
Leonard I Zon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7593290/publications.pdf Version: 2024-02-01

LEONARD LOON

#	Article	IF	CITATIONS
1	Reeling in the Zebrafish Cancer Models. Annual Review of Cancer Biology, 2021, 5, 331-350.	4.5	14
2	Recurrent coâ€alteration of HDGF and SETDB1 on chromosome 1q drives cutaneous melanoma progression and poor prognosis. Pigment Cell and Melanoma Research, 2021, 34, 641-647.	3.3	7
3	SATB2 induction of a neural crest mesenchyme-like program drives melanoma invasion and drug resistance. ELife, 2021, 10, .	6.0	9
4	â€~Enhancing' red cell fate through epigenetic mechanisms. Current Opinion in Hematology, 2021, 28, 129-137.	2.5	1
5	ldentification of Basp1 as a novel angiogenesisâ€regulating gene by multiâ€model system studies. FASEB Journal, 2021, 35, e21404.	0.5	6
6	A uniform format for manuscript submission. Cell, 2021, 184, 1654-1656.	28.9	2
7	Cell-specific transcriptional control of mitochondrial metabolism by TIF1γ drives erythropoiesis. Science, 2021, 372, 716-721.	12.6	25
8	Melanoma models for the next generation of therapies. Cancer Cell, 2021, 39, 610-631.	16.8	90
9	Zebrafish disease models in drug discovery: from preclinical modelling to clinical trials. Nature Reviews Drug Discovery, 2021, 20, 611-628.	46.4	192
10	Single-cell ATAC-seq reveals GATA2-dependent priming defect in myeloid and a maturation bottleneck in lymphoid lineages. Blood Advances, 2021, 5, 2673-2686.	5.2	17
11	Mitochondrial function in development and disease. DMM Disease Models and Mechanisms, 2021, 14, .	2.4	48
12	Abstract SY42-02: Stem cell clonality and the niche. , 2021, , .		0
13	From development toward therapeutics, a collaborative effort on blood progenitors. Stem Cell Reports, 2021, 16, 1674-1685.	4.8	1
14	Nucleotide stress responses in neural crest cell fate and melanoma. Cell Cycle, 2021, 20, 1455-1467.	2.6	4
15	Synergistic melanoma cell death mediated by inhibition of both MCL1 and BCL2 in high-risk tumors driven by NF1/PTEN loss. Oncogene, 2021, 40, 5718-5729.	5.9	1
16	Telomerase RNA recruits RNA polymerase II to target gene promoters to enhance myelopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2015528118.	7.1	8
17	NNT mediates redox-dependent pigmentation via a UVB- and MITF-independent mechanism. Cell, 2021, 184, 4268-4283.e20.	28.9	35
18	In memory of Paul Sylvain Frenette, a pioneering explorer of the hematopoietic stem cell niche who left far too early. Experimental Hematology, 2021, , .	0.4	0

#	Article	IF	CITATIONS
19	A phase II trial of all-trans retinoic acid (ATRA) in advanced adenoid cystic carcinoma. Oral Oncology, 2021, 119, 105366.	1.5	31
20	Dissecting melanocytes to predict melanoma. Nature Cell Biology, 2021, 23, 930-931.	10.3	2
21	<i>SPRED1</i> deletion confers resistance to MAPK inhibition in melanoma. Journal of Experimental Medicine, 2021, 218, .	8.5	19
22	Blood in the water: recent uses of zebrafish to study myeloid biology. Current Opinion in Hematology, 2021, 28, 43-49.	2.5	7
23	Resistance to inflammation underlies enhanced fitness in clonal hematopoiesis. Science, 2021, 374, 768-772.	12.6	93
24	Loss of nr4a1 abrogates Fitness of asxl1-mutant Hematopoietic Clones. Blood, 2021, 138, 3272-3272.	1.4	0
25	Single-Cell Transcriptional Profiling of Zebrafish Hematopoiesis Offers Insight into Early Lymphocyte Development and Reveals Novel Immune Cell Populations. Blood, 2021, 138, 4294-4294.	1.4	1
26	External signals regulate continuous transcriptional states in hematopoietic stem cells. ELife, 2021, 10, .	6.0	10
27	Use of Zebrafish in Drug Discovery Toxicology. Chemical Research in Toxicology, 2020, 33, 95-118.	3.3	315
28	Calmodulin inhibitors improve erythropoiesis in Diamond-Blackfan anemia. Science Translational Medicine, 2020, 12, .	12.4	26
29	PRL3-DDX21 Transcriptional Control of Endolysosomal Genes Restricts Melanocyte Stem Cell Differentiation. Developmental Cell, 2020, 54, 317-332.e9.	7.0	30
30	Common variants in signaling transcription-factor-binding sites drive phenotypic variability in red blood cell traits. Nature Genetics, 2020, 52, 1333-1345.	21.4	24
31	A Transgenic System for Rapid Magnetic Enrichment of Rare Embryonic Cells. Zebrafish, 2020, 17, 354-357.	1.1	3
32	Cross-species analysis of enhancer logic using deep learning. Genome Research, 2020, 30, 1815-1834.	5.5	65
33	CHD7 and Runx1 interaction provides a braking mechanism for hematopoietic differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23626-23635.	7.1	18
34	Massively parallel reporter assays of melanoma risk variants identify MX2 as a gene promoting melanoma. Nature Communications, 2020, 11, 2718.	12.8	53
35	Long-Range Optogenetic Control of Axon Guidance Overcomes Developmental Boundaries and Defects. Developmental Cell, 2020, 53, 577-588.e7.	7.0	27
36	From blood development to disease: a paradigm for clinical translation. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	4

