Eva Gonzalez-Suarez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7592300/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	FGFR Inhibition Overcomes Resistance to EGFR-targeted Therapy in Epithelial-like Cutaneous Carcinoma. Clinical Cancer Research, 2021, 27, 1491-1504.	7.0	13
2	Inhibition of RANK signaling as a potential immunotherapy in breast cancer. OncoImmunology, 2021, 10, 1923156.	4.6	3
3	Conservation of copy number profiles during engraftment and passaging of patient-derived cancer xenografts. Nature Genetics, 2021, 53, 86-99.	21.4	118
4	RANK signaling increases after anti-HER2 therapy contributing to the emergence of resistance in HER2-positive breast cancer. Breast Cancer Research, 2021, 23, 42.	5.0	11
5	RANK links senescence to stemness in the mammary epithelia, delaying tumor onset but increasing tumor aggressiveness. Developmental Cell, 2021, 56, 1727-1741.e7.	7.0	21
6	Inhibition of RANK signaling in breast cancer induces an anti-tumor immune response orchestrated by CD8+ T cells. Nature Communications, 2020, 11, 6335.	12.8	46
7	Epigenetic inactivation of the splicing RNA-binding protein CELF2 in human breast cancer. Oncogene, 2019, 38, 7106-7112.	5.9	48
8	The Altered Transcriptome and DNA Methylation Profiles of Docetaxel Resistance in Breast Cancer PDX Models. Molecular Cancer Research, 2019, 17, 2063-2076.	3.4	20
9	Chromosome 12p Amplification in Triple-Negative/ <i>BRCA1-</i> Mutated Breast Cancer Associates with Emergence of Docetaxel Resistance and Carboplatin Sensitivity. Cancer Research, 2019, 79, 4258-4270.	0.9	17
10	Management of bone health in solid tumours: From bisphosphonates to a monoclonal antibody. Cancer Treatment Reviews, 2019, 76, 57-67.	7.7	85
11	PDGFR-induced autocrine SDF-1 signaling in cancer cells promotes metastasis in advanced skin carcinoma. Oncogene, 2019, 38, 5021-5037.	5.9	26
12	Targeting p38α Increases DNA Damage, Chromosome Instability, and the Anti-tumoral Response to Taxanes in Breast Cancer Cells. Cancer Cell, 2018, 33, 1094-1110.e8.	16.8	70
13	Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nature Reviews Cancer, 2017, 17, 254-268.	28.4	527
14	Resistance to Taxanes in Triple-Negative Breast Cancer Associates with the Dynamics of a CD49f+ Tumor-Initiating Population. Stem Cell Reports, 2017, 8, 1392-1407.	4.8	62
15	Stem cell-like transcriptional reprogramming mediates metastatic resistance to mTOR inhibition. Oncogene, 2017, 36, 2737-2749.	5.9	34
16	Tumor-initiating CD49f cells are a hallmark of chemoresistant triple negative breast cancer. Molecular and Cellular Oncology, 2017, 4, e1338208.	0.7	10
17	Bromodomain inhibition shows antitumoral activity in mice and human luminal breast cancer. Oncotarget, 2017, 8, 51621-51629.	1.8	24
18	Patient-derived xenograft (PDX) models in basic and translational breast cancer research. Cancer and Metastasis Reviews, 2016, 35, 547-573.	5.9	189

Eva Gonzalez-Suarez

#	Article	IF	CITATIONS
19	Cancer network activity associated with therapeutic response and synergism. Genome Medicine, 2016, 8, 88.	8.2	7
20	RANK Signaling Blockade Reduces Breast Cancer Recurrence by Inducing Tumor Cell Differentiation. Cancer Research, 2016, 76, 5857-5869.	0.9	47
21	RANKL/RANK control Brca1 mutation-driven mammary tumors. Cell Research, 2016, 26, 761-774.	12.0	128
22	Rankl Impairs Lactogenic Differentiation Through Inhibition of the Prolactin/Stat5 Pathway at Midgestation. Stem Cells, 2016, 34, 1027-1039.	3.2	26
23	<scp>RANK</scp> as a therapeutic target in cancer. FEBS Journal, 2016, 283, 2018-2033.	4.7	47
24	Cancer Stem-like Cells Act via Distinct Signaling Pathways in Promoting Late Stages of Malignant Progression. Cancer Research, 2016, 76, 1245-1259.	0.9	21
25	RANKL inhibitors for osteosarcoma treatment: hope and caution. Annals of Translational Medicine, 2016, 4, 534-534.	1.7	10
26	Lymphangioleiomyomatosis Biomarkers Linked to Lung Metastatic Potential and Cell Stemness. PLoS ONE, 2015, 10, e0132546.	2.5	15
27	APRIL promotes breast tumor growth and metastasis and is associated with aggressive basal breast cancer. Carcinogenesis, 2015, 36, 574-584.	2.8	34
28	Dual Fatty Acid Synthase and HER2 Signaling Blockade Shows Marked Antitumor Activity against Breast Cancer Models Resistant to Anti-HER2 Drugs. PLoS ONE, 2015, 10, e0131241.	2.5	48
29	FN14 and GRP94 expression are prognostic/predictive biomarkers of brain metastasis outcome that open up new therapeutic strategies. Oncotarget, 2015, 6, 44254-44273.	1.8	35
30	A Comprehensive DNA Methylation Profile of Epithelial-to-Mesenchymal Transition. Cancer Research, 2014, 74, 5608-5619.	0.9	69
31	Targeting RANKL in metastasis. BoneKEy Reports, 2014, 3, 519.	2.7	60
32	111: RANK pathway as a new therapeutic target in primary breast cancer. European Journal of Cancer, 2014, 50, S25.	2.8	0
33	Linkage of DNA Methylation Quantitative Trait Loci to Human Cancer Risk. Cell Reports, 2014, 7, 331-338.	6.4	76
34	Constitutive activation of RANK disrupts mammary cell fate leading to tumorigenesis. Stem Cells, 2013, 31, 1954-1965.	3.2	40
35	Progeny of Lgr5-expressing hair follicle stem cell contributes to papillomavirus-induced tumor development in epidermis. Oncogene, 2013, 32, 3732-3743.	5.9	46
36	RANK Induces Epithelial–Mesenchymal Transition and Stemness in Human Mammary Epithelial Cells and Promotes Tumorigenesis and Metastasis. Cancer Research, 2012, 72, 2879-2888.	0.9	172

