Roshan Krishna Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7591637/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nature Nanotechnology, 2017, 12, 223-227.	15.6	996
2	Negative local resistance caused by viscous electron backflow in graphene. Science, 2016, 351, 1055-1058.	6.0	516
3	Superballistic flow of viscous electron fluid through graphene constrictions. Nature Physics, 2017, 13, 1182-1185.	6.5	288
4	Measuring Hall viscosity of graphene's electron fluid. Science, 2019, 364, 162-165.	6.0	197
5	Fluidity onset in graphene. Nature Communications, 2018, 9, 4533.	5.8	136
6	High-temperature quantum oscillations caused by recurring Bloch states in graphene superlattices. Science, 2017, 357, 181-184.	6.0	117
7	Graphene ballistic nano-rectifier with very high responsivity. Nature Communications, 2016, 7, 11670.	5.8	74
8	Giant oscillations in a triangular network of one-dimensional states in marginally twisted graphene. Nature Communications, 2019, 10, 4008.	5.8	67
9	High-order fractal states in graphene superlattices. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5135-5139.	3.3	63
10	Excess resistivity in graphene superlattices caused by umklapp electron–electron scattering. Nature Physics, 2019, 15, 32-36.	6.5	46
11	Control of electron-electron interaction in graphene by proximity screening. Nature Communications, 2020, 11, 2339.	5.8	46
12	Out-of-equilibrium criticalities in graphene superlattices. Science, 2022, 375, 430-433.	6.0	34
13	Nano-imaging photoresponse in a moir \tilde{A} unit cell of minimally twisted bilayer graphene. Nature Communications, 2021, 12, 1640.	5.8	29
14	Strong magnetophonon oscillations in extra-large graphene. Nature Communications, 2019, 10, 3334.	5.8	25
15	Long-range ballistic transport of Brown-Zak fermions in graphene superlattices. Nature Communications, 2020, 11, 5756.	5.8	25
16	Minibands in twisted bilayer graphene probed by magnetic focusing. Science Advances, 2020, 6, eaay7838.	4.7	21
17	Graphene Triangular Ballistic Rectifier: Fabrication and Characterisation. Journal of Electronic Materials, 2017, 46, 3942-3948.	1.0	16
18	Magnetophonon spectroscopy of Dirac fermion scattering by transverse and longitudinal acoustic phonons in graphene. Physical Review B, 2019, 100, .	1.1	16

#	Article	IF	CITATIONS
19	Scaling approach to tight-binding transport in realistic graphene devices: The case of transverse magnetic focusing. Physical Review B, 2016, 94, .	1.1	15
20	Graphene's non-equilibrium fermions reveal Doppler-shifted magnetophonon resonances accompanied by Mach supersonic and Landau velocity effects. Nature Communications, 2021, 12, 6392.	5.8	5
21	Magnetization Signature of Topological Surface States in a Nonâ€Symmorphic Superconductor. Advanced Materials, 2021, 33, e2103257.	11.1	3