
David C Montefiori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7591267/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell, 2020, 182, 812-827.e19.	28.9	3,551
2	Control of Viremia in Simian Immunodeficiency Virus Infection by CD8+ Lymphocytes. Science, 1999, 283, 857-860.	12.6	2,072
3	Immune-Correlates Analysis of an HIV-1 Vaccine Efficacy Trial. New England Journal of Medicine, 2012, 366, 1275-1286.	27.0	1,699
4	Human Immunodeficiency Virus Type 1 env Clones from Acute and Early Subtype B Infections for Standardized Assessments of Vaccine-Elicited Neutralizing Antibodies. Journal of Virology, 2005, 79, 10108-10125.	3.4	1,025
5	Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature, 2013, 496, 469-476.	27.8	961
6	Control of Viremia and Prevention of Clinical AIDS in Rhesus Monkeys by Cytokine-Augmented DNA Vaccination. Science, 2000, 290, 486-492.	12.6	876
7	Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial. Science, 2022, 375, 43-50.	12.6	788
8	Tiered Categorization of a Diverse Panel of HIV-1 Env Pseudoviruses for Assessment of Neutralizing Antibodies. Journal of Virology, 2010, 84, 1439-1452.	3.4	589
9	Initial B-Cell Responses to Transmitted Human Immunodeficiency Virus Type 1: Virion-Binding Immunoglobulin M (IgM) and IgG Antibodies Followed by Plasma Anti-gp41 Antibodies with Ineffective Control of Initial Viremia. Journal of Virology, 2008, 82, 12449-12463.	3.4	548
10	Efficacy Trial of a DNA/rAd5 HIV-1 Preventive Vaccine. New England Journal of Medicine, 2013, 369, 2083-2092.	27.0	518
11	HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science, 2015, 349, aac4223.	12.6	482
12	Measuring HIV Neutralization in a Luciferase Reporter Gene Assay. Methods in Molecular Biology, 2009, 485, 395-405.	0.9	466
13	Optimization and validation of the TZM-bl assay for standardized assessments of neutralizing antibodies against HIV-1. Journal of Immunological Methods, 2014, 409, 131-146.	1.4	435
14	Evaluating Neutralizing Antibodies Against HIV, SIV, and SHIV in Luciferase Reporter Gene Assays. Current Protocols in Immunology, 2004, 64, Unit 12.11.	3.6	428
15	Homologous and Heterologous Covid-19 Booster Vaccinations. New England Journal of Medicine, 2022, 386, 1046-1057.	27.0	418
16	Vaccine-Induced Env V1-V2 IgG3 Correlates with Lower HIV-1 Infection Risk and Declines Soon After Vaccination. Science Translational Medicine, 2014, 6, 228ra39.	12.4	412
17	Analysis of Memory B Cell Responses and Isolation of Novel Monoclonal Antibodies with Neutralizing Breadth from HIV-1-Infected Individuals. PLoS ONE, 2010, 5, e8805.	2.5	405
18	Analysis of a Clonal Lineage of HIV-1 Envelope V2/V3 Conformational Epitope-Specific Broadly Neutralizing Antibodies and Their Inferred Unmutated Common Ancestors. Journal of Virology, 2011, 85, 9998-10009.	3.4	393

#	Article	IF	CITATIONS
19	Vaccine Induction of Antibodies against a Structurally Heterogeneous Site of Immune Pressure within HIV-1 Envelope Protein Variable Regions 1 and 2. Immunity, 2013, 38, 176-186.	14.3	374
20	Vaccine-induced plasma IgA specific for the C1 region of the HIV-1 envelope blocks binding and effector function of IgG. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9019-9024.	7.1	371
21	Neutralizing antibody-independent containment of immunodeficiency virus challenges by DNA priming and recombinant pox virus booster immunizations. Nature Medicine, 1999, 5, 526-534.	30.7	370
22	Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. Journal of Experimental Medicine, 2018, 215, 1571-1588.	8.5	366
23	Safety and immunogenicity of SARS-CoV-2 variant mRNA vaccine boosters in healthy adults: an interim analysis. Nature Medicine, 2021, 27, 2025-2031.	30.7	361
24	Antibody-Dependent Cellular Cytotoxicity-Mediating Antibodies from an HIV-1 Vaccine Efficacy Trial Target Multiple Epitopes and Preferentially Use the VH1 Gene Family. Journal of Virology, 2012, 86, 11521-11532.	3.4	357
25	The Role of Antibodies in HIV Vaccines. Annual Review of Immunology, 2010, 28, 413-444.	21.8	356
26	Immunogenicity of Stabilized HIV-1 Envelope Trimers with Reduced Exposure of Non-neutralizing Epitopes. Cell, 2015, 163, 1702-1715.	28.9	341
27	SARS-CoV-2 Omicron Variant Neutralization after mRNA-1273 Booster Vaccination. New England Journal of Medicine, 2022, 386, 1088-1091.	27.0	338
28	Prevalence of broadly neutralizing antibody responses during chronic HIV-1 infection. Aids, 2014, 28, 163-169.	2.2	334
29	SARS-CoV-2 variant B.1.1.7 is susceptible to neutralizing antibodies elicited by ancestral spike vaccines. Cell Host and Microbe, 2021, 29, 529-539.e3.	11.0	324
30	D614G Spike Mutation Increases SARS CoV-2 Susceptibility to Neutralization. Cell Host and Microbe, 2021, 29, 23-31.e4.	11.0	308
31	Maturation Pathway from Germline to Broad HIV-1 Neutralizer of a CD4-Mimic Antibody. Cell, 2016, 165, 449-463.	28.9	305
32	Passive transfer of modest titers of potent and broadly neutralizing anti-HIV monoclonal antibodies block SHIV infection in macaques. Journal of Experimental Medicine, 2014, 211, 2061-2074.	8.5	297
33	Elicitation of Robust Tier 2 Neutralizing Antibody Responses in Nonhuman Primates by HIV Envelope Trimer Immunization Using Optimized Approaches. Immunity, 2017, 46, 1073-1088.e6.	14.3	286
34	Global Panel of HIV-1 Env Reference Strains for Standardized Assessments of Vaccine-Elicited Neutralizing Antibodies. Journal of Virology, 2014, 88, 2489-2507.	3.4	274
35	Magnitude and Breadth of the Neutralizing Antibody Response in the RV144 and Vax003 HIV-1 Vaccine Efficacy Trials. Journal of Infectious Diseases, 2012, 206, 431-441.	4.0	273
36	Two Randomized Trials of Neutralizing Antibodies to Prevent HIV-1 Acquisition. New England Journal of Medicine, 2021, 384, 1003-1014.	27.0	270

#	Article	IF	CITATIONS
37	Evaluation of a mosaic HIV-1 vaccine in a multicentre, randomised, double-blind, placebo-controlled, phase 1/2a clinical trial (APPROACH) and in rhesus monkeys (NHP 13-19). Lancet, The, 2018, 392, 232-243.	13.7	269
38	Cooperation of B Cell Lineages in Induction of HIV-1-Broadly Neutralizing Antibodies. Cell, 2014, 158, 481-491.	28.9	266
39	Neutralizing and Infection-Enhancing Antibody Responses to Human Immunodeficiency Virus Type 1 in Long-Term Nonprogressors. Journal of Infectious Diseases, 1996, 173, 60-67.	4.0	264
40	Adjuvanting a subunit COVID-19 vaccine to induce protective immunity. Nature, 2021, 594, 253-258.	27.8	253
41	Vaccine-Induced IgG Antibodies to V1V2 Regions of Multiple HIV-1 Subtypes Correlate with Decreased Risk of HIV-1 Infection. PLoS ONE, 2014, 9, e87572.	2.5	248
42	Immune correlates of protection by mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. Science, 2021, 373, eabj0299.	12.6	244
43	Recommendations for the Design and Use of Standard Virus Panels To Assess Neutralizing Antibody Responses Elicited by Candidate Human Immunodeficiency Virus Type 1 Vaccines. Journal of Virology, 2005, 79, 10103-10107.	3.4	233
44	InÂvitro and inÂvivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell, 2021, 184, 4203-4219.e32.	28.9	228
45	Evidence that Ecotropic Murine Leukemia Virus Contamination in TZM-bl Cells Does Not Affect the Outcome of Neutralizing Antibody Assays with Human Immunodeficiency Virus Type 1. Journal of Virology, 2009, 83, 8289-8292.	3.4	219
46	Plasma IgG to Linear Epitopes in the V2 and V3 Regions of HIV-1 gp120 Correlate with a Reduced Risk of Infection in the RV144 Vaccine Efficacy Trial. PLoS ONE, 2013, 8, e75665.	2.5	214
47	Staged induction of HIV-1 glycan–dependent broadly neutralizing antibodies. Science Translational Medicine, 2017, 9, .	12.4	212
48	Neutralization of SARS-CoV-2 Variants B.1.429 and B.1.351. New England Journal of Medicine, 2021, 384, 2352-2354.	27.0	202
49	Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses. Nature, 2021, 594, 553-559.	27.8	199
50	Highâ€ŧhroughput quantitative analysis of HIVâ€1 and SIVâ€specific ADCCâ€mediating antibody responses. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2011, 79A, 603-612.	1.5	197
51	Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition. Nature Medicine, 2016, 22, 762-770.	30.7	197
52	The Thai Phase III HIV Type 1 Vaccine Trial (RV144) Regimen Induces Antibodies That Target Conserved Regions Within the V2 Loop of gp120. AIDS Research and Human Retroviruses, 2012, 28, 1444-1457.	1.1	191
53	Diversion of HIV-1 vaccine–induced immunity by gp41-microbiota cross-reactive antibodies. Science, 2015, 349, aab1253.	12.6	191
54	Immune and Genetic Correlates of Vaccine Protection Against Mucosal Infection by SIV in Monkeys. Science Translational Medicine, 2011, 3, 81ra36.	12.4	179

