
Elizabeth J Harry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7592364/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding, Monitoring, and Controlling Biofilm Growth in Drinking Water Distribution Systems. Environmental Science & Technology, 2016, 50, 8954-8976.	10.0	302
2	Cell-division inhibitors: new insights for future antibiotics. Nature Reviews Drug Discovery, 2008, 7, 324-338.	46.4	221
3	3D-SIM Super Resolution Microscopy Reveals a Bead-Like Arrangement for FtsZ and the Division Machinery: Implications for Triggering Cytokinesis. PLoS Biology, 2012, 10, e1001389.	5.6	186
4	Use of immunofluorescence to visualize cell-specific gene expression during sporulation in Bacillus subtilis. Journal of Bacteriology, 1995, 177, 3386-3393.	2.2	181
5	Bacterial Cell Division: The Mechanism and Its Precison. International Review of Cytology, 2006, 253, 27-94.	6.2	158
6	Visualization of the subcellular location of sporulation proteins in Bacillus subtilis using immunofluorescence microscopy. Molecular Microbiology, 1995, 18, 459-470.	2.5	149
7	CetZ tubulin-like proteins control archaeal cell shape. Nature, 2015, 519, 362-365.	27.8	138
8	Therapeutic Manuka Honey: No Longer So Alternative. Frontiers in Microbiology, 2016, 7, 569.	3.5	128
9	Manuka-type honeys can eradicate biofilms produced by <i>Staphylococcus aureus</i> strains with different biofilm-forming abilities. PeerJ, 2014, 2, e326.	2.0	122
10	Role of penicillin-binding protein PBP 2B in assembly and functioning of the division machinery of Bacillus subtilis. Molecular Microbiology, 2000, 35, 299-311.	2.5	113
11	Characterization of the essential cell division geneftsL (yllD ) ofBacillus subtilisand its role in the assembly of the division apparatus. Molecular Microbiology, 1998, 29, 593-604.	2.5	112
12	Extracellular signal protein triggering the proteolytic activation of a developmental transcription factor in B. subtilis. Cell, 1995, 83, 219-226.	28.9	109
13	DNA Replication Is the Target for the Antibacterial Effects of Nonsteroidal Anti-Inflammatory Drugs. Chemistry and Biology, 2014, 21, 481-487.	6.0	102
14	Bacterial cell division: regulating Z-ring formation. Molecular Microbiology, 2001, 40, 795-803.	2.5	96
15	Coordinating Bacterial Cell Division with Nutrient Availability: a Role for Glycolysis. MBio, 2014, 5, e00935-14.	4.1	93
16	Metabolic Adaptations of Uropathogenic E. coli in the Urinary Tract. Frontiers in Cellular and Infection Microbiology, 2017, 7, 241.	3.9	93
17	A longitudinal study of the diabetic skin and wound microbiome. PeerJ, 2017, 5, e3543.	2.0	93
18	Synergism between Medihoney and Rifampicin against Methicillin-Resistant Staphylococcus aureus (MRSA). PLoS ONE, 2013, 8, e57679.	2.5	91

