chemistry of Materials, 2021, 33, 6671-6684.	6.7	8
66	Strong Valence Band Convergence to Enhance Thermoelectric Performance in PbSe with Two Chemically Independent Controls. Angewandte Chemie, 2021, 133, 272-277.	2.0	7
67	Sn _{4â~'Î} B ₁₂ Se ₁₂ [Q _{<i>x</i>}], Q = Se, Te, a B ₁₂ Cluster Tunnel Framework Hosting Neutral Chalcogen Chains. Chemistry of Materials, 2021, 33, 1723-1730.	6.7	6
68	A Microporous Co(II)-Based 3-D Metal Organic Framework Built from Magnetic Infinite Rod-Shaped Secondary Building Units. European Journal of Inorganic Chemistry, 2019, 2019, 4056-4062.	2.0	4
69	2D Homologous Series SrFM _{<i>n</i>} BiS _{<i>n</i>+2} (M = Pb,) Tj ETQq1 1 0.784314 rgB	T /Overloo	ck 10 Tf 50
- 09	Sr ₂ F ₂ Bi _{2/3} S ₂ . Inorganic Chemistry, 2022, 61, 8233-8240.	1.0	2
70	A Microporous Co(II)-Based 3-D Metal Organic Framework Built from Magnetic Infinite Rod-Shaped Secondary Building Units. European Journal of Inorganic Chemistry, 2019, 2019, 4055-4055.	2.0	0
71	Understanding morphology, microstructure, and stability of photovoltaic materials using solid-state NMR spectroscopy. , 0, , .		0