Eva Gonzalez-Suarez

#	Article	IF	CITATIONS
37	Identification of NOG as a Specific Breast Cancer Bone Metastasis-supporting Gene. Journal of Biological Chemistry, 2012, 287, 21346-21355.	3.4	56
38	Evidence for a link between TNFRSF11A and risk of breast cancer. Breast Cancer Research and Treatment, 2011, 129, 947-954.	2.5	12
39	RANKL inhibition: a promising novel strategy for breast cancer treatment. Clinical and Translational Oncology, 2011, 13, 222-228.	2.4	26
40	<i>BRCA1</i> CpG Island Hypermethylation Predicts Sensitivity to Poly(Adenosine Diphosphate)- Ribose Polymerase Inhibitors. Journal of Clinical Oncology, 2010, 28, e563-e564.	1.6	152
41	RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature, 2010, 468, 103-107.	27.8	510
42	Abstract 3280: Generation of orthotopic mouse models of breast cancer. , 2010, , .		0
43	Abstract S4-8: Promoter CpG Methylation ofBRCA1Predicts Sensitivity to PARP Inhibitors in Breast Cancer. , 2010, , .		0
44	RANKL inhibition decreases the incidence of mammary adenocarcinomas in wild type (WT) and MMTV-RANK transgenic mice Cancer Research, 2009, 69, 4167.	0.9	34
45	BTNL2, a Butyrophilin/B7-Like Molecule, Is a Negative Costimulatory Molecule Modulated in Intestinal Inflammation. Journal of Immunology, 2007, 178, 1523-1533.	0.8	116
46	RANK Overexpression in Transgenic Mice with Mouse Mammary Tumor Virus Promoter-Controlled RANK Increases Proliferation and Impairs Alveolar Differentiation in the Mammary Epithelia and Disrupts Lumen Formation in Cultured Epithelial Acini. Molecular and Cellular Biology, 2007, 27, 1442-1454	2.3	109
47	494 POSTER MMTV-RANK transgenic mice show increased mammary epithelial proliferation and impaired alveolar differentiation during pregnancy and a higher incidence of chemically induced mammary tumors. European Journal of Cancer, Supplement, 2006, 4, 150-151.	2.2	0
48	Expression of mTert in primary murine cells links the growth-promoting effects of telomerase to transforming growth factor-l ² signaling. Oncogene, 2006, 25, 4310-4319.	5.9	64
49	Antagonistic effects of telomerase on cancer and aging in K5-mTert transgenic mice. Oncogene, 2005, 24, 2256-2270.	5.9	95
50	Telomere dysfunction results in enhanced organismal sensitivity to the alkylating agent N-methyl-N-nitrosourea. Cancer Research, 2003, 63, 7047-50.	0.9	17
51	Cooperation between p53 Mutation and High Telomerase Transgenic Expression in Spontaneous Cancer Development. Molecular and Cellular Biology, 2002, 22, 7291-7301.	2.3	85
52	Increased epidermal tumors and increased skin wound healing in transgenic mice overexpressing the catalytic subunit of telomerase, mTERT, in basal keratinocytes. EMBO Journal, 2001, 20, 2619-2630.	7.8	325
53	Normal telomere length and chromosomal end capping in poly(ADP-ribose) polymerase–deficient mice and primary cells despite increased chromosomal instability. Journal of Cell Biology, 2001, 154, 49-60.	5.2	83
54	Telomerase inhibition in RenCa, a murine tumor cell line with short telomeres, by overexpression of a dominant negative mTERT mutant, reveals fundamental differences in telomerase regulation between human and murine cells. Cancer Research, 2001, 61, 5580-6.	0.9	26

#	Article	IF	CITATIONS
55	Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nature Genetics, 2000, 26, 114-117.	21.4	319