#	Article	IF	CITATIONS
37	An evolutionarily ancient mechanism for regulation of hemoglobin expression in vertebrate red cells. Blood, 2020, 136, 269-278.	1.4	16
38	RNA helicase DDX21 mediates nucleotide stress responses in neural crest and melanoma cells. Nature Cell Biology, 2020, 22, 372-379.	10.3	37
39	Difference in biophysical properties of cancer-initiating cells in melanoma mutated zebrafish. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 107, 103746.	3.1	4
40	Zebrafish patient avatars in cancer biology and precision cancer therapy. Nature Reviews Cancer, 2020, 20, 263-273.	28.4	137
41	Transcriptome Dynamics of Hematopoietic Stem Cell Formation Revealed Using a Combinatorial Runx1 and Ly6a Reporter System. Stem Cell Reports, 2020, 14, 956-971.	4.8	8
42	Gain-of-Function Genetic Alterations of G9a Drive Oncogenesis. Cancer Discovery, 2020, 10, 980-997.	9.4	44
43	Ing4 Suppresses Quiescence and Inflammation in Hematopoietic Stem Cells. Blood, 2020, 136, 16-16.	1.4	1
44	Cxcl8/PKC Signaling in the Endothelial Cell Niche Regulates Long-Term Hematopoietic Stem Cell Fate. Blood, 2020, 136, 38-38.	1.4	0
45	Mosaic Mutagenesis In Vivo Reveals Mutant Blood Stem Cells Intrinsically Resistant to Inflammatory Mediators in Clonal Hematopoiesis. Blood, 2020, 136, 27-27.	1.4	0
46	Cellular Barcoding of HSCs during Development Reveals Long-Term Persistence of T Cell Progenitor Clones in the Thymus. Blood, 2020, 136, 32-32.	1.4	0
47	Neural crest state activation in NRAS driven melanoma, but not in NRAS-driven melanocyte expansion. Developmental Biology, 2019, 449, 107-114.	2.0	19
48	Tumor-Derived Extracellular Vesicles Breach the Intact Blood–Brain Barrier <i>via</i> Transcytosis. ACS Nano, 2019, 13, 13853-13865.	14.6	326
49	Zebrafish modeling reveals that SPINT1 regulates the aggressiveness of skin cutaneous melanoma and its crosstalk with tumor immune microenvironment. Journal of Experimental and Clinical Cancer Research, 2019, 38, 405.	8.6	29
50	AIBP-mediated cholesterol efflux instructs hematopoietic stem and progenitor cell fate. Science, 2019, 363, 1085-1088.	12.6	90
51	Inflammasome Regulates Hematopoiesis through Cleavage of the Master Erythroid Transcription Factor GATA1. Immunity, 2019, 51, 50-63.e5.	14.3	61
52	Modeling Cancer with Flies and Fish. Developmental Cell, 2019, 49, 317-324.	7.0	68
53	Estrogen Activation of G-Protein–Coupled Estrogen Receptor 1 Regulates Phosphoinositide 3-Kinase and mTOR Signaling to Promote Liver Growth in Zebrafish and Proliferation of HumanÂHepatocytes. Gastroenterology, 2019, 156, 1788-1804.e13.	1.3	69
54	The Paf1 Complex and P-TEFb have reciprocal and antagonist roles in maintaining multipotent neural crest progenitors. Development (Cambridge), 2019, 146, .	2.5	11

#	Article	IF	CITATIONS
55	Improving the visibility of developmental biology: time for induction and specification. Development (Cambridge), 2019, 146, .	2.5	5
56	The histone demethylase Jmjd3 regulates zebrafish myeloid development by promoting spi1 expression. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 106-116.	1.9	12
57	Targeting the Senescence-Overriding Cooperative Activity of Structurally Unrelated H3K9 Demethylases in Melanoma. Cancer Cell, 2018, 33, 322-336.e8.	16.8	103
58	Purification of zebrafish erythrocytes as a means of identifying a novel regulator of haematopoiesis. British Journal of Haematology, 2018, 180, 420-431.	2.5	8
59	Generation of mouse-zebrafish hematopoietic tissue chimeric embryos for hematopoiesis and host-pathogen interaction studies. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	19
60	FAM210B is an erythropoietin target and regulates erythroid heme synthesis by controlling mitochondrial iron import and ferrochelatase activity. Journal of Biological Chemistry, 2018, 293, 19797-19811.	3.4	30
61	Human tumor genomics and zebrafish modeling identify <i>SPRED1</i> loss as a driver of mucosal melanoma. Science, 2018, 362, 1055-1060.	12.6	123
62	Zebrafish blastomere screen identifies retinoic acid suppression of <i>MYB</i> in adenoid cystic carcinoma. Journal of Experimental Medicine, 2018, 215, 2673-2685.	8.5	56
63	Stem cell safe harbor: the hematopoietic stem cell niche in zebrafish. Blood Advances, 2018, 2, 3063-3069.	5.2	37
64	Nfe2 is dispensable for early but required for adult thrombocyte formation and function in zebrafish. Blood Advances, 2018, 2, 3418-3427.	5.2	16
65	JDP2: An oncogenic bZIP transcription factor in T cell acute lymphoblastic leukemia. Journal of Experimental Medicine, 2018, 215, 1929-1945.	8.5	22
66	NOTCH signaling specifies arterial-type definitive hemogenic endothelium from human pluripotent stem cells. Nature Communications, 2018, 9, 1828.	12.8	97
67	Specific oxylipins enhance vertebrate hematopoiesis via the receptor GPR132. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9252-9257.	7.1	38
68	Making HSCs in vitro: don't forget the hemogenic endothelium. Blood, 2018, 132, 1372-1378.	1.4	18
69	Protection from UV light is an evolutionarily conserved feature of the haematopoietic niche. Nature, 2018, 558, 445-448.	27.8	59
70	Prostaglandin E2 Stimulates CREB-Mediated Modification of Histone Variant Nucleosomes at Enhancers to Promote Hematopoietic Stem Cell Fate. Blood, 2018, 132, 530-530.	1.4	1
71	RNA helicase, DDX27 regulates skeletal muscle growth and regeneration by modulation of translational processes. PLoS Genetics, 2018, 14, e1007226.	3.5	34
72	Characterizing the adult Hematopoietic Stem cell (HSC) niche in a zebrafish model for fetal bone marrow. FASEB Journal, 2018, 32, 645.8.	0.5	0