ELIZABETH J HARRY

#	Article	IF	CITATIONS
19	The Effect of New Zealand Kanuka, Manuka and Clover Honeys on Bacterial Growth Dynamics and Cellular Morphology Varies According to the Species. PLoS ONE, 2013, 8, e55898.	2.5	88
20	A new assembly pathway for the cytokinetic Z ring from a dynamic helical structure in vegetatively growing cells of Bacillus subtilis. Molecular Microbiology, 2007, 64, 487-499.	2.5	85
21	Cell Division in <i>Bacillus subtilis</i> : FtsZ and FtsA Association Is Z-Ring Independent, and FtsA Is Required for Efficient Midcell Z-Ring Assembly. Journal of Bacteriology, 2005, 187, 6536-6544.	2.2	79
22	The Min System and Nucleoid Occlusion Are Not Required for Identifying the Division Site in Bacillus subtilis but Ensure Its Efficient Utilization. PLoS Genetics, 2012, 8, e1002561.	3.5	79
23	Division site positioning in bacteria: one size does not fit all. Frontiers in Microbiology, 2014, 5, 19.	3.5	78
24	Widespread and Indiscriminate Nanosilver Use: Genuine Potential for Microbial Resistance. ACS Nano, 2017, 11, 3438-3445.	14.6	77
25	Co-ordinating DNA replication with cell division in bacteria: a link between the early stages of a round of replication and mid-cell Z ring assembly. Molecular Microbiology, 1999, 33, 33-40.	2.5	70
26	Lateral FtsZ association and the assembly of the cytokinetic Z ring in bacteria. Molecular Microbiology, 2009, 74, 1004-1017.	2.5	68
27	Essential Biological Processes of an Emerging Pathogen: DNA Replication, Transcription, and Cell Division in <i>Acinetobacter</i> spp. Microbiology and Molecular Biology Reviews, 2010, 74, 273-297.	6.6	68
28	Analysis of the flavonoid component of bioactive New Zealand mÄnuka (Leptospermum scoparium) honey and the isolation, characterisation and synthesis of an unusual pyrrole. Food Chemistry, 2013, 141, 1772-1781.	8.2	68
29	Honey can inhibit and eliminate biofilms produced by Pseudomonas aeruginosa. Scientific Reports, 2019, 9, 18160.	3.3	63
30	The Antibacterial Activity of Australian Leptospermum Honey Correlates with Methylglyoxal Levels. PLoS ONE, 2016, 11, e0167780.	2.5	61
31	Early targeting of Min proteins to the cell poles in germinated spores of Bacillus subtilis : evidence for division apparatusâ€independent recruitment of Min proteins to the division site. Molecular Microbiology, 2003, 47, 37-48.	2.5	58
32	Specific non-peroxide antibacterial effect of manuka honey on the Staphylococcus aureus proteome. International Journal of Antimicrobial Agents, 2012, 40, 43-50.	2.5	58
33	The membrane-bound cell division protein DivIB is localized to the division site inBacillus subtilis. Molecular Microbiology, 1997, 25, 275-283.	2.5	56
34	The midcell replication factory in Bacillus subtilis is highly mobile: implications for coordinating chromosome replication with other cell cycle events. Molecular Microbiology, 2004, 54, 452-463.	2.5	56
35	Super-resolution imaging of the bacterial cytokinetic protein FtsZ. Micron, 2011, 42, 336-341.	2.2	54
36	The Min system is not required for precise placement of the midcell Z ring in Bacillus subtilis. EMBO Reports, 2002, 3, 1163-1167.	4.5	51