#	Article	IF	CITATIONS
55	A group M consensus envelope glycoprotein induces antibodies that neutralize subsets of subtype B and C HIV-1 primary viruses. Virology, 2006, 353, 268-282.	2.4	176
56	Improving the Immunogenicity of Native-like HIV-1 Envelope Trimers by Hyperstabilization. Cell Reports, 2017, 20, 1805-1817.	6.4	171
57	Envelope residue 375 substitutions in simian–human immunodeficiency viruses enhance CD4 binding and replication in rhesus macaques. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3413-22.	7.1	170
58	Replication competent molecular clones of HIV-1 expressing Renilla luciferase facilitate the analysis of antibody inhibition in PBMC. Virology, 2010, 408, 1-13.	2.4	169
59	HIV-1 Vaccine-Induced C1 and V2 Env-Specific Antibodies Synergize for Increased Antiviral Activities. Journal of Virology, 2014, 88, 7715-7726.	3.4	169
60	Analysis of V2 Antibody Responses Induced in Vaccinees in the ALVAC/AIDSVAX HIV-1 Vaccine Efficacy Trial. PLoS ONE, 2013, 8, e53629.	2.5	165
61	Antibodyâ€virus coâ€evolution in <scp>HIV</scp> infection: paths for <scp>HIV</scp> vaccine development. Immunological Reviews, 2017, 275, 145-160.	6.0	160
62	Two Distinct Broadly Neutralizing Antibody Specificities of Different Clonal Lineages in a Single HIV-1-Infected Donor: Implications for Vaccine Design. Journal of Virology, 2012, 86, 4688-4692.	3.4	159
63	Presenting native-like HIV-1 envelope trimers on ferritin nanoparticles improves their immunogenicity. Retrovirology, 2015, 12, 82.	2.0	156
64	The SARS-CoV-2 Spike variant D614G favors an open conformational state. Science Advances, 2021, 7, .	10.3	156
65	Phase 1 Safety and Immunogenicity Testing of DNA and Recombinant Modified Vaccinia Ankara Vaccines Expressing HIV-1 Virus-like Particles. Journal of Infectious Diseases, 2011, 203, 610-619.	4.0	151
66	Containment of Simian Immunodeficiency Virus Infection in Vaccinated Macaques: Correlation with the Magnitude of Virus-Specific Pre- and Postchallenge CD4+and CD8+T Cell Responses. Journal of Immunology, 2002, 169, 4778-4787.	0.8	150
67	Optimal Combinations of Broadly Neutralizing Antibodies for Prevention and Treatment of HIV-1 Clade C Infection. PLoS Pathogens, 2016, 12, e1005520.	4.7	150
68	Enhancing and shaping the immunogenicity of native-like HIV-1 envelope trimers with a two-component protein nanoparticle. Nature Communications, 2019, 10, 4272.	12.8	149
69	Immunization with Recombinant Canarypox Vectors Expressing Membrane-Anchored Glycoprotein 120 Followed by Glycoprotein 160 Boosting Fails to Generate Antibodies That Neutralize R5 Primary Isolates of Human Immunodeficiency Virus Type 1. AIDS Research and Human Retroviruses, 2000, 16, 2019-2035.	1.1	146
70	Human Non-neutralizing HIV-1 Envelope Monoclonal Antibodies Limit the Number of Founder Viruses during SHIV Mucosal Infection in Rhesus Macaques. PLoS Pathogens, 2015, 11, e1005042.	4.7	145
71	Immunization expands B cells specific to HIV-1 V3 glycan in mice and macaques. Nature, 2019, 570, 468-473.	27.8	145
72	Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial. Science, 2021, , eab3435.	12.6	145

5

#	Article	IF	CITATIONS
73	Complete Protection of Neonatal Rhesus Macaques against Oral Exposure to Pathogenic Simianâ€Human Immunodeficiency Virus by Human Antiâ€HIV Monoclonal Antibodies. Journal of Infectious Diseases, 2004, 189, 2167-2173.	4.0	141
74	Vaccine-Elicited Tier 2 HIV-1 Neutralizing Antibodies Bind to Quaternary Epitopes Involving Glycan-Deficient Patches Proximal to the CD4 Binding Site. PLoS Pathogens, 2015, 11, e1004932.	4.7	141
75	Immunological and virological mechanisms of vaccine-mediated protection against SIV and HIV. Nature, 2014, 505, 502-508.	27.8	140
76	Potent Immune Responses in Rhesus Macaques Induced by Nonviral Delivery of a Self-amplifying RNA Vaccine Expressing HIV Type 1 Envelope With a Cationic Nanoemulsion. Journal of Infectious Diseases, 2015, 211, 947-955.	4.0	140
77	Sequential and Simultaneous Immunization of Rabbits with HIV-1 Envelope Glycoprotein SOSIP.664 Trimers from Clades A, B and C. PLoS Pathogens, 2016, 12, e1005864.	4.7	138
78	Pentavalent HIV-1 vaccine protects against simian-human immunodeficiency virus challenge. Nature Communications, 2017, 8, 15711.	12.8	137
79	Complement Control Proteins, CD46, CD55, and CD59, as Common Surface Constituents of Human and Simian Immunodeficiency Viruses and Possible Targets for Vaccine Protection. Virology, 1994, 205, 82-92.	2.4	136
80	A Phase IIA Randomized Clinical Trial of a Multiclade HIV-1 DNA Prime Followed by a Multiclade rAd5 HIV-1 Vaccine Boost in Healthy Adults (HVTN204). PLoS ONE, 2011, 6, e21225.	2.5	131
81	Antibodies with High Avidity to the gp120 Envelope Protein in Protection from Simian Immunodeficiency Virus SIV _{mac251} Acquisition in an Immunization Regimen That Mimics the RV-144 Thai Trial. Journal of Virology, 2013, 87, 1708-1719.	3.4	130
82	QS-21 promotes an adjuvant effect allowing for reduced antigen dose during HIV-1 envelope subunit immunization in humans. Vaccine, 2001, 19, 2080-2091.	3.8	128
83	Structural diversity of the SARS-CoV-2 Omicron spike. Molecular Cell, 2022, 82, 2050-2068.e6.	9.7	125
84	HIV-1 Neutralizing Antibody Signatures and Application to Epitope-Targeted Vaccine Design. Cell Host and Microbe, 2019, 25, 59-72.e8.	11.0	124
85	T cell-inducing vaccine durably prevents mucosal SHIV infection even with lower neutralizing antibody titers. Nature Medicine, 2020, 26, 932-940.	30.7	124
86	Improving Neutralization Potency and Breadth by Combining Broadly Reactive HIV-1 Antibodies Targeting Major Neutralization Epitopes. Journal of Virology, 2015, 89, 2659-2671.	3.4	123
87	Immune perturbations in HIV-1–infected individuals who make broadly neutralizing antibodies. Science Immunology, 2016, 1, aag0851.	11.9	120
88	Potent and broad HIV-neutralizing antibodies in memory B cells and plasma. Science Immunology, 2017, 2, .	11.9	119
89	Magnitude and Breadth of a Nonprotective Neutralizing Antibody Response in an Efficacy Trial of a Candidate HIV†gp120 Vaccine. Journal of Infectious Diseases, 2010, 202, 595-605.	4.0	118
90	Targeted selection of HIV-specific antibody mutations by engineering B cell maturation. Science, 2019, 366, .	12.6	118

#	Article	IF	CITATIONS
91	Balance of cellular and humoral immunity determines the level of protection by HIV vaccines in rhesus macaque models of HIV infection. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E992-9.	7.1	117
92	Defining the risk of SARS-CoV-2 variants on immune protection. Nature, 2022, 605, 640-652.	27.8	117
93	Structure and immunogenicity of a stabilized HIV-1 envelope trimer based on a group-M consensus sequence. Nature Communications, 2019, 10, 2355.	12.8	116
94	Epitopes for neutralizing antibodies induced by HIV-1 envelope glycoprotein BG505 SOSIP trimers in rabbits and macaques. PLoS Pathogens, 2018, 14, e1006913.	4.7	111
95	Fab and Fc contribute to maximal protection against SARS-CoV-2 following NVX-CoV2373 subunit vaccine with Matrix-M vaccination. Cell Reports Medicine, 2021, 2, 100405.	6.5	110
96	International Network for Comparison of HIV Neutralization Assays: The NeutNet Report. PLoS ONE, 2009, 4, e4505.	2.5	109
97	Control of a Mucosal Challenge and Prevention of AIDS by a Multiprotein DNA/MVA Vaccine. Science, 2001, 292, 69-74.	12.6	107
98	Towards a population-based threshold of protection for COVID-19 vaccines. Vaccine, 2022, 40, 306-315.	3.8	107
99	Prevention of Infection by a Granulocyte-Macrophage Colony-Stimulating Factor Co-Expressing DNA/Modified Vaccinia Ankara Simian Immunodeficiency Virus Vaccine. Journal of Infectious Diseases, 2011, 204, 164-173.	4.0	105
100	Attenuated Poxvirus-Based Simian Immunodeficiency Virus (SIV) Vaccines Given in Infancy Partially Protect Infant and Juvenile Macaques Against Repeated Oral Challenge With Virulent SIV. Journal of Acquired Immune Deficiency Syndromes (1999), 2005, 38, 124-134.	2.1	104
101	Safety, pharmacokinetics, and immunological activities of multiple intravenous or subcutaneous doses of an anti-HIV monoclonal antibody, VRC01, administered to HIV-uninfected adults: Results of a phase 1 randomized trial. PLoS Medicine, 2017, 14, e1002435.	8.4	104
102	Complement-mediated antibody-dependent enhancement of HIV-1 infection requires CD4 and complement receptors. Virology, 1990, 175, 600-604.	2.4	101
103	Phase 2 Study of an HIV-1 Canarypox Vaccine (vCP1452) Alone and in Combination With rgp120. Journal of Acquired Immune Deficiency Syndromes (1999), 2007, 44, 203-212.	2.1	101
104	FCGR2C polymorphisms associate with HIV-1 vaccine protection in RV144 trial. Journal of Clinical Investigation, 2014, 124, 3879-3890.	8.2	99
105	Vaccine Induction of Heterologous Tier 2 HIV-1 Neutralizing Antibodies in Animal Models. Cell Reports, 2017, 21, 3681-3690.	6.4	97
106	Replicating Adenovirus-Simian Immunodeficiency Virus (SIV) Recombinant Priming and Envelope Protein Boosting Elicits Localized, Mucosal IgA Immunity in Rhesus Macaques Correlated with Delayed Acquisition following a Repeated Low-Dose Rectal SIV _{mac251} Challenge. Journal of Virology, 2012, 86, 4644-4657.	3.4	95
107	DNA Vaccines Expressing Different Forms of Simian Immunodeficiency Virus Antigens Decrease Viremia upon SIVmac251 Challenge. Journal of Virology, 2005, 79, 8480-8492.	3.4	93
108	A broadly cross-reactive antibody neutralizes and protects against sarbecovirus challenge in mice. Science Translational Medicine, 2022, 14, eabj7125.	12.4	93