#	Article	lF	CITATIONS
73	Effect of enforced expression of cxcl8 by hematopoietic stem and progenitor cells on niche interactions and hematopoietic progenitor cells in adult zebrafish Journal of Clinical Oncology, 2018, 36, 7070-7070.	1.6	0
74	c-myb hyperactivity leads to myeloid and lymphoid malignancies in zebrafish. Leukemia, 2017, 31, 222-233.	7.2	37
75	<i>EXTL3</i> mutations cause skeletal dysplasia, immune deficiency, and developmental delay. Journal of Experimental Medicine, 2017, 214, 623-637.	8.5	76
76	Sorting zebrafish thrombocyte lineage cells with a Cd41 monoclonal antibody enriches hematopoietic stem cell activity. Blood, 2017, 129, 1394-1397.	1.4	7
77	Drug discovery for Diamond-Blackfan anemia using reprogrammed hematopoietic progenitors. Science Translational Medicine, 2017, 9, .	12.4	87
78	Transplantation in zebrafish. Methods in Cell Biology, 2017, 138, 629-647.	1.1	27
79	Distinct Roles for Matrix Metalloproteinases 2 and 9 in Embryonic Hematopoietic Stem Cell Emergence, Migration, and Niche Colonization. Stem Cell Reports, 2017, 8, 1226-1241.	4.8	50
80	Using Zebrafish to Study Pathways that Regulate Hematopoietic Stem Cell Self-Renewal and Migration. Stem Cell Reports, 2017, 8, 1465-1471.	4.8	15
81	Efficient Transduction of Zebrafish Melanoma Cell Lines and Embryos Using Lentiviral Vectors. Zebrafish, 2017, 14, 379-382.	1.1	2
82	From fish bowl to bedside: The power of zebrafish to unravel melanoma pathogenesis and discover new therapeutics. Pigment Cell and Melanoma Research, 2017, 30, 402-412.	3.3	52
83	CXCR1 remodels the vascular niche to promote hematopoietic stem and progenitor cell engraftment. Journal of Experimental Medicine, 2017, 214, 1011-1027.	8.5	43
84	Genome-wide Trans-ethnic Meta-analysis Identifies Seven Genetic Loci Influencing Erythrocyte Traits and a Role for RBPMS in Erythropoiesis. American Journal of Human Genetics, 2017, 100, 51-63.	6.2	45
85	KIT Suppresses BRAFV600E-Mutant Melanoma by Attenuating Oncogenic RAS/MAPK Signaling. Cancer Research, 2017, 77, 5820-5830.	0.9	15
86	Loci associated with skin pigmentation identified in African populations. Science, 2017, 358, .	12.6	260
87	Efforts to enhance blood stem cell engraftment: Recent insights from zebrafish hematopoiesis. Journal of Experimental Medicine, 2017, 214, 2817-2827.	8.5	31
88	PGE2 pulsing of murine bone marrow cells reduces migration of daughter monocytes/macrophages in vitro and in vivo. Experimental Hematology, 2017, 56, 64-68.	0.4	5
89	Fishing for answers in precision cancer medicine. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10306-10308.	7.1	17
90	Chemical screening in zebrafish for novel biological and therapeutic discovery. Methods in Cell Biology, 2017, 138, 651-679.	1.1	94