ELIZABETH J HARRY

#	Article	IF	CITATIONS
37	Discovery of Lead Compounds Targeting the Bacterial Sliding Clamp Using a Fragment-Based Approach. Journal of Medicinal Chemistry, 2014, 57, 2799-2806.	6.4	49
38	Dinuclear ruthenium(<scp>ii</scp>) antimicrobial agents that selectively target polysomes in vivo. Chemical Science, 2014, 5, 685-693.	7.4	48
39	Mid-cell Z ring assembly in the absence of entry into the elongation phase of the round of replication in bacteria: co-ordinating chromosome replication with cell division. Molecular Microbiology, 2000, 38, 423-434.	2.5	47
40	Increasing the Ratio of Soj to Spo0J Promotes Replication Initiation in Bacillus subtilis. Journal of Bacteriology, 2003, 185, 6316-6324.	2.2	47
41	FtsZ as an Antibacterial Target: Status and Guidelines for Progressing This Avenue. ACS Infectious Diseases, 2019, 5, 1279-1294.	3.8	47
42	Trapping of a Spiral-Like Intermediate of the Bacterial Cytokinetic Protein FtsZ. Journal of Bacteriology, 2006, 188, 1680-1690.	2.2	46
43	Influence of the nucleoid and the early stages of DNA replication on positioning the division site in Bacillus subtilis. Molecular Microbiology, 2010, 76, 634-647.	2.5	46
44	The Bacillus subtilis division protein DivIC is a highly abundant membraneâ€bound protein that localizes to the division site. Molecular Microbiology, 1997, 26, 1047-1055.	2.5	45
45	Antibiotic-specific differences in the response of Staphylococcus aureus to treatment with antimicrobials combined with manuka honey. Frontiers in Microbiology, 2014, 5, 779.	3.5	44
46	Characterization of mutations in divlB of Bacillus subtilis and cellular localization of the DivlB protein. Molecular Microbiology, 1993, 7, 611-621.	2.5	42
47	The Bacillus subtilis cell division proteins FtsL and DivIC are intrinsically unstable and do not interact with one another in the absence of other septasomal components. Molecular Microbiology, 2002, 44, 663-674.	2.5	42
48	Connecting the dots of the bacterial cell cycle: Coordinating chromosome replication and segregation with cell division. Seminars in Cell and Developmental Biology, 2016, 53, 2-9.	5.0	42
49	Structure and function of a spectrin-like regulator of bacterial cytokinesis. Nature Communications, 2014, 5, 5421.	12.8	41
50	Cloning and expression of a Bacillus subtilis division initiation gene for which a homolog has not been identified in another organism. Journal of Bacteriology, 1989, 171, 6835-6839.	2.2	40
51	A simple plasmid-based system that allows rapid generation of tightly controlled gene expression in Staphylococcus aureus. Microbiology (United Kingdom), 2011, 157, 666-676.	1.8	40
52	Bacillus subtilisYabA is involved in determining the timing and synchrony of replication initiation. FEMS Microbiology Letters, 2005, 247, 73-79.	1.8	39
53	Septal Localization of the Membrane-Bound Division Proteins ofBacillus subtilis DivIB and DivIC Is Codependent Only at High Temperatures and Requires FtsZ. Journal of Bacteriology, 2000, 182, 3607-3611.	2.2	37
54	Rifampicin-Manuka Honey Combinations Are Superior to Other Antibiotic-Manuka Honey Combinations in Eradicating Staphylococcus aureus Biofilms. Frontiers in Microbiology, 2017, 8, 2653.	3.5	37

ELIZABETH J HARRY

#	Article	IF	CITATIONS
55	Characterizing the Mechanism of Action of an Ancient Antimicrobial, Manuka Honey, against Pseudomonas aeruginosa Using Modern Transcriptomics. MSystems, 2020, 5, .	3.8	30
56	Improved 2-DE of microorganisms after acidic extraction. Electrophoresis, 2006, 27, 1630-1640.	2.4	29
57	Coordination of Chromosome Segregation and Cell Division in Staphylococcus aureus. Frontiers in Microbiology, 2017, 8, 1575.	3.5	29
58	Heritable nanosilver resistance in priority pathogen: a unique genetic adaptation and comparison with ionic silver and antibiotics. Nanoscale, 2020, 12, 2384-2392.	5.6	29
59	Cryptococcus Strains with Different Pathogenic Potentials Have Diverse Protein Secretomes. Eukaryotic Cell, 2015, 14, 554-563.	3.4	28
60	Harnessing Single Cell Sorting to Identify Cell Division Genes and Regulators in Bacteria. PLoS ONE, 2013, 8, e60964.	2.5	27
61	You Are What You Eat: Metabolic Control of Bacterial Division. Trends in Microbiology, 2016, 24, 181-189.	7.7	26
62	Cell division protein DivIB influences the Spo0J/Soj system of chromosome segregation in Bacillus subtilis. Molecular Microbiology, 2004, 55, 349-367.	2.5	25
63	Nanosilver and the microbiological activity of the particulate solids versus the leached soluble silver. Nanotoxicology, 2018, 12, 263-273.	3.0	23
64	Conservation of the 168 divIB gene in Bacillus subtilis W23 and B. licheniformis, and evidence for homology to ftsQ of Escherichia coli. Gene, 1994, 147, 85-89.	2.2	19
65	Coordinating DNA replication with cell division:Lessons from outgrowing spores. Biochimie, 2001, 83, 75-81.	2.6	18
66	Identifying how bacterial cells find their middle: a new perspective. Molecular Microbiology, 2013, 87, 231-234.	2.5	17
67	Time-Course Proteome Analysis Reveals the Dynamic Response of Cryptococcus gattii Cells to Fluconazole. PLoS ONE, 2012, 7, e42835.	2.5	17
68	Super-resolution Imaging of the Cytokinetic Z Ring in Live Bacteria Using Fast 3D-Structured Illumination Microscopy (f3D-SIM). Journal of Visualized Experiments, 2014, , 51469.	0.3	14
69	Requirement for the Cell Division Protein DivIB in Polar Cell Division and Engulfment during Sporulation in Bacillus subtilis. Journal of Bacteriology, 2006, 188, 7677-7685.	2.2	12
70	The divisomal protein DivIB contains multiple epitopes that mediate its recruitment to incipient division sites. Molecular Microbiology, 2008, 67, 1143-1155.	2.5	12
71	The ParB homologs, Spo0J and Noc, together prevent premature midcell Z ring assembly when the early stages of replication are blocked in Bacillus subtilis. Molecular Microbiology, 2019, 112, 766-784.	2.5	11
72	A cost-effective colourimetric assay for quantifying hydrogen peroxide in honey. Access Microbiology, 2019, 1, e000065.	0.5	11