#	Article	IF	CITATIONS
109	Control of Simian/Human Immunodeficiency Virus Viremia and Disease Progression after IL-2-Augmented DNA-Modified Vaccinia Virus Ankara Nasal Vaccination in Nonhuman Primates. Journal of Immunology, 2004, 172, 3745-3757.	0.8	92
110	3M-052, a synthetic TLR-7/8 agonist, induces durable HIV-1 envelope–specific plasma cells and humoral immunity in nonhuman primates. Science Immunology, 2020, 5, .	11.9	90
111	Enhanced Avidity Maturation of Antibody to Human Immunodeficiency Virus Envelope: DNA Vaccination with gp120–C3d Fusion Proteins. AIDS Research and Human Retroviruses, 2001, 17, 829-835.	1.1	89
112	Neutralization tiers of HIV-1. Current Opinion in HIV and AIDS, 2018, 13, 128-136.	3.8	89
113	Neutralizing Antibodies Associated with Viremia Control in a Subset of Individuals after Treatment of Acute Human Immunodeficiency Virus Type 1 Infection. Journal of Virology, 2001, 75, 10200-10207.	3.4	87
114	Initiation of immune tolerance–controlled HIV gp41 neutralizing B cell lineages. Science Translational Medicine, 2016, 8, 336ra62.	12.4	86
115	Subtype C ALVAC-HIV and bivalent subtype C gp120/MF59 HIV-1 vaccine in low-risk, HIV-uninfected, South African adults: a phase 1/2 trial. Lancet HIV,the, 2018, 5, e366-e378.	4.7	86
116	Adeno-associated virus vectored immunoprophylaxis to prevent HIV in healthy adults: a phase 1 randomised controlled trial. Lancet HIV,the, 2019, 6, e230-e239.	4.7	84
117	Antigenicity and Immunogenicity of Transmitted/Founder, Consensus, and Chronic Envelope Glycoproteins of Human Immunodeficiency Virus Type 1. Journal of Virology, 2013, 87, 4185-4201.	3.4	83
118	Tracking HIV-1 recombination to resolve its contribution to HIV-1 evolution in natural infection. Nature Communications, 2018, 9, 1928.	12.8	83
119	Mimicry of an HIV broadly neutralizing antibody epitope with a synthetic glycopeptide. Science Translational Medicine, 2017, 9, .	12.4	81
120	Features of Recently Transmitted HIV-1 Clade C Viruses that Impact Antibody Recognition: Implications for Active and Passive Immunization. PLoS Pathogens, 2016, 12, e1005742.	4.7	81
121	Characterization of HIV-1 Nucleoside-Modified mRNA Vaccines in Rabbits and Rhesus Macaques. Molecular Therapy - Nucleic Acids, 2019, 15, 36-47.	5.1	79
122	Genetic Signatures in the Envelope Glycoproteins of HIV-1 that Associate with Broadly Neutralizing Antibodies. PLoS Computational Biology, 2010, 6, e1000955.	3.2	78
123	Initiation of HIV neutralizing B cell lineages with sequential envelope immunizations. Nature Communications, 2017, 8, 1732.	12.8	76
124	GM-CSF DNA: An adjuvant for higher avidity IgG, rectal IgA, and increased protection against the acute phase of a SHIV-89.6P challenge by a DNA/MVA immunodeficiency virus vaccine. Virology, 2007, 369, 153-167.	2.4	75
125	Impact of Clade, Geography, and Age of the Epidemic on HIV-1 Neutralization by Antibodies. Journal of Virology, 2014, 88, 12623-12643.	3.4	75
126	Specificity and 6-Month Durability of Immune Responses Induced by DNA and Recombinant Modified Vaccinia Ankara Vaccines Expressing HIV-1 Virus-Like Particles. Journal of Infectious Diseases, 2014, 210, 99-110	4.0	73

#	Article	IF	CITATIONS
127	A modified vaccinia Ankara vector-based vaccine protects macaques from SARS-CoV-2 infection, immune pathology, and dysfunction in the lungs. Immunity, 2021, 54, 542-556.e9.	14.3	72
128	Evaluation of Cell-Based and Surrogate SARS-CoV-2 Neutralization Assays. Journal of Clinical Microbiology, 2021, 59, e0052721.	3.9	71
129	Development and implementation of an international proficiency testing program for a neutralizing antibody assay for HIV-1 in TZM-bl cells. Journal of Immunological Methods, 2012, 375, 57-67.	1.4	69
130	Vaccine Elicitation of High Mannose-Dependent Neutralizing Antibodies against the V3-Glycan Broadly Neutralizing Epitope in Nonhuman Primates. Cell Reports, 2017, 18, 2175-2188.	6.4	69
131	An Engineered <i>Saccharomyces cerevisiae</i> Strain Binds the Broadly Neutralizing Human Immunodeficiency Virus Type 1 Antibody 2G12 and Elicits Mannose-Specific gp120-Binding Antibodies. Journal of Virology, 2008, 82, 6447-6457.	3.4	68
132	Potential of conventional & bispecific broadly neutralizing antibodies for prevention of HIV-1 subtype A, C & D infections. PLoS Pathogens, 2018, 14, e1006860.	4.7	68
133	Systemic Immunization with an ALVAC-HIV-1/Protein Boost Vaccine Strategy Protects Rhesus Macaques from CD4 + T-Cell Loss and Reduces both Systemic and Mucosal Simian-Human Immunodeficiency Virus SHIV KU2 RNA Levels. Journal of Virology, 2006, 80, 3732-3742.	3.4	67
134	IL-12 DNA as molecular vaccine adjuvant increases the cytotoxic T cell responses and breadth of humoral immune responses in SIV DNA vaccinated macaques. Human Vaccines and Immunotherapeutics, 2012, 8, 1620-1629.	3.3	67
135	Comparative Evaluation of Simian, Simian–Human, and Human Immunodeficiency Virus Infections in the Pigtail Macaque (Macaca nemestrina) Model. AIDS Research and Human Retroviruses, 2006, 22, 580-588.	1.1	66
136	Strain-Specific V3 and CD4 Binding Site Autologous HIV-1 Neutralizing Antibodies Select Neutralization-Resistant Viruses. Cell Host and Microbe, 2015, 18, 354-362.	11.0	66
137	Immunogenicity in Rabbits of HIV-1 SOSIP Trimers from Clades A, B, and C, Given Individually, Sequentially, or in Combination. Journal of Virology, 2018, 92, .	3.4	66
138	Closing and Opening Holes in the Glycan Shield of HIV-1 Envelope Glycoprotein SOSIP Trimers Can Redirect the Neutralizing Antibody Response to the Newly Unmasked Epitopes. Journal of Virology, 2019, 93, .	3.4	66
139	Antibody Light-Chain-Restricted Recognition of the Site of Immune Pressure in the RV144 HIV-1 Vaccine Trial Is Phylogenetically Conserved. Immunity, 2014, 41, 909-918.	14.3	65
140	HIV vaccine candidate activation of hypoxia and the inflammasome in CD14+ monocytes is associated with a decreased risk of SIVmac251 acquisition. Nature Medicine, 2018, 24, 847-856.	30.7	65
141	Cold sensitivity of the SARS-CoV-2 spike ectodomain. Nature Structural and Molecular Biology, 2021, 28, 128-131.	8.2	65
142	A Phase II Study of Two HIV Type 1 Envelope Vaccines, Comparing Their Immunogenicity in Populations at Risk for Acquiring HIV Type 1 Infection. AIDS Research and Human Retroviruses, 2000, 16, 907-919.	1.1	64
143	International Network for Comparison of HIV Neutralization Assays: The NeutNet Report II. PLoS ONE, 2012, 7, e36438.	2.5	63
144	Basis and Statistical Design of the Passive HIV-1 Antibody Mediated Prevention (AMP) Test-of-Concept Efficacy Trials. Statistical Communications in Infectious Diseases, 2017, 9, .	0.2	62

#	Article	IF	CITATIONS
145	DNA vaccination in rhesus macaques induces potent immune responses and decreases acute and chronic viremia after SIVmac251 challenge. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15831-15836.	7.1	61
146	Inference of the HIV-1 VRC01 Antibody Lineage Unmutated Common Ancestor Reveals Alternative Pathways to Overcome a Key Glycan Barrier. Immunity, 2018, 49, 1162-1174.e8.	14.3	61
147	HIV-1 vaccination by needle-free oral injection induces strong mucosal immunity and protects against SHIV challenge. Nature Communications, 2019, 10, 798.	12.8	61
148	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. PLoS Pathogens, 2020, 16, e1008753.	4.7	61
149	Immune response to SARS-CoV-2 after a booster of mRNA-1273: an open-label phase 2 trial. Nature Medicine, 2022, 28, 1042-1049.	30.7	61
150	Studies of High Doses of a Human Immunodeficiency Virus Type 1 Recombinant Glycoprotein 160 Candidate Vaccine in HIV Type 1-Seronegative Humans. AIDS Research and Human Retroviruses, 1994, 10, 1713-1723.	1.1	60
151	SIVmac239 MVA vaccine with and without a DNA prime, similar prevention of infection by a repeated dose SIVsmE660 challenge despite different immune responses. Vaccine, 2012, 30, 1737-1745.	3.8	60
152	Mucosally-administered human–simian immunodeficiency virus DNA and fowlpoxvirus-based recombinant vaccines reduce acute phase viral replication in macaques following vaginal challenge with CCR5-tropic SHIVSF162P3. Vaccine, 2005, 23, 5009-5021.	3.8	59
153	Infectious Virion Capture by HIV-1 gp120-Specific IgG from RV144 Vaccinees. Journal of Virology, 2013, 87, 7828-7836.	3.4	59
154	Mucosal B Cells Are Associated with Delayed SIV Acquisition in Vaccinated Female but Not Male Rhesus Macaques Following SIVmac251 Rectal Challenge. PLoS Pathogens, 2015, 11, e1005101.	4.7	59
155	Safety and immunogenicity of two heterologous HIV vaccine regimens in healthy, HIV-uninfected adults (TRAVERSE): a randomised, parallel-group, placebo-controlled, double-blind, phase 1/2a study. Lancet HIV,the, 2020, 7, e688-e698.	4.7	58
156	Infant HIV Type 1 gp120 Vaccination Elicits Robust and Durable Anti-V1V2 Immunoglobulin G Responses and Only Rare Envelope-Specific Immunoglobulin A Responses. Journal of Infectious Diseases, 2015, 211, 508-517.	4.0	57
157	Randomized, Double-Blind Evaluation of Late Boost Strategies for HIV-Uninfected Vaccine Recipients in the RV144 HIV Vaccine Efficacy Trial. Journal of Infectious Diseases, 2017, 215, 1255-1263.	4.0	57
158	Fab-dimerized glycan-reactive antibodies are a structural category of natural antibodies. Cell, 2021, 184, 2955-2972.e25.	28.9	57
159	Achieving Potent Autologous Neutralizing Antibody Responses against Tier 2 HIV-1 Viruses by Strategic Selection of Envelope Immunogens. Journal of Immunology, 2016, 196, 3064-3078.	0.8	56
160	Structural Basis for Broad HIV-1 Neutralization by the MPER-Specific Human Broadly Neutralizing Antibody LN01. Cell Host and Microbe, 2019, 26, 623-637.e8.	11.0	56
161	Neutralization-guided design of HIV-1 envelope trimers with high affinity for the unmutated common ancestor of CH235 lineage CD4bs broadly neutralizing antibodies. PLoS Pathogens, 2019, 15, e1008026.	4.7	56
162	Analysis of HLA A*02 Association with Vaccine Efficacy in the RV144 HIV-1 Vaccine Trial. Journal of Virology, 2014, 88, 8242-8255.	3.4	55