#	Article	IF	CITATIONS
91	PD-L1 genetic overexpression or pharmacological restoration in hematopoietic stem and progenitor cells reverses autoimmune diabetes. Science Translational Medicine, 2017, 9, .	12.4	99
92	The dark side of PD-1 receptor inhibition. Nature, 2017, 552, 41-42.	27.8	39
93	Blood on the tracks: hematopoietic stem cell-endothelial cell interactions in homing and engraftment. Journal of Molecular Medicine, 2017, 95, 809-819.	3.9	36
94	Clonal fate mapping quantifies the number ofÂhaematopoietic stem cells that arise duringÂdevelopment. Nature Cell Biology, 2017, 19, 17-27.	10.3	90
95	Identification of Padi2 as a novel angiogenesis-regulating gene by genome association studies in mice. PLoS Genetics, 2017, 13, e1006848.	3.5	8
96	Evolution of the hypoxia-sensitive cells involved in amniote respiratory reflexes. ELife, 2017, 6, .	6.0	54
97	Toddler signaling regulates mesodermal cell migration downstream of Nodal signaling. ELife, 2017, 6, .	6.0	24
98	A chemical screen in zebrafish embryonic cells establishes that Akt activation is required for neural crest development. ELife, 2017, 6, .	6.0	37
99	Distinct Signaling Centers Define Stages of Human Erythropoiesis and Harbor Common Variations of Red Blood Cell Traits. Blood, 2017, 130, 773-773.	1.4	0
100	Long-term drug administration in the adult zebrafish using oral gavage for cancer preclinical studies. DMM Disease Models and Mechanisms, 2016, 9, 811-20.	2.4	61
101	Identification of novel regulators of developmental hematopoiesis using Endoglin regulatory elements as molecular probes. Blood, 2016, 128, 1928-1939.	1.4	6
102	Insight into GATA1 transcriptional activity through interrogation of <i>cis</i> elements disrupted in human erythroid disorders. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4434-4439.	7.1	56
103	Stress from Nucleotide Depletion Activates the Transcriptional Regulator HEXIM1 to Suppress Melanoma. Molecular Cell, 2016, 62, 34-46.	9.7	71
104	Ex vivo tools for the clonal analysis of zebrafish hematopoiesis. Nature Protocols, 2016, 11, 1007-1020.	12.0	24
105	Identifying Novel Cancer Therapies Using Chemical Genetics and Zebrafish. Advances in Experimental Medicine and Biology, 2016, 916, 103-124.	1.6	35
106	Embryonic cell culture in zebrafish. Methods in Cell Biology, 2016, 133, 1-10.	1.1	14
107	Chromatin immunoprecipitation and an open chromatin assay in zebrafish erythrocytes. Methods in Cell Biology, 2016, 135, 387-412.	1.1	5
108	Modeling human diseases: an education in interactions and interdisciplinary approaches. DMM Disease Models and Mechanisms, 2016, 9, 597-600.	2.4	7

#	Article	IF	CITATIONS
109	MED12 Regulates HSC-Specific Enhancers Independently of Mediator Kinase Activity to Control Hematopoiesis. Cell Stem Cell, 2016, 19, 784-799.	11.1	88
110	Loss-of-function mutations in the <i>C9ORF72</i> mouse ortholog cause fatal autoimmune disease. Science Translational Medicine, 2016, 8, 347ra93.	12.4	217
111	Understanding the regulation of vertebrate hematopoiesis and blood disorders – big lessons from a small fish. FEBS Letters, 2016, 590, 4016-4033.	2.8	32
112	CAT7 and cat7l Long Non-coding RNAs Tune Polycomb Repressive Complex 1 Function during Human and Zebrafish Development. Journal of Biological Chemistry, 2016, 291, 19558-19572.	3.4	32
113	Development: For cloche the Bell Tolls. Current Biology, 2016, 26, R890-R892.	3.9	1
114	Generation of Parabiotic Zebrafish Embryos by Surgical Fusion of Developing Blastulae. Journal of Visualized Experiments, 2016, , .	0.3	8
115	Engineering Hematopoietic Stem Cells: Lessons from Development. Cell Stem Cell, 2016, 18, 707-720.	11.1	79
116	A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation. Science, 2016, 351, aad2197.	12.6	339
117	GATA Factor-G-Protein-Coupled Receptor Circuit Suppresses Hematopoiesis. Stem Cell Reports, 2016, 6, 368-382.	4.8	10
118	Fish to Learn: Insights into Blood Development and Blood Disorders from Zebrafish Hematopoiesis. Human Gene Therapy, 2016, 27, 287-294.	2.7	41
119	Dynamic Control of Enhancer Repertoires Drives Lineage and Stage-Specific Transcription during Hematopoiesis. Developmental Cell, 2016, 36, 9-23.	7.0	204
120	Targeted Application of Human Genetic Variation Can Improve Red Blood Cell Production from Stem Cells. Cell Stem Cell, 2016, 18, 73-78.	11.1	78
121	Modeling Clonal Hematopoietic Disorders in Zebrafish Using Color Barcoding. Blood, 2016, 128, 3147-3147.	1.4	1
122	A Zebrafish Model of Fetal Bone Marrow Provides a Dynamic View of Hematopoietic Stem Cell Niche Colonization. Blood, 2016, 128, 170-170.	1.4	0
123	Modeling Diamond Blackfan Anemia and p53 Activation in the Zebrafish. Blood, 2016, 128, SCI-43-SCI-43.	1.4	0
124	Eicosanoid-GPCR Signaling Enhances Hematopoiesis and Marrow Transplant. Blood, 2016, 128, 495-495.	1.4	0
125	CXCR1 Mediates Dynamic Changes in the Vascular Niche and Promotes Hematopoietic Stem and Progenitor Cell Function. Blood, 2016, 128, 172-172.	1.4	0
126	Nfe2 Is Dispensable for Early, but Required for Adult Thrombocyte Formation and Function in Zebrafish. Blood, 2016, 128, 2534-2534.	1.4	1