Elizabeth J Harry

#	Article	IF	CITATIONS
73	Expression of divIB of Bacillus subtilis during vegetative growth. Journal of Bacteriology, 1994, 176, 1172-1179.	2.2	10
74	Analysis of FtsZ Crystal Structures Towards a New Target for Antibiotics. Australian Journal of Chemistry, 2019, 72, 184-193.	0.9	9
75	Immobilization Techniques of Bacteria for Live Super-resolution Imaging Using Structured Illumination Microscopy. Methods in Molecular Biology, 2017, 1535, 197-209.	0.9	8
76	DNA condensation in live <i>E. coli</i> provides evidence for transertion. Molecular BioSystems, 2017, 13, 677-680.	2.9	7
77	Uncovering novel susceptibility targets to enhance the efficacy of third-generation cephalosporins against ESBL-producing uropathogenic Escherichia coli. Journal of Antimicrobial Chemotherapy, 2020, 75, 1415-1423.	3.0	7
78	A Newly Identified Prophage Gene, <i>ymfM</i> , Causes SOS-Inducible Filamentation in Escherichia coli. Journal of Bacteriology, 2021, 203, .	2.2	7
79	Cataloguing the small RNA content of honey using next generation sequencing. Food Chemistry Molecular Sciences, 2021, 2, 100014.	2.1	7
80	Illuminating the force: Bacterial mitosis?. Trends in Microbiology, 1997, 5, 295-297.	7.7	6
81	High-throughput sequencing of sorted expression libraries reveals inhibitors of bacterial cell division. BMC Genomics, 2018, 19, 781.	2.8	6
82	Inhibition of Dermatophyte Fungi by Australian Jarrah Honey. Pathogens, 2021, 10, 194.	2.8	6
83	A streamlined approach to high-throughput proteomics. Expert Review of Proteomics, 2005, 2, 173-185.	3.0	4
84	Effects of oriC relocation on control of replication initiation in Bacillus subtilis. Microbiology (United Kingdom), 2009, 155, 3070-3082.	1.8	4
85	Factors affecting the production and measurement of hydrogen peroxide in honey samples. Access Microbiology, 2021, 3, 000198.	0.5	4
86	Synthesis and biological evaluation of 3,5-substituted pyrazoles as possible antibacterial agents. Bioorganic and Medicinal Chemistry, 2021, 48, 116401.	3.0	4
87	The novel E. coli cell division protein, YtfB, plays a role in eukaryotic cell adhesion. Scientific Reports, 2020, 10, 6745.	3.3	3
88	You are what you secrete: extracellular proteins and virulence in Cryptococcus. Microbiology Australia, 2015, 36, 93.	0.4	2
89	A beacon for bacterial tubulin. Nature, 2014, 516, 175-176.	27.8	0
90	We Are What We Eat: True for Bacteria Too. Frontiers for Young Minds, 2017, 5, .	0.8	0