#	Article	IF	CITATIONS
163	V1V2-specific complement activating serum IgG as a correlate of reduced HIV-1 infection risk in RV144. PLoS ONE, 2017, 12, e0180720.	2.5	55
164	Role of complement and Fc receptors in the pathogenesis of HIV-1 infection. Seminars in Immunopathology, 1997, 18, 371-390.	4.0	54
165	Phenotypic Correlates of HIV-1 Macrophage Tropism. Journal of Virology, 2015, 89, 11294-11311.	3.4	54
166	Demographic Factors That Influence the Neutralizing Antibody Response in Recipients of Recombinant HIVâ€1 gp120 Vaccines. Journal of Infectious Diseases, 2004, 190, 1962-1969.	4.0	53
167	CD40L-Adjuvanted DNA/Modified Vaccinia Virus Ankara Simian Immunodeficiency Virus SIV239 Vaccine Enhances SIV-Specific Humoral and Cellular Immunity and Improves Protection against a Heterologous SIVE660 Mucosal Challenge. Journal of Virology, 2014, 88, 9579-9589.	3.4	53
168	A yeast-expressed RBD-based SARS-CoV-2 vaccine formulated with 3M-052-alum adjuvant promotes protective efficacy in non-human primates. Science Immunology, 2021, 6, .	11.9	53
169	Protection Afforded by an HIV Vaccine Candidate in Macaques Depends on the Dose of SIV _{mac251} at Challenge Exposure. Journal of Virology, 2013, 87, 3538-3548.	3.4	52
170	Structural and functional evaluation of de novo-designed, two-component nanoparticle carriers for HIV Env trimer immunogens. PLoS Pathogens, 2020, 16, e1008665.	4.7	52
171	DNA Vaccine Molecular Adjuvants SP-D-BAFF and SP-D-APRIL Enhance Anti-gp120 Immune Response and Increase HIV-1 Neutralizing Antibody Titers. Journal of Virology, 2015, 89, 4158-4169.	3.4	51
172	Mapping Polyclonal HIV-1 Antibody Responses via Next-Generation Neutralization Fingerprinting. PLoS Pathogens, 2017, 13, e1006148.	4.7	51
173	Codelivery of Envelope Protein in Alum with MVA Vaccine Induces CXCR3-Biased CXCR5+ and CXCR5â^' CD4 T Cell Responses in Rhesus Macaques. Journal of Immunology, 2015, 195, 994-1005.	0.8	50
174	Vaccine induction of antibodies and tissue-resident CD8+ T cells enhances protection against mucosal SHIV-infection in young macaques. JCI Insight, 2019, 4, .	5.0	50
175	Studies on GM-CSF DNA as an adjuvant for neutralizing Ab elicited by a DNA/MVA immunodeficiency virus vaccine. Virology, 2006, 352, 285-294.	2.4	48
176	Selection of Unadapted, Pathogenic SHIVs Encoding Newly Transmitted HIV-1 Envelope Proteins. Cell Host and Microbe, 2014, 16, 412-418.	11.0	47
177	HLA class II genes modulate vaccine-induced antibody responses to affect HIV-1 acquisition. Science Translational Medicine, 2015, 7, 296ra112.	12.4	47
178	Neutralization Takes Precedence Over IgG or IgA Isotype-related Functions in Mucosal HIV-1 Antibody-mediated Protection. EBioMedicine, 2016, 14, 97-111.	6.1	47
179	HIV-1 Envelope Glycoproteins from Diverse Clades Differentiate Antibody Responses and Durability among Vaccinees. Journal of Virology, 2018, 92, .	3.4	46
180	Immune correlates of the Thai RV144 HIV vaccine regimen in South Africa. Science Translational Medicine, 2019, 11, .	12.4	46

#	Article	IF	CITATIONS
181	Lipid nanoparticle encapsulated nucleoside-modified mRNA vaccines elicit polyfunctional HIV-1 antibodies comparable to proteins in nonhuman primates. Npj Vaccines, 2021, 6, 50.	6.0	46
182	Structural Constraints of Vaccine-Induced Tier-2 Autologous HIV Neutralizing Antibodies Targeting the Receptor-Binding Site. Cell Reports, 2016, 14, 43-54.	6.4	45
183	Partial efficacy of a broadly neutralizing antibody against cell-associated SHIV infection. Science Translational Medicine, 2017, 9, .	12.4	45
184	HIV-1-Specific IgA Monoclonal Antibodies from an HIV-1 Vaccinee Mediate Galactosylceramide Blocking and Phagocytosis. Journal of Virology, 2018, 92, .	3.4	45
185	Dose–response curve slope helps predict therapeutic potency and breadth of HIV broadly neutralizing antibodies. Nature Communications, 2015, 6, 8443.	12.8	44
186	Diversity of Antiviral IgG Effector Activities Observed in HIV-Infected and Vaccinated Subjects. Journal of Immunology, 2016, 197, 4603-4612.	0.8	44
187	Calibration of two validated SARS-CoV-2 pseudovirus neutralization assays for COVID-19 vaccine evaluation. Scientific Reports, 2021, 11, 23921.	3.3	44
188	Safety and immunogenicity of a multivalent HIV vaccine comprising envelope protein with either DNA or NYVAC vectors (HVTN 096): a phase 1b, double-blind, placebo-controlled trial. Lancet HIV,the, 2019, 6, e737-e749.	4.7	43
189	Co-immunization of DNA and Protein in the Same Anatomical Sites Induces Superior Protective Immune Responses against SHIV Challenge. Cell Reports, 2020, 31, 107624.	6.4	43
190	Viremia Control Despite Escape from a Rapid and Potent Autologous Neutralizing Antibody Response After Therapy Cessation in an HIV-1-Infected Individual. Journal of Immunology, 2003, 170, 3906-3914.	0.8	42
191	DNA and Protein Co-Immunization Improves the Magnitude and Longevity of Humoral Immune Responses in Macaques. PLoS ONE, 2014, 9, e91550.	2.5	42
192	Vaccine-Induced Linear Epitope-Specific Antibodies to Simian Immunodeficiency Virus SIVmac239 Envelope Are Distinct from Those Induced to the Human Immunodeficiency Virus Type 1 Envelope in Nonhuman Primates. Journal of Virology, 2015, 89, 8643-8650.	3.4	42
193	Immunization with an SIV-based IDLV Expressing HIV-1 Env 1086 Clade C Elicits Durable Humoral and Cellular Responses in Rhesus Macaques. Molecular Therapy, 2016, 24, 2021-2032.	8.2	41
194	Comparison of Immunogenicity in Rhesus Macaques of Transmitted-Founder, HIV-1 Group M Consensus, and Trivalent Mosaic Envelope Vaccines Formulated as a DNA Prime, NYVAC, and Envelope Protein Boost. Journal of Virology, 2015, 89, 6462-6480.	3.4	40
195	Stabilization of the gp120 V3 loop through hydrophobic interactions reduces the immunodominant V3-directed non-neutralizing response to HIV-1 envelope trimers. Journal of Biological Chemistry, 2018, 293, 1688-1701.	3.4	40
196	Optimization and validation of a neutralizing antibody assay for HIV-1 in A3R5 cells. Journal of Immunological Methods, 2014, 409, 147-160.	1.4	39
197	Neutralizing Activity of Broadly Neutralizing Anti-HIV-1 Antibodies against Clade B Clinical Isolates Produced in Peripheral Blood Mononuclear Cells. Journal of Virology, 2018, 92, .	3.4	39
198	Control of Heterologous Simian Immunodeficiency Virus SIV _{smE660} Infection by DNA and Protein Coimmunization Regimens Combined with Different Toll-Like-Receptor-4-Based Adjuvants in Macaques. Journal of Virology, 2018, 92, .	3.4	39