#	Article	IF	CITATIONS
127	Hematopoietic stem cells develop in the absence of endothelial cadherin 5 expression. Blood, 2015, 126, 2811-2820.	1.4	20
128	TopBP1 Governs Hematopoietic Stem/Progenitor Cells Survival in Zebrafish Definitive Hematopoiesis. PLoS Genetics, 2015, 11, e1005346.	3.5	21
129	Hematopoietic Stem Cell Arrival Triggers Dynamic Remodeling of the Perivascular Niche. Cell, 2015, 160, 241-252.	28.9	291
130	A CRISPR/Cas9 Vector System for Tissue-Specific Gene Disruption in Zebrafish. Developmental Cell, 2015, 32, 756-764.	7.0	325
131	Ceneration of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nature Cell Biology, 2015, 17, 994-1003.	10.3	463
132	Mutation of kri1l causes definitive hematopoiesis failure via PERK-dependent excessive autophagy induction. Cell Research, 2015, 25, 946-962.	12.0	30
133	A point mutation of zebrafish c-cbl gene in the ring finger domain produces a phenotype mimicking human myeloproliferative disease. Leukemia, 2015, 29, 2355-2365.	7.2	14
134	Epoxyeicosatrienoic acids enhance embryonic haematopoiesis and adult marrow engraftment. Nature, 2015, 523, 468-471.	27.8	97
135	Flow-induced protein kinase A–CREB pathway acts via BMP signaling to promote HSC emergence. Journal of Experimental Medicine, 2015, 212, 633-648.	8.5	47
136	DNA methyltransferase 1 functions through C/ebpa to maintain hematopoietic stem and progenitor cells in zebrafish. Journal of Hematology and Oncology, 2015, 8, 15.	17.0	40
137	Notch1 acts via Foxc2 to promote definitive hematopoiesis via effects on hemogenic endothelium. Blood, 2015, 125, 1418-1426.	1.4	40
138	Adenosine signaling promotes hematopoietic stem and progenitor cell emergence. Journal of Experimental Medicine, 2015, 212, 649-663.	8.5	73
139	Generating and evaluating a ranked candidate gene list for potential vertebrate heart field regulators. Genomics Data, 2015, 6, 199-201.	1.3	8
140	A Quantitative System for Studying Metastasis Using Transparent Zebrafish. Cancer Research, 2015, 75, 4272-4282.	0.9	113
141	Chamber identity programs drive early functional partitioning of the heart. Nature Communications, 2015, 6, 8146.	12.8	103
142	A comparison of non-integrating reprogramming methods. Nature Biotechnology, 2015, 33, 58-63.	17.5	424
143	A Zebrafish Model of Myelodysplastic Syndrome Produced through <i>tet2</i> Genomic Editing. Molecular and Cellular Biology, 2015, 35, 789-804.	2.3	58
144	Angiopoietin-like proteins stimulate HSPC development through interaction with notch receptor signaling. ELife, 2015, 4, .	6.0	30

#	Article	IF	CITATIONS
145	Hematopoietic Stem Cells Develop in the Absence of Endothelial Cadherin 5 Expression. Blood, 2015, 126, 1165-1165.	1.4	0
146	Apurinic/Apyrimidinic Endonuclease 1 Induced Genomic Instability Causes T-Cell Acute Lymphoblastic Leukemia in Zebrafish. Blood, 2015, 126, 1431-1431.	1.4	0
147	IL-8 and CXCR1 Remodel the Vascular Niche to Promote Hematopoietic Stem and Progenitor Cell Engraftment. Blood, 2015, 126, 783-783.	1.4	1
148	From fish tank to bedside in cancer therapy: an interview with Leonard Zon. DMM Disease Models and Mechanisms, 2014, 7, 735-738.	2.4	7
149	Neural Crest Development and Craniofacial Morphogenesis Is Coordinated by Nitric Oxide and Histone Acetylation. Chemistry and Biology, 2014, 21, 488-501.	6.0	46
150	A non-canonical function of telomerase RNA in the regulation of developmental myelopoiesis in zebrafish. Nature Communications, 2014, 5, 3228.	12.8	32
151	Mutations in QARS, Encoding Glutaminyl-tRNA Synthetase, Cause Progressive Microcephaly, Cerebral-Cerebellar Atrophy, and Intractable Seizures. American Journal of Human Genetics, 2014, 94, 547-558.	6.2	106
152	Getting more for your marrow: Boosting hematopoietic stem cell numbers with PGE2. Experimental Cell Research, 2014, 329, 220-226.	2.6	53
153	Selective microRNA uridylation by Zcchc6 (TUT7) and Zcchc11 (TUT4). Nucleic Acids Research, 2014, 42, 11777-11791.	14.5	87
154	Translational Research: The Path for Bringing Discovery to Patients. Cell Stem Cell, 2014, 14, 146-148.	11.1	6
155	Whole-exome sequencing and functional studies identify RPS29 as a novel gene mutated in multicase Diamond-Blackfan anemia families. Blood, 2014, 124, 24-32.	1.4	79
156	Dissection of vertebrate hematopoiesis using zebrafish thrombopoietin. Blood, 2014, 124, 220-228.	1.4	47
157	Abstract PR10: From melanocyte to melanoma: Identifying key molecular events at the onset of cancer. , 2014, , .		0
158	Abstract IA2: Developing therapeutics using the zebrafish. , 2014, , .		0
159	High Resolution Imaging Reveals Hematopoietic Stem Cells in the Perivascular Niche Are Anchored to Mesenchymal Stromal Cells That Orient Their Divisions. Blood, 2014, 124, 770-770.	1.4	0
160	Modeling Diamond Blackfan Anemia in Vivo Using Human Induced Pluripotent Stem Cells. Blood, 2014, 124, 359-359.	1.4	0
161	Identification of Secreted Factors with a Role in Hematopoietic Stem and Progenitor Cell Engraftment in the Developing Zebrafish. Blood, 2014, 124, 4361-4361.	1.4	0
162	Siteâ€directed zebrafish transgenesis into single landing sites with the phiC31 integrase system. Developmental Dynamics, 2013, 242, 949-963.	1.8	74