#	Article	IF	CITATIONS
199	Mucosal Immunization of Lactating Female Rhesus Monkeys with a Transmitted/Founder HIV-1 Envelope Induces Strong Env-Specific IgA Antibody Responses in Breast Milk. Journal of Virology, 2013, 87, 6986-6999.	3.4	38
200	Synthetic Three-Component HIV-1 V3 Glycopeptide Immunogens Induce Glycan-Dependent Antibody Responses. Cell Chemical Biology, 2017, 24, 1513-1522.e4.	5.2	38
201	Boosting of HIV envelope CD4 binding site antibodies with long variable heavy third complementarity determining region in the randomized double blind RV305 HIV-1 vaccine trial. PLoS Pathogens, 2017, 13, e1006182.	4.7	38
202	COVA1-18 neutralizing antibody protects against SARS-CoV-2 in three preclinical models. Nature Communications, 2021, 12, 6097.	12.8	38
203	Simultaneous Evaluation of the Magnitude and Breadth of a Left- and Right-Censored Multivariate Response, With Application to HIV Vaccine Development. Statistics in Biopharmaceutical Research, 2009, 1, 81-91.	0.8	37
204	Comparative Immunogenicity of HIV-1 gp140 Vaccine Delivered by Parenteral, and Mucosal Routes in Female Volunteers; MUCOVAC2, A Randomized Two Centre Study. PLoS ONE, 2016, 11, e0152038.	2.5	37
205	Bridging Vaccine-Induced HIV-1 Neutralizing and Effector Antibody Responses in Rabbit and Rhesus Macaque Animal Models. Journal of Virology, 2019, 93, .	3.4	37
206	HIV-1 envelope glycan modifications that permit neutralization by germline-reverted VRC01-class broadly neutralizing antibodies. PLoS Pathogens, 2018, 14, e1007431.	4.7	36
207	Inhibitory Effect of Individual or Combinations of Broadly Neutralizing Antibodies and Antiviral Reagents against Cell-Free and Cell-to-Cell HIV-1 Transmission. Journal of Virology, 2015, 89, 7813-7828.	3.4	35
208	Head-to-Head Comparison of Poxvirus NYVAC and ALVAC Vectors Expressing Identical HIV-1 Clade C Immunogens in Prime-Boost Combination with Env Protein in Nonhuman Primates. Journal of Virology, 2015, 89, 8525-8539.	3.4	35
209	Difficult-to-neutralize global HIV-1 isolates are neutralized by antibodies targeting open envelope conformations. Nature Communications, 2019, 10, 2898.	12.8	35
210	Polyclonal antibody responses to HIV Env immunogens resolved using cryoEM. Nature Communications, 2021, 12, 4817.	12.8	35
211	Partial Protection of Simian Immunodeficiency Virus (SIV)-Infected Rhesus Monkeys against Superinfection with a Heterologous SIV Isolate. Journal of Virology, 2009, 83, 2686-2696.	3.4	34
212	Preexisting Vaccinia Virus Immunity Decreases SIV-Specific Cellular Immunity but Does Not Diminish Humoral Immunity and Efficacy of a DNA/MVA Vaccine. Journal of Immunology, 2010, 185, 7262-7273.	0.8	34
213	Antibody to the gp120 V1/V2 Loops and CD4+ and CD8+ T Cell Responses in Protection from SIVmac251 Vaginal Acquisition and Persistent Viremia. Journal of Immunology, 2014, 193, 6172-6183.	0.8	34
214	Multiple factors affect immunogenicity of DNA plasmid HIV vaccines in human clinical trials. Vaccine, 2015, 33, 2347-2353.	3.8	34
215	Boosting of ALVAC-SIV Vaccine-Primed Macaques with the CD4-SIVgp120 Fusion Protein Elicits Antibodies to V2 Associated with a Decreased Risk of SIVmac251 Acquisition. Journal of Immunology, 2016, 197, 2726-2737.	0.8	34
216	Virus-Like Particles Displaying Trimeric Simian Immunodeficiency Virus (SIV) Envelope gp160 Enhance the Breadth of DNA/Modified Vaccinia Virus Ankara SIV Vaccine-Induced Antibody Responses in Rhesus Macaques. Journal of Virology, 2016, 90, 8842-8854.	3.4	34

#	Article	IF	CITATIONS
217	Amino Acid Changes in the HIV-1 gp41 Membrane Proximal Region Control Virus Neutralization Sensitivity. EBioMedicine, 2016, 12, 196-207.	6.1	34
218	Multivalent Antigen Presentation Enhances the Immunogenicity of a Synthetic Three-Component HIV-1 V3 Glycopeptide Vaccine. ACS Central Science, 2018, 4, 582-589.	11.3	34
219	SARS-CoV-2 vaccines elicit durable immune responses in infant rhesus macaques. Science Immunology, 2021, 6, .	11.9	34
220	International Technology Transfer of a GCLP-Compliant HIV-1 Neutralizing Antibody Assay for Human Clinical Trials. PLoS ONE, 2012, 7, e30963.	2.5	34
221	Passive immunization against oral AIDS virus transmission: An approach to prevent mother-to-infant HIV-1 transmission?. Journal of Medical Primatology, 2001, 30, 190-196.	0.6	33
222	Oligomannose Glycopeptide Conjugates Elicit Antibodies Targeting the Glycan Core Rather than Its Extremities. ACS Central Science, 2019, 5, 237-249.	11.3	33
223	Immunofocusing and enhancing autologous Tier-2 HIV-1 neutralization by displaying Env trimers on two-component protein nanoparticles. Npj Vaccines, 2021, 6, 24.	6.0	33
224	Generation and Characterization of a Bivalent HIV-1 Subtype C gp120 Protein Boost for Proof-of-Concept HIV Vaccine Efficacy Trials in Southern Africa. PLoS ONE, 2016, 11, e0157391.	2.5	33
225	Co-Immunization with Multimeric Scaffolds and DNA Rapidly Induces Potent Autologous HIV-1 Neutralizing Antibodies and CD8+ T Cells. PLoS ONE, 2012, 7, e31464.	2.5	32
226	A Fusion Intermediate gp41 Immunogen Elicits Neutralizing Antibodies to HIV-1. Journal of Biological Chemistry, 2014, 289, 29912-29926.	3.4	32
227	CD40L-Adjuvanted DNA/Modified Vaccinia Virus Ankara Simian Immunodeficiency Virus (SIV) Vaccine Enhances Protection against Neutralization-Resistant Mucosal SIV Infection. Journal of Virology, 2015, 89, 4690-4695.	3.4	31
228	Lipid-based vaccine nanoparticles for induction of humoral immune responses against HIV-1 and SARS-CoV-2. Journal of Controlled Release, 2021, 330, 529-539.	9.9	31
229	A Trimeric HIV-1 Envelope gp120 Immunogen Induces Potent and Broad Anti-V1V2 Loop Antibodies against HIV-1 in Rabbits and Rhesus Macaques. Journal of Virology, 2018, 92, .	3.4	30
230	In vivo delivery of synthetic DNA–encoded antibodies induces broad HIV-1–neutralizing activity. Journal of Clinical Investigation, 2020, 130, 827-837.	8.2	30
231	Immunogenicity in Macaques of the Clinical Product for a Clade B DNA/MVA HIV Vaccine: Elicitation of IFN-γ, IL-2, and TNF-α Coproducing CD4 and CD8 T Cells. AIDS Research and Human Retroviruses, 2007, 23, 1555-1562.	1.1	29
232	Superiority in Rhesus Macaques of Targeting HIV-1 Env gp140 to CD40 versus LOX-1 in Combination with Replication-Competent NYVAC-KC for Induction of Env-Specific Antibody and T Cell Responses. Journal of Virology, 2017, 91, .	3.4	29
233	Increased surface expression of HIV-1 envelope is associated with improved antibody response in vaccinia prime/protein boost immunization. Virology, 2018, 514, 106-117.	2.4	29
234	Neutralizing Antibody Induction by HIV-1 Envelope Glycoprotein SOSIP Trimers on Iron Oxide Nanoparticles May Be Impaired by Mannose Binding Lectin. Journal of Virology, 2020, 94, .	3.4	29

#	Article	IF	CITATIONS
235	Pharmacokinetics and Immunogenicity of Broadly Neutralizing HIV Monoclonal Antibodies in Macaques. PLoS ONE, 2015, 10, e0120451.	2.5	29
236	Immunogenicity of a novel Clade B HIV-1 vaccine combination: Results of phase 1 randomized placebo controlled trial of an HIV-1 GM-CSF-expressing DNA prime with a modified vaccinia Ankara vaccine boost in healthy HIV-1 uninfected adults. PLoS ONE, 2017, 12, e0179597.	2.5	29
237	Design of an Escherichia coli Expressed HIV-1 gp120 Fragment Immunogen That Binds to b12 and Induces Broad and Potent Neutralizing Antibodies. Journal of Biological Chemistry, 2013, 288, 9815-9825.	3.4	28
238	A single gp120 residue can affect HIV-1 tropism in macaques. PLoS Pathogens, 2017, 13, e1006572.	4.7	28
239	Structural and immunologic correlates of chemically stabilized HIV-1 envelope glycoproteins. PLoS Pathogens, 2018, 14, e1006986.	4.7	28
240	Maternal Binding and Neutralizing IgG Responses Targeting the C-Terminal Region of the V3 Loop Are Predictive of Reduced Peripartum HIV-1 Transmission Risk. Journal of Virology, 2017, 91, .	3.4	27
241	Safety and immune responses after a 12-month booster in healthy HIV-uninfected adults in HVTN 100 in South Africa: AÂrandomized double-blind placebo-controlled trial of ALVAC-HIV (vCP2438) and bivalent subtype C gp120/MF59 vaccines. PLoS Medicine, 2020, 17, e1003038.	8.4	27
242	Immune checkpoint modulation enhances HIV-1 antibody induction. Nature Communications, 2020, 11, 948.	12.8	27
243	DNA priming and gp120 boosting induces HIV-specific antibodies in a randomized clinical trial. Journal of Clinical Investigation, 2019, 129, 4769-4785.	8.2	27
244	Comparison of intradermal and intramuscular delivery followed by in vivo electroporation of SIV Env DNA in macaques. Human Vaccines and Immunotherapeutics, 2013, 9, 2081-2094.	3.3	26
245	Aggregate complexes of HIV-1 induced by multimeric antibodies. Retrovirology, 2014, 11, 78.	2.0	26
246	HIV/AIDS Vaccine Candidates Based on Replication-Competent Recombinant Poxvirus NYVAC-C-KC Expressing Trimeric gp140 and Gag-Derived Virus-Like Particles or Lacking the Viral Molecule B19 That Inhibits Type I Interferon Activate Relevant HIV-1-Specific B and T Cell Immune Functions in Nonhuman Primates, Journal of Virology, 2017, 91, .	3.4	26
247	IDLV-HIV-1 Env vaccination in non-human primates induces affinity maturation of antigen-specific memory B cells. Communications Biology, 2018, 1, 134.	4.4	26
248	Overcoming Steric Restrictions of VRC01 HIV-1 Neutralizing Antibodies through Immunization. Cell Reports, 2019, 29, 3060-3072.e7.	6.4	26
249	Envelope Glycoprotein Binding to the Integrin α ₄ β ₇ Is Not a General Property of Most HIV-1 Strains. Journal of Virology, 2014, 88, 10767-10777.	3.4	25
250	Prediction of VRC01 neutralization sensitivity by HIV-1 gp160 sequence features. PLoS Computational Biology, 2019, 15, e1006952.	3.2	25
251	Priming with a Potent HIV-1 DNA Vaccine Frames the Quality of Immune Responses prior to a Poxvirus and Protein Boost. Journal of Virology, 2019, 93, .	3.4	25
252	Robust antibody and cellular responses induced by DNA-only vaccination for HIV. JCI Insight, 2020, 5, .	5.0	25

#	Article	IF	CITATIONS
253	Epitopes Immediately below the Base of the V3 Loop of gp120 as Targets for the Initial Autologous Neutralizing Antibody Response in Two HIV-1 Subtype B-Infected Individuals. Journal of Virology, 2011, 85, 9286-9299.	3.4	24
254	Subtype C gp140 Vaccine Boosts Immune Responses Primed by the South African AIDS Vaccine Initiative DNA-C2 and MVA-C HIV Vaccines after More than a 2-Year Gap. Vaccine Journal, 2016, 23, 496-506.	3.1	24
255	Combination Adenovirus and Protein Vaccines Prevent Infection or Reduce Viral Burden after Heterologous Clade C Simian-Human Immunodeficiency Virus Mucosal Challenge. Journal of Virology, 2018, 92, .	3.4	24
256	Combined HIV-1 Envelope Systemic and Mucosal Immunization of Lactating Rhesus Monkeys Induces a Robust Immunoglobulin A Isotype B Cell Response in Breast Milk. Journal of Virology, 2016, 90, 4951-4965.	3.4	23
257	HIV-1 gp120 and Modified Vaccinia Virus Ankara (MVA) gp140 Boost Immunogens Increase Immunogenicity of a DNA/MVA HIV-1 Vaccine. Journal of Virology, 2017, 91, .	3.4	23
258	Panels of HIV-1 Subtype C Env Reference Strains for Standardized Neutralization Assessments. Journal of Virology, 2017, 91, .	3.4	23
259	mRNA-encoded HIV-1 Env trimer ferritin nanoparticles induce monoclonal antibodies that neutralize heterologous HIV-1 isolates in mice. Cell Reports, 2022, 38, 110514.	6.4	23
260	Potential To Streamline Heterologous DNA Prime and NYVAC/Protein Boost HIV Vaccine Regimens in Rhesus Macaques by Employing Improved Antigens. Journal of Virology, 2016, 90, 4133-4149.	3.4	22
261	Stable Latent HIV Infection and Low-level Viremia Despite Treatment With the Broadly Neutralizing Antibody VRC07-523LS and the Latency Reversal Agent Vorinostat. Journal of Infectious Diseases, 2022, 225, 856-861.	4.0	22
262	Improved killing of HIV-infected cells using three neutralizing and non-neutralizing antibodies. Journal of Clinical Investigation, 2020, 130, 5157-5170.	8.2	22
263	Derivation and Characterization of a Simian Immunodeficiency Virus SIVmac239 Variant with Tropism for CXCR4. Journal of Virology, 2009, 83, 9911-9922.	3.4	21
264	Profiles of neutralizing antibody response in chronically human immunodeficiency virus type 1 clade B′-infected former plasma donors from China naÃīve to antiretroviral therapy. Journal of General Virology, 2012, 93, 2267-2278.	2.9	21
265	HIV-1 CD4-induced (CD4i) gp120 epitope vaccines promote B and T-cell responses that contribute to reduced viral loads in rhesus macaques. Virology, 2014, 471-473, 81-92.	2.4	21
266	Synthetic HIV V3 Glycopeptide Immunogen Carrying a N334 <i>N</i> -Glycan Induces Glycan-Dependent Antibodies with Promiscuous Site Recognition. Journal of Medicinal Chemistry, 2018, 61, 10116-10125.	6.4	21
267	Neonatal Rhesus Macaques Have Distinct Immune Cell Transcriptional Profiles following HIV Envelope Immunization. Cell Reports, 2020, 30, 1553-1569.e6.	6.4	21
268	Neutralizing and other antiviral antibodies in HIV-1 infection and vaccination. Current Opinion in HIV and AIDS, 2007, 2, 169-176.	3.8	20
269	Humoral immunity induced by mucosal and/or systemic SIV-specific vaccine platforms suggests novel combinatorial approaches for enhancing responses. Clinical Immunology, 2014, 153, 308-322.	3.2	20
270	Long antibody HCDR3s from HIV-naÃ ⁻ ve donors presented on a PG9 neutralizing antibody background mediate HIV neutralization. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4446-4451.	7.1	20

#	Article	IF	CITATIONS
271	HIV DNA-Adenovirus Multiclade Envelope Vaccine Induces gp41 Antibody Immunodominance in Rhesus Macaques. Journal of Virology, 2017, 91, .	3.4	20
272	Antibody-Dependent Cellular Cytotoxicity (ADCC)-Mediating Antibodies Constrain Neutralizing Antibody Escape Pathway. Frontiers in Immunology, 2019, 10, 2875.	4.8	20
273	Targeting HIV-1 Env gp140 to LOX-1 Elicits Immune Responses in Rhesus Macaques. PLoS ONE, 2016, 11, e0153484.	2.5	20
274	Neutralizing antibody responses over time in demographically and clinically diverse individuals recovered from SARS-CoV-2 infection in the United States and Peru: A cohort study. PLoS Medicine, 2021, 18, e1003868.	8.4	20
275	Immunization against SIVmne in macaques using multigenic DNA vaccines. Journal of Medical Primatology, 1999, 28, 206-213.	0.6	19
276	Eliciting neutralizing antibodies with gp120 outer domain constructs based on M-group consensus sequence. Virology, 2014, 462-463, 363-376.	2.4	19
277	Elite Control, Gut CD4 T Cell Sparing, and Enhanced Mucosal T Cell Responses in Macaca nemestrina Infected by a Simian Immunodeficiency Virus Lacking a gp41 Trafficking Motif. Journal of Virology, 2015, 89, 10156-10175.	3.4	19
278	Toll-like receptor 3 adjuvant in combination with virus-like particles elicit a humoral response against HIV. Vaccine, 2016, 34, 5886-5894.	3.8	19
279	ALVAC-HIV B/C candidate HIV vaccine efficacy dependent on neutralization profile of challenge virus and adjuvant dose and type. PLoS Pathogens, 2019, 15, e1008121.	4.7	19
280	Boosting with AIDSVAX B/E Enhances Env Constant Region 1 and 2 Antibody-Dependent Cellular Cytotoxicity Breadth and Potency. Journal of Virology, 2020, 94, .	3.4	19
281	Neutralizing antibody responses in Africa green monkeys naturally infected with simian immunodeficiency virus (SIVagm). Journal of Medical Primatology, 1999, 28, 97-104.	0.6	18
282	HIV-1 Consensus Envelope-Induced Broadly Binding Antibodies. AIDS Research and Human Retroviruses, 2017, 33, 859-868.	1.1	18
283	Structure-based Design of Cyclically Permuted HIV-1 gp120 Trimers That Elicit Neutralizing Antibodies. Journal of Biological Chemistry, 2017, 292, 278-291.	3.4	18
284	Antibody responses induced by SHIV infection are more focused than those induced by soluble native HIV-1 envelope trimers in non-human primates. PLoS Pathogens, 2021, 17, e1009736.	4.7	18
285	HIV vaccine delayed boosting increases Env variable region 2–specific antibody effector functions. JCI Insight, 2020, 5, .	5.0	18
286	Antibody Fabâ€Fc properties outperform titer in predictive models of <scp>SIV</scp> vaccineâ€induced protection. Molecular Systems Biology, 2019, 15, e8747.	7.2	17
287	High Doses of GM-CSF Inhibit Antibody Responses in Rectal Secretions and Diminish Modified Vaccinia Ankara/Simian Immunodeficiency Virus Vaccine Protection in TRIM5α-Restrictive Macaques. Journal of Immunology, 2016, 197, 3586-3596.	0.8	16
288	A single, continuous metric to define tiered serum neutralization potency against HIV. ELife, 2018, 7, .	6.0	16

#	Article	IF	CITATIONS
289	The high-affinity immunoglobulin receptor FcÎ ³ RI potentiates HIV-1 neutralization via antibodies against the gp41 N-heptad repeat. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	16
290	Anti-V2 antibodies virus vulnerability revealed by envelope V1 deletion in HIV vaccine candidates. IScience, 2021, 24, 102047.	4.1	16
291	Sequential Immunization with gp140 Boosts Immune Responses Primed by Modified Vaccinia Ankara or DNA in HIV-Uninfected South African Participants. PLoS ONE, 2016, 11, e0161753.	2.5	16
292	HIV-1-neutralizing antibody induced by simian adenovirus- and poxvirus MVA-vectored BG505 native-like envelope trimers. PLoS ONE, 2017, 12, e0181886.	2.5	16
293	Broadly neutralizing monoclonal antibodies for HIV prevention. Journal of the International AIDS Society, 2021, 24, e25829.	3.0	16
294	Complement-Activating Antibodies in Sera from Infected Individuals and Vaccinated Volunteers That Target Human Immunodeficiency Virus Type 1 to Complement Receptor Type 1 (CR1, CD35). Virology, 1996, 226, 13-21.	2.4	15
295	Strong, but Age-Dependent, Protection Elicited by a Deoxyribonucleic Acid/Modified Vaccinia Ankara Simian Immunodeficiency Virus Vaccine. Open Forum Infectious Diseases, 2016, 3, ofw034.	0.9	15
296	Bispecific Antibodies Against HIV. Cell, 2016, 165, 1563-1564.	28.9	15
297	Polyclonal HIV envelope-specific breast milk antibodies limit founder SHIV acquisition and cell-associated virus loads in infant rhesus monkeys. Mucosal Immunology, 2018, 11, 1716-1726.	6.0	15
298	An Enhanced Synthetic Multiclade DNA Prime Induces Improved Cross-Clade-Reactive Functional Antibodies when Combined with an Adjuvanted Protein Boost in Nonhuman Primates. Journal of Virology, 2015, 89, 9154-9166.	3.4	14
299	Pathogenic Correlates of Simian Immunodeficiency Virus-Associated B Cell Dysfunction. Journal of Virology, 2017, 91, .	3.4	14
300	Generation and characterization of a bivalent protein boost for future clinical trials: HIV-1 subtypes CR01_AE and B gp120 antigens with a potent adjuvant. PLoS ONE, 2018, 13, e0194266.	2.5	14
301	Engagement of monocytes, NK cells, and CD4+ Th1 cells by ALVAC-SIV vaccination results in a decreased risk of SIVmac251 vaginal acquisition. PLoS Pathogens, 2020, 16, e1008377.	4.7	14
302	Induction of Heterologous Tier 2 HIV-1-Neutralizing and Cross-Reactive V1/V2-Specific Antibodies in Rabbits by Prime-Boost Immunization. Journal of Virology, 2016, 90, 8644-8660.	3.4	13
303	Isolation and Structure of an Antibody that Fully Neutralizes Isolate SIVmac239 Reveals Functional Similarity of SIV and HIV Glycan Shields. Immunity, 2019, 51, 724-734.e4.	14.3	13
304	Induction of Tier 1 HIV Neutralizing Antibodies by Envelope Trimers Incorporated into a Replication Competent Vesicular Stomatitis Virus Vector. Viruses, 2019, 11, 159.	3.3	13
305	Replication-Competent NYVAC-KC Yields Improved Immunogenicity to HIV-1 Antigens in Rhesus Macaques Compared to Nonreplicating NYVAC. Journal of Virology, 2019, 93, .	3.4	13
306	An Engineered Biomimetic MPER Peptide Vaccine Induces Weakly HIV Neutralizing Antibodies in Mice. Annals of Biomedical Engineering, 2020, 48, 1991-2001.	2.5	13