#	Article	IF	CITATIONS
163	Zebrafish cancer: the state of the art and the path forward. Nature Reviews Cancer, 2013, 13, 624-636.	28.4	349
164	Induction of Multipotential Hematopoietic Progenitors from Human Pluripotent Stem Cells via Respecification of Lineage-Restricted Precursors. Cell Stem Cell, 2013, 13, 459-470.	11.1	241
165	Hematopoiesis. Development (Cambridge), 2013, 140, 2463-2467.	2.5	270
166	A Zebrafish Embryo Culture System Defines Factors that Promote Vertebrate Myogenesis across Species. Cell, 2013, 155, 909-921.	28.9	144
167	A network of epigenetic regulators guides developmental haematopoiesis in vivo. Nature Cell Biology, 2013, 15, 1516-1525.	10.3	81
168	TiF1-gamma plays an essential role in murine hematopoiesis and regulates transcriptional elongation of erythroid genes. Developmental Biology, 2013, 373, 422-430.	2.0	35
169	The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013, 496, 498-503.	27.8	3,708
170	Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation. Blood, 2013, 122, 3074-3081.	1.4	280
171	The zebrafish granulocyte colony-stimulating factors (Gcsfs): 2 paralogous cytokines and their roles in hematopoietic development and maintenance. Blood, 2013, 122, 3918-3928.	1.4	90
172	The genetic heterogeneity and mutational burden of engineered melanomas in zebrafish models. Genome Biology, 2013, 14, R113.	9.6	40
173	Chromatin Remodeling Enzyme CHD7 Negatively Regulate Hematopoietic Stem Cell Function. Blood, 2013, 122, 2413-2413.	1.4	4
174	A Network Of Epigenetic Regulators Guide Developmental Hematopoiesis In Vivo. Blood, 2013, 122, 1174-1174.	1.4	5
175	Hematopoietic defects in rps29 mutant zebrafish depend upon p53 activation. Experimental Hematology, 2012, 40, 228-237.e5.	0.4	57
176	Zebrafish globin switching occurs in two developmental stages and is controlled by the LCR. Developmental Biology, 2012, 366, 185-194.	2.0	122
177	Hooked! Modeling human disease in zebrafish. Journal of Clinical Investigation, 2012, 122, 2337-2343.	8.2	408
178	Identifying Small Molecules That Overcome HoxA9-Mediated Differentiation Arrest in Acute Myeloid Leukemia. Blood, 2012, 120, 3513-3513.	1.4	0
179	Ubiquitous transgene expression and Cre-based recombination driven by the <i>ubiquitin</i> promoter in zebrafish. Development (Cambridge), 2011, 138, 169-177.	2.5	400
180	Transplantation in Zebrafish. Methods in Cell Biology, 2011, 105, 403-417.	1.1	25

#	Article	IF	CITATIONS
181	Advanced Zebrafish Transgenesis with Tol2 and Application for Cre/lox Recombination Experiments. Methods in Cell Biology, 2011, 104, 173-194.	1.1	44
182	Lineage Regulators Direct BMP and Wnt Pathways to Cell-Specific Programs during Differentiation and Regeneration. Cell, 2011, 147, 577-589.	28.9	277
183	Prostaglandin E2 Enhances Human Cord Blood Stem Cell Xenotransplants and Shows Long-Term Safety in Preclinical Nonhuman Primate Transplant Models. Cell Stem Cell, 2011, 8, 445-458.	11.1	250
184	Stromal cell–derived factor-1 and hematopoietic cell homing in an adult zebrafish model of hematopoietic cell transplantation. Blood, 2011, 118, 766-774.	1.4	41
185	Clonal analysis of hematopoietic progenitor cells in the zebrafish. Blood, 2011, 118, 1274-1282.	1.4	50
186	The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature, 2011, 471, 513-517.	27.8	506
187	DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature, 2011, 471, 518-522.	27.8	411
188	Zebrafish as a model for normal and malignant hematopoiesis. DMM Disease Models and Mechanisms, 2011, 4, 433-438.	2.4	151
189	High-throughput cell transplantation establishes that tumor-initiating cells are abundant in zebrafish T-cell acute lymphoblastic leukemia. Blood, 2010, 115, 3296-3303.	1.4	121
190	T-Lymphoblastic Lymphoma Cells Express High Levels of BCL2, S1P1, and ICAM1, Leading to a Blockade of Tumor Cell Intravasation. Cancer Cell, 2010, 18, 353-366.	16.8	141
191	Hematopoietic development in the zebrafish. International Journal of Developmental Biology, 2010, 54, 1127-1137.	0.6	146
192	TIF1Î ³ Controls Erythroid Cell Fate by Regulating Transcription Elongation. Cell, 2010, 142, 133-143.	28.9	187
193	Cilia and Hedgehog Signaling in the Mouse Embryo. , 2010, 102, 103-115.		9
194	Protein Transport in and out of the Endoplasmic Reticulum. , 2010, 102, 51-72.		0
195	Tracking the Road from Inflammation to Cancer: the Critical Role of IκB Kinase (IKK). , 2010, 102, 133-151.		8
196	Role of Polycomb Repressive Complex 1 (PRC1) In Runx1 Mediated Gene Regulation. Blood, 2010, 116, 3863-3863.	1.4	0
197	Signaling Networks that Control Synapse Development and Cognitive Function. , 2010, 102, 73-102.		1
198	Derivation of Adult Stem Cells during Embryogenesis. , 2010, 102, 117-132.		0