#	Article	IF	CITATIONS
307	Implementation of a three-tiered approach to identify and characterize anti-drug antibodies raised against HIV-specific broadly neutralizing antibodies. Journal of Immunological Methods, 2020, 479, 112764.	1.4	13
308	Effective Prophylaxis of COVID-19 in Rhesus Macaques Using a Combination of Two Parenterally-Administered SARS-CoV-2 Neutralizing Antibodies. Frontiers in Cellular and Infection Microbiology, 2021, 11, 753444.	3.9	13
309	The Glycan Hole Area of HIV-1 Envelope Trimers Contributes Prominently to the Induction of Autologous Neutralization. Journal of Virology, 2022, 96, JVI0155221.	3.4	13
310	High thermostability improves neutralizing antibody responses induced by native-like HIV-1 envelope trimers. Npj Vaccines, 2022, 7, 27.	6.0	13
311	Evaluation of CD8+ T-cell and antibody responses following transient increased viraemia in rhesus macaques infected with live, attenuated simian immunodeficiency virus. Journal of General Virology, 2005, 86, 3375-3384.	2.9	12
312	Antibody to HSV gD peptide induced by vaccination does not protect against HSV-2 infection in HSV-2 seronegative women. PLoS ONE, 2017, 12, e0176428.	2.5	12
313	Antibody Responses Elicited by Immunization with BG505 Trimer Immune Complexes. Journal of Virology, 2019, 93, .	3.4	12
314	Introduction of the YTE mutation into the non-immunogenic HIV bnAb PGT121 induces anti-drug antibodies in macaques. PLoS ONE, 2019, 14, e0212649.	2.5	12
315	Human Immunodeficiency Virus C.1086 Envelope gp140 Protein Boosts following DNA/Modified Vaccinia Virus Ankara Vaccination Fail To Enhance Heterologous Anti-V1V2 Antibody Response and Protection against Clade C Simian-Human Immunodeficiency Virus Challenge. Journal of Virology, 2019. 93	3.4	12
316	Antigenicity and Immunogenicity of a Trimeric Envelope Protein from an Indian Clade C HIV-1 Isolate. Journal of Biological Chemistry, 2015, 290, 9195-9208.	3.4	11
317	Effect of HIV-1 envelope cytoplasmic tail on adenovirus primed virus encoded virus-like particle immunizations. Vaccine, 2016, 34, 5344-5351.	3.8	11
318	Breadth and magnitude of antigen-specific antibody responses in the control of plasma viremia in simian immunodeficiency virus infected macaques. Virology Journal, 2016, 13, 200.	3.4	11
319	Bacterially expressed HIV-1 gp120 outer-domain fragment immunogens with improved stability and affinity for CD4-binding site neutralizing antibodies. Journal of Biological Chemistry, 2018, 293, 15002-15020.	3.4	11
320	Neutralizing Antibody Responses Induced by HIV-1 Envelope Glycoprotein SOSIP Trimers Derived from Elite Neutralizers. Journal of Virology, 2020, 94, .	3.4	11
321	Optimal priming of poxvirus vector (NYVAC)-based HIV vaccine regimens for T cell responses requires three DNA injections. Results of the randomized multicentre EV03/ANRS VAC20 Phase I/II Trial. PLoS Pathogens, 2020, 16, e1008522.	4.7	11
322	Comparison of Neutralizing Antibody Responses Elicited from Highly Diverse Polyvalent Heterotrimeric HIV-1 gp140 Cocktail Immunogens versus a Monovalent Counterpart in Rhesus Macaques. PLoS ONE, 2014, 9, e114709.	2.5	11
323	Protection against SHIV Challenge by Subcutaneous Administration of the Plant-Derived PGT121 Broadly Neutralizing Antibody in Macaques. PLoS ONE, 2016, 11, e0152760.	2.5	11
324	The pigtail macaque (Macaca nemestrina) model of COVID-19 reproduces diverse clinical outcomes and reveals new and complex signatures of disease. PLoS Pathogens, 2021, 17, e1010162.	4.7	11

#	Article	IF	CITATIONS
325	Immunogenicity of NYVAC Prime-Protein Boost Human Immunodeficiency Virus Type 1 Envelope Vaccination and Simian-Human Immunodeficiency Virus Challenge of Nonhuman Primates. Journal of Virology, 2018, 92, .	3.4	10
326	Tissue memory B cell repertoire analysis after ALVAC/AIDSVAX B/E gp120 immunization of rhesus macaques. JCI Insight, 2016, 1, e88522.	5.0	10
327	Derivation and Characterization of a CD4-Independent, Non-CD4-Tropic Simian Immunodeficiency Virus. Journal of Virology, 2016, 90, 4966-4980.	3.4	9
328	Predictors of durable immune responses six months after the last vaccination in preventive HIV vaccine trials. Vaccine, 2017, 35, 1184-1193.	3.8	9
329	Optimized Mucosal Modified Vaccinia Virus Ankara Prime/Soluble gp120 Boost HIV Vaccination Regimen Induces Antibody Responses Similar to Those of an Intramuscular Regimen. Journal of Virology, 2019, 93, .	3.4	9
330	Optimization and qualification of a functional anti-drug antibody assay for HIV-1 bnAbs. Journal of Immunological Methods, 2020, 479, 112736.	1.4	9
331	The Impact of Sustained Immunization Regimens on the Antibody Response to Oligomannose Glycans. ACS Chemical Biology, 2020, 15, 789-798.	3.4	9
332	SnapShot: SARS-CoV-2 antibodies. Cell Host and Microbe, 2021, 29, 1162-1162.e1.	11.0	9
333	Characterization of a Large Panel of Rabbit Monoclonal Antibodies against HIV-1 gp120 and Isolation of Novel Neutralizing Antibodies against the V3 Loop. PLoS ONE, 2015, 10, e0128823.	2.5	9
334	Viral vectored granulocyte-macrophage colony stimulating factor inhibits vaccine protection in an SIV challenge model: Protection correlates with neutralizing antibody. Vaccine, 2012, 30, 4233-4239.	3.8	8
335	A Bivalent, Chimeric Rabies Virus Expressing Simian Immunodeficiency Virus Envelope Induces Multifunctional Antibody Responses. AIDS Research and Human Retroviruses, 2015, 31, 1126-1138.	1.1	8
336	An HIV Envelope gp120-Fc Fusion Protein Elicits Effector Antibody Responses in Rhesus Macaques. Vaccine Journal, 2017, 24, .	3.1	8
337	Increased, Durable B-Cell and ADCC Responses Associated with T-Helper Cell Responses to HIV-1 Envelope in Macaques Vaccinated with gp140 Occluded at the CD4 Receptor Binding Site. Journal of Virology, 2017, 91, .	3.4	8
338	Characterization of the Transmitted Virus in an Ongoing HIV-1 Epidemic Driven by Injecting Drug Use. AIDS Research and Human Retroviruses, 2018, 34, 867-878.	1.1	8
339	A Single Substitution in gp41 Modulates the Neutralization Profile of SHIV during InÂVivo Adaptation. Cell Reports, 2019, 27, 2593-2607.e5.	6.4	8
340	Expression of CD40L by the ALVAC-Simian Immunodeficiency Virus Vector Abrogates T Cell Responses in Macaques. Journal of Virology, 2020, 94, .	3.4	8
341	Virus Control in Vaccinated Rhesus Macaques Is Associated with Neutralizing and Capturing Antibodies against the SHIV Challenge Virus but Not with V1V2 Vaccine–Induced Anti-V2 Antibodies Alone. Journal of Immunology, 2021, 206, 1266-1283.	0.8	8
342	A Derivative of the D5 Monoclonal Antibody That Targets the gp41 N-Heptad Repeat of HIV-1 with Broad Tier-2-Neutralizing Activity. Journal of Virology, 2021, 95, e0235020.	3.4	8

#	Article	IF	CITATIONS
343	Antibody and cellular responses to HIV vaccine regimens with DNA plasmid as compared with ALVAC priming: An analysis of two randomized controlled trials. PLoS Medicine, 2020, 17, e1003117.	8.4	8
344	Humoral Immunogenicity of the mRNA-1273 Vaccine in the Phase 3 Coronavirus Efficacy (COVE) Trial. Journal of Infectious Diseases, 2022, 226, 1731-1742.	4.0	8
345	Transmitted/Founder Simian Immunodeficiency Virus Envelope Sequences in Vesicular Stomatitis and Semliki Forest Virus Vector Immunized Rhesus Macaques. PLoS ONE, 2014, 9, e109678.	2.5	7
346	DNA-MVA-protein vaccination of rhesus macaques induces HIV-specific immunity in mucosal-associated lymph nodes and functional antibodies. Vaccine, 2017, 35, 929-937.	3.8	7
347	Screening of primary gp120 immunogens to formulate the next generation polyvalent DNA prime-protein boost HIV-1 vaccines. Human Vaccines and Immunotherapeutics, 2017, 13, 2996-3009.	3.3	7
348	Short Communication: Potential Risk of Replication-Competent Virus in HIV-1 Env-Pseudotyped Virus Preparations. AIDS Research and Human Retroviruses, 2017, 33, 368-372.	1.1	7
349	Rapid Boosting of HIV-1 Neutralizing Antibody Responses in Humans Following a Prolonged Immunologic Rest Period. Journal of Infectious Diseases, 2019, 219, 1755-1765.	4.0	7
350	A Prime/Boost Vaccine Regimen Alters the Rectal Microbiome and Impacts Immune Responses and Viremia Control Post-Simian Immunodeficiency Virus Infection in Male and Female Rhesus Macaques. Journal of Virology, 2020, 94, .	3.4	7
351	CTLA-4 Blockade, during HIV Virus-Like Particles Immunization, Alters HIV-Specific B-Cell Responses. Vaccines, 2020, 8, 284.	4.4	7
352	Diverse antiviral IgG effector activities are predicted by unique biophysical antibody features. Retrovirology, 2021, 18, 35.	2.0	7
353	Selection of HIV Envelope strains for standardized assessments of vaccine-elicited antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies. Journal of Virology, 2021, , JVI0164321.	3.4	7
354	Importance of neutralization sieve analyses when seeking correlates of HIV-1 vaccine efficacy. Human Vaccines and Immunotherapeutics, 2014, 10, 2507-2511.	3.3	6
355	Profiling the neutralizing antibody response in chronically HIV-1 CRF07_BC-infected intravenous drug users naÃ ⁻ ve to antiretroviral therapy. Scientific Reports, 2017, 7, 46308.	3.3	6
356	Design, display and immunogenicity of HIV1 gp120 fragment immunogens on virus-like particles. Vaccine, 2018, 36, 6345-6353.	3.8	6
357	Prediction of serum HIV-1 neutralization titers of VRC01 in HIV-uninfected Antibody Mediated Prevention (AMP) trial participants. Human Vaccines and Immunotherapeutics, 2022, 18, 1-10.	3.3	6
358	ADCC-mediating non-neutralizing antibodies can exert immune pressure in early HIV-1 infection. PLoS Pathogens, 2021, 17, e1010046.	4.7	6
359	Structure-guided changes at the V2 apex of HIV-1 clade C trimer enhance elicitation of autologous neutralizing and broad V1V2-scaffold antibodies. Cell Reports, 2022, 38, 110436.	6.4	6
360	Neutralizing Antibody Activity to Severe Acute Respiratory Syndrome Coronavirus 2 Delta (B.1.617.2) and Omicron (B.1.1.529) After 1 or 2 Doses of BNT162b2 Vaccine in Infection-Naive and Previously Infected Individuals. Journal of Infectious Diseases, 2022, 226, 1407-1411.	4.0	6

#	Article	IF	CITATIONS
361	Immunization of Rabbits with Highly Purified, Soluble, Trimeric Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Induces a Vigorous B Cell Response and Broadly Cross-Reactive Neutralization. PLoS ONE, 2014, 9, e98060.	2.5	5
362	Engineering Recombinant Reoviruses To Display gp41 Membrane-Proximal External-Region Epitopes from HIV-1. MSphere, 2016, 1, .	2.9	5
363	Cross-Linking of a CD4-Mimetic Miniprotein with HIV-1 Env gp140 Alters Kinetics and Specificities of Antibody Responses against HIV-1 Env in Macaques. Journal of Virology, 2017, 91, .	3.4	5
364	Cooperation between somatic mutation and germline-encoded residues enables antibody recognition of HIV-1 envelope glycans. PLoS Pathogens, 2019, 15, e1008165.	4.7	5
365	Priming with DNA Expressing Trimeric HIV V1V2 Alters the Immune Hierarchy Favoring the Development of V2-Specific Antibodies in Rhesus Macaques. Journal of Virology, 2020, 95, .	3.4	5
366	Antigenicity and Immunogenicity of HIV-1 Envelope Trimers Complexed to a Small-Molecule Viral Entry Inhibitor. Journal of Virology, 2020, 94, .	3.4	5
367	Bispecific Anti-HIV Immunoadhesins That Bind Gp120 and Gp41 Have Broad and Potent HIV-Neutralizing Activity. Vaccines, 2021, 9, 774.	4.4	5
368	Frequent Development of Broadly Neutralizing Antibodies in Early Life in a Large Cohort of Children With Human Immunodeficiency Virus. Journal of Infectious Diseases, 2022, 225, 1731-1740.	4.0	5
369	Boosting of HIV-1 Neutralizing Antibody Responses by a Distally Related Retroviral Envelope Protein. Journal of Immunology, 2014, 192, 5802-5812.	0.8	4
370	Parallel Induction of CH505 B Cell Ontogeny-Guided Neutralizing Antibodies and tHIVconsvX Conserved Mosaic-Specific T Cells against HIV-1. Molecular Therapy - Methods and Clinical Development, 2019, 14, 148-160.	4.1	4
371	Cooperation Between Systemic and Mucosal Antibodies Induced by Virosomal Vaccines Targeting HIV-1 Env: Protection of Indian Rhesus Macaques Against Low-Dose Intravaginal SHIV Challenges. Frontiers in Immunology, 2022, 13, 788619.	4.8	4
372	Resistance to Neutralizing Antibody and Expanded Coreceptor Usage Are Associated with Human Immunodeficiency Virus Type 1 Isolates Derived from Chimpanzees with Pathogenic Infections. AIDS Research and Human Retroviruses, 2001, 17, 1705-1714.	1.1	3
373	Immunologic and Virologic Mechanisms for Partial Protection from Intravenous Challenge by an Integration-Defective SIV Vaccine. Viruses, 2017, 9, 135.	3.3	3
374	Novel Strategy To Adapt Simian-Human Immunodeficiency Virus E1 Carrying <i>env</i> from an RV144 Volunteer to Rhesus Macaques: Coreceptor Switch and Final Recovery of a Pathogenic Virus with Exclusive R5 Tropism. Journal of Virology, 2018, 92, .	3.4	3
375	Brief Report: Prediction of Serum HIV-1 Neutralization Titers After Passive Administration of VRC01. Journal of Acquired Immune Deficiency Syndromes (1999), 2020, 83, 434-439.	2.1	3
376	Effect of HIV Envelope Vaccination on the Subsequent Antibody Response to HIV Infection. MSphere, 2020, 5, .	2.9	3
377	Safety and immunogenicity of an HIV-1 gp120-CD4 chimeric subunit vaccine in a phase 1a randomized controlled trial. Vaccine, 2021, 39, 3879-3891.	3.8	3
378	Polyclonal Broadly Neutralizing Antibody Activity Characterized by CD4 Binding Site and V3-Glycan Antibodies in a Subset of HIV-1 Virus Controllers. Frontiers in Immunology, 2021, 12, 670561.	4.8	3

#	Article	IF	CITATIONS
379	Broad and ultra-potent cross-clade neutralization of HIV-1 by a vaccine-induced CD4 binding site bovine antibody. Cell Reports Medicine, 2022, 3, 100635.	6.5	3
380	Modulation of RAS Pathways as a Biomarker of Protection against HIV and as a Means to Improve Vaccine Efficacy. AIDS Research and Human Retroviruses, 2014, 30, A99-A99.	1.1	2
381	Soluble Envelope Glycoprotein Trimers from a CD4-Independent HIV-1 Elicit Antibody-Dependent Cellular Cytotoxicity-Mediating Antibodies in Guinea Pigs. Journal of Virology, 2015, 89, 10707-10711.	3.4	2
382	Structural and genetic convergence of HIV-1 neutralizing antibodies in vaccinated non-human primates. PLoS Pathogens, 2021, 17, e1009624.	4.7	2
383	SIV infection duration largely determines broadening of neutralizing antibody response in macaques. Journal of Clinical Investigation, 2020, 130, 5413-5424.	8.2	2
384	E4orf1 Suppresses E1B-Deleted Adenovirus Vaccine-Induced Immune Responses. Vaccines, 2022, 10, 295.	4.4	2
385	Persistent immunogenicity of integrase defective lentiviral vectors delivering membrane-tethered native-like HIV-1 envelope trimers. Npj Vaccines, 2022, 7, 44.	6.0	2
386	Vertical HIV-1 Transmission in the Setting of Maternal Broad and Potent Antibody Responses. Journal of Virology, 2022, 96, e0023122.	3.4	2
387	Induction of Antibodies with Long Variable Heavy Third Complementarity Determining Regions by Repetitive Boosting with AIDSVAX® B/E in RV144 Vaccinees. AIDS Research and Human Retroviruses, 2014, 30, A36-A36.	1.1	1
388	Exploration of broadly neutralizing antibody fragments produced in bacteria for the control of HIV. Human Vaccines and Immunotherapeutics, 2017, 13, 2726-2737.	3.3	1
389	Validation of an automated system for aliquoting of HIV-1 Env-pseudotyped virus stocks. PLoS ONE, 2018, 13, e0190669.	2.5	1
390	Adaptation of an R5 Simian-Human Immunodeficiency Virus Encoding an HIV Clade A Envelope with or without Ablation of Adaptive Host Immunity: Differential Selection of Viral Mutants. Journal of Virology, 2019, 93, .	3.4	1
391	The Immunological Impact of Adenovirus Early Genes on Vaccine-Induced Responses in Mice and Nonhuman Primates. Journal of Virology, 2021, 95, .	3.4	1
392	AIDSVAX protein boost improves breadth and magnitude of vaccine-induced HIV-1 envelope-specific responses after a 7-year rest period. Vaccine, 2021, 39, 4641-4650.	3.8	1
393	Enhanced immunity after Ad26.COV2.S vaccine breakthrough infection. Cell Reports Medicine, 2022, 3, 100579.	6.5	1
394	Characterization of a vaccine-elicited human antibody with sequence homology to VRC01-class antibodies that binds the C1C2 gp120 domain. Science Advances, 2022, 8, eabm3948.	10.3	1
395	HIV Vaccine Development at Duke University Medical Center. Immunologic Research, 2000, 22, 263-270.	2.9	0
396	DNA and Protein Co-immunization Improves the Magnitude, Longevity, and Mucosal Dissemination of Immune Responses. AIDS Research and Human Retroviruses, 2014, 30, A63-A64.	1.1	0

#	Article	IF	CITATIONS
397	Correction for Chakrabarti et al., Robust Neutralizing Antibodies Elicited by HIV-1 JRFL Envelope Glycoprotein Trimers in Nonhuman Primates. Journal of Virology, 2015, 89, 887-887.	3.4	0
398	Broadly Neutralizing Antibody Responses in a Subset of HIV-1-Infected Individuals in Chennai, India. Journal of the International Association of Providers of AIDS Care, 2017, 16, 201-208.	1.5	0
399	Immunization by exposure to live virus (SIVmne/HIV-2287) during antiretroviral drug prophylaxis may reduce risk of subsequent viral challenge. PLoS ONE, 2021, 16, e0240495.	2.5	0
400	Title is missing!. , 2020, 16, e1008665.		0
401	Title is missing!. , 2020, 16, e1008665.		0
402	Title is missing!. , 2020, 16, e1008665.		0
403	Title is missing!. , 2020, 16, e1008665.		0
404	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		0
405	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		0
406	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		0
407	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		Ο