Derivation of Adult Stem Cells during Embryogenesis. , 2010, 102, 117-132. 198

#	Article	IF	CITATIONS
199	Basal Bodies: Their Roles in Generating Asymmetry. , 2010, 102, 17-50.		1
200	Oncogenic NRAS Cooperates with <i>p53</i> Loss to Generate Melanoma in Zebrafish. Zebrafish, 2009, 6, 397-404.	1.1	121
201	A genetic screen in zebrafish defines a hierarchical network of pathways required for hematopoietic stem cell emergence. Blood, 2009, 113, 5776-5782.	1.4	87
202	Zebrafish blood stem cells. Journal of Cellular Biochemistry, 2009, 108, 35-42.	2.6	136
203	Genetic Interaction of PGE2 and Wnt Signaling Regulates Developmental Specification of Stem Cells and Regeneration. Cell, 2009, 136, 1136-1147.	28.9	628
204	Hematopoietic Stem Cell Development Is Dependent on Blood Flow. Cell, 2009, 137, 736-748.	28.9	393
205	Zebrafish kidney stromal cell lines support multilineage hematopoiesis. Blood, 2009, 114, 279-289.	1.4	74
206	Retro-orbital Injection in Adult Zebrafish. Journal of Visualized Experiments, 2009, , .	0.3	71
207	Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal. Nature, 2008, 453, 306-313.	27.8	261
208	Co-injection strategies to modify radiation sensitivity and tumor initiation in transgenic Zebrafish. Oncogene, 2008, 27, 4242-4248.	5.9	63
209	Melanoma Biology and the Promise of Zebrafish. Zebrafish, 2008, 5, 247-255.	1.1	58
210	Transparent Adult Zebrafish as a Tool for In Vivo Transplantation Analysis. Cell Stem Cell, 2008, 2, 183-189.	11.1	1,176
211	Melanocytes in Development, Regeneration, and Cancer. Cell Stem Cell, 2008, 3, 242-252.	11.1	133
212	Hematopoiesis: An Evolving Paradigm for Stem Cell Biology. Cell, 2008, 132, 631-644.	28.9	2,061
213	Effects of RAS on the genesis of embryonal rhabdomyosarcoma. Genes and Development, 2007, 21, 1382-1395.	5.9	289
214	Ultrasound biomicroscopy permits in vivo characterization of zebrafish liver tumors. Nature Methods, 2007, 4, 551-553.	19.0	99
215	Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature, 2007, 447, 1007-1011.	27.8	1,037
216	Retinoic Acid Blockade Increases Primitive Blood Cell Formation in cdx4 Mutant Zebrafish Embryos, Murine Yolk Sac Explants and Differentiated Embryonic Stem Cells Blood, 2007, 110, 201-201.	1.4	32

#	Article	IF	CITATIONS
217	The caudal-related homeobox genes cdx1a and cdx4 act redundantly to regulate hox gene expression and the formation of putative hematopoietic stem cells during zebrafish embryogenesis. Developmental Biology, 2006, 292, 506-518.	2.0	108
218	A Chemical Genetic Screen for Cell Cycle Inhibitors in Zebrafish Embryos. Chemical Biology and Drug Design, 2006, 68, 213-219.	3.2	127
219	Analysis of Hematopoietic Development in the Zebrafish. , 2005, 105, 171-198.		49
220	0 Analysis of thrombocyte development in CD41-GFP transgenic zebrafish. Blood, 2005, 106, 3803-3810.	1.4	341
221	In vivo drug discovery in the zebrafish. Nature Reviews Drug Discovery, 2005, 4, 35-44.	46.4	1,159
222	 BRAF Mutations Are Sufficient to Promote Nevi Formation and Cooperate with p53 in the Genesis of Melanoma. Current Biology, 2005, 15, 249-254. 	3.9	626
223	A zebrafish bmyb mutation causes genome instability and increased cancer susceptibility. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13194-13199.	7.1	152
224	4 tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 407-412.	7.1	559
228	⁵ Use of the Zebrafish System to Study Primitive and Definitive Hematopoiesis. Annual Review of Genetics, 2005, 39, 481-501.	7.6	248
226	Hematopoietic stem cell fate is established by the Notch–Runx pathway. Genes and Development, 2005, 19, 2331-2342.	5.9	358
227	Zebrafish scl functions independently in hematopoietic and endothelial development. Developmental Biology, 2005, 277, 522-536.	2.0	133
228	 Regulation of the lmo2 promoter during hematopoietic and vascular development in zebrafish. Developmental Biology, 2005, 281, 256-269. 	2.0	95
229	The Zebrafish moonshine Gene Encodes Transcriptional Intermediary Factor 1 ^{ĵ3} , an Essential Regulator of Hematopoiesis. PLoS Biology, 2004, 2, e237.	5.6	117
230	In vivo tracking of T cell development, ablation, and engraftment in transgenic zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7369-7374.	7.1	389
231	1 The â€~definitive' (and â€~primitive') guide to zebrafish hematopoiesis. Oncogene, 2004, 23, 7233-7246.	5.9	376
232	2 The Use of Zebrafish to Understand Immunity. Immunity, 2004, 20, 367-379.	14.3	557
233	Effects of lethal irradiation in zebrafish and rescue by hematopoietic cell transplantation. Blood, 2004, 104, 1298-1305.	1.4	161
234	4 Derivation of Hematopoietic Stem Cells from Embryonic Stem Cells Blood, 2004, 104, 223-223.	1.4	1

#	Article	IF	CITATIONS
235	Ferroportin1-Deficient Zebrafish Treated with Iron Dextran Develop Anemia Despite Increased Macrophage Iron Stores Blood, 2004, 104, 3691-3691.	1.4	Ο
236	Frascati , a Mitochondrial Solute Transporter, and Its Role in Vertebrate Erythropoiesis Blood, 2004, 104, 49-49.	1.4	7
237	Modeling human hematopoietic and cardiovascular diseases in zebrafish. Developmental Dynamics, 2003, 228, 568-583.	1.8	51
238	cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. Nature, 2003, 425, 300-306.	27.8	227
239	Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nature Immunology, 2003, 4, 1238-1246.	14.5	718
240	Characterization of embryonic globin genes of the zebrafish. Developmental Biology, 2003, 255, 48-61.	2.0	150
241	Myc-Induced T Cell Leukemia in Transgenic Zebrafish. Science, 2003, 299, 887-890.	12.6	506
242	ESCs and hematopoietic fate: mixing the perfect "cocktail― Blood, 2003, 102, 776-776.	1.4	1
243	Isolation and characterization of zebrafish NFE2. Physiological Genomics, 2002, 11, 91-98.	2.3	22
244	Hepatic maturation in differentiating embryonic stem cells in vitro. FEBS Letters, 2001, 497, 15-19.	2.8	381
245	Myelopoiesis in the zebrafish, Danio rerio. Blood, 2001, 98, 643-651.	1.4	391
246	A novel myeloid-restricted zebrafish CCAAT/enhancer-binding protein with a potent transcriptional activation domain. Blood, 2001, 97, 2611-2617.	1.4	41
247	The art and design of genetic screens: zebrafish. Nature Reviews Genetics, 2001, 2, 956-966.	16.3	425
248	Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature, 2000, 403, 776-781.	27.8	1,491
249	Zebrafish homolog of the leukemia gene CBFB: its expression during embryogenesis and its relationship to scland gata-1 in hematopoiesis. Blood, 2000, 96, 4178-4184.	1.4	2
250	Zebrafishstat3 is expressed in restricted tissues during embryogenesis andstat1 rescues cytokine signaling in aSTAT1-deficient human cell line. Developmental Dynamics, 1999, 215, 352-370.	1.8	105
251	Concentration-dependent positive and negative regulation of a MAP kinase by a MAP kinase kinase. Oncogene, 1999, 18, 6647-6657.	5.9	17
252	Zebrafish: a new model for human disease. Genome Research, 1999, 9, 99-100.	5.5	99

#	Article	IF	CITATIONS
253	Positional cloning of the zebrafish sauternes gene: a model for congenital sideroblastic anaemia. Nature Genetics, 1998, 20, 244-250.	21.4	239
254	Vertebrate genome evolution and the zebrafish gene map. Nature Genetics, 1998, 18, 345-349.	21.4	792
255	Cloning and genetic mapping of zebrafish BMP-2. Genesis, 1998, 23, 97-103.	2.1	13
256	Use of the Zebrafish (<i>Danio rerio</i>) to Define Hematopoiesis. Stem Cells, 1998, 16, 89-98.	3.2	40
257	Use of the zebrafish (<i>danio rerio</i>) to define hematopoiesis. Stem Cells, 1998, 16, 67-78.	3.2	6
258	TheclocheandspadetailGenes Differentially Affect Hematopoiesis and Vasculogenesis. Developmental Biology, 1998, 197, 248-269.	2.0	467
259	Chapter 14 Zebrafish YAC, BAC, and PAC Genomic Libraries. Methods in Cell Biology, 1998, 60, 235-258.	1.1	44
260	Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature, 1996, 380, 75-79.	27.8	1,789
261	BMP-4-responsive regulation of dorsal–ventral patterning by the homeobox protein Mix.1. Nature, 1996, 382, 357-360.	27.8	149
262	Happy reunion. Nature, 1996, 383, 35-35.	27.8	7
263	Intraembryonic hematopoietic cell migration during vertebrate development Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 10713-10717.	7.1	549
264	Activation of the SAPK pathway by the human STE20 homologue germinal centre kinase. Nature, 1995, 377, 750-754.	27.8	218
265	Activation of stress-activated protein kinase by MEKK1 phosphorylation of its activator SEK1. Nature, 1994, 372, 798-800.	27.8	729
266	Role of SAPK/ERK kinase-1 in the stress-activated pathway regulating transcription factor c-Jun. Nature, 1994, 372, 794-798.	27.8	1,016
267	The erythropoietin receptor transmembrane region is necessary for activation by the Friend spleen focus-forming virus gp55 glycoprotein Molecular and Cellular Biology, 1992, 12, 2949-2957.	2.3	93
268	GATA-binding transcription factors in mast cells regulate the promoter of the mast cell carboxypeptidase A gene. Journal of Biological Chemistry, 1991, 266, 22948-53.	3.4	124
269	The major human erythroid DNA-binding protein (GF-1): primary sequence and localization of the gene to the X chromosome Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 668-672.	7.1	154
270	Expression of an erythroid transcription factor in megakaryocytic and mast cell lineages. Nature, 1990, 344, 444-447.	27.8	482

#	Article	IF	CITATIONS
271	Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature, 1989, 339, 446-451.	27.8	941
272	Breast carcinoma metastatic to a meningioma. Case report and review of the literature. Archives of Internal Medicine, 1989, 149, 959-62.	3.8	8
273	ANTICARDIOLIPIN ANTIBODIES ASSOCIATED WITH HTLV-III INFECTION. British Journal of Haematology, 1988, 68, 270-271.	2.5	5
274	Hematologic manifestations of the human immune deficiency virus (HIV). Seminars in Hematology, 1988, 25, 208-18.	3.4	101
275	Suppression of in vitro haematopoiesis following human immunodeficiency virus infection. Nature, 1987, 326, 200-203.	27.8	235
276	Haematologic manifestations of the human immune deficiency virus (HIV). British Journal of Haematology, 1987, 66, 251-256.	2.5	301
277	Anticardiolipin antibodies associated with HTLVâ€ I II infection. British Journal of Haematology, 1987, 65, 495-498.	2.5	160
278	Active Members. , 0, , 179-189.		0
279	Former Officers of the Harvey Society. , 0, , 153-168.		О