Huijuan Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7590518/publications.pdf

Version: 2024-02-01

		6254	15732
361	21,780	80	125
papers	citations	h-index	g-index
362	362	362	19686
302	302	302	19000
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Highly Active and Stable Catalysts of Phytic Acid-Derivative Transition Metal Phosphides for Full Water Splitting. Journal of the American Chemical Society, 2016, 138, 14686-14693.	13.7	647
2	Preparation and evaluation of a novel Fe–Mn binary oxide adsorbent for effective arsenite removal. Water Research, 2007, 41, 1921-1928.	11.3	538
3	Two-dimensional layered MoS ₂ : rational design, properties and electrochemical applications. Energy and Environmental Science, 2016, 9, 1190-1209.	30.8	532
4	Earthâ€Rich Transition Metal Phosphide for Energy Conversion and Storage. Advanced Energy Materials, 2016, 6, 1600087.	19.5	437
5	Confining Free Radicals in Close Vicinity to Contaminants Enables Ultrafast Fentonâ€ike Processes in the Interspacing of MoS ₂ Membranes. Angewandte Chemie - International Edition, 2019, 58, 8134-8138.	13.8	419
6	Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment. Chemical Engineering Journal, 2019, 359, 159-167.	12.7	382
7	Removal of phosphate from water by a Fe–Mn binary oxide adsorbent. Journal of Colloid and Interface Science, 2009, 335, 168-174.	9.4	356
8	Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction. Nanoscale, 2015, 7, 1250-1269.	5.6	290
9	Mineralization of an azo dye Acid Red 14 by electro-Fenton's reagent using an activated carbon fiber cathode. Dyes and Pigments, 2005, 65, 227-233.	3.7	286
10	Visible-light sensitive cobalt-doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions. Applied Catalysis B: Environmental, 2010, 99, 214-221.	20.2	285
11	Adsorptive removal of phosphate by a nanostructured Fe–Al–Mn trimetal oxide adsorbent. Powder Technology, 2013, 233, 146-154.	4.2	268
12	Coagulation Behavior of Aluminum Salts in Eutrophic Water:Â Significance of Al13Species and pH Control. Environmental Science & Environmental Science	10.0	256
13	Removal characteristics of microplastics by Fe-based coagulants during drinking water treatment. Journal of Environmental Sciences, 2019, 78, 267-275.	6.1	235
14	Systematic study of synergistic and antagonistic effects on adsorption of tetracycline and copper onto a chitosan. Journal of Colloid and Interface Science, 2010, 344, 117-125.	9.4	229
15	Highly efficient and sustainable non-precious-metal Fe–N–C electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 2527-2539.	10.3	214
16	Respective Role of Fe and Mn Oxide Contents for Arsenic Sorption in Iron and Manganese Binary Oxide: An X-ray Absorption Spectroscopy Investigation. Environmental Science & Environmental Science & 2014, 48, 10316-10322.	10.0	200
17	Adsorption behavior and mechanism of arsenate at Fe–Mn binary oxide/water interface. Journal of Hazardous Materials, 2009, 168, 820-825.	12.4	194
18	Triggering surface oxygen vacancies on atomic layered molybdenum dioxide for a low energy consumption path toward nitrogen fixation. Nano Energy, 2019, 59, 10-16.	16.0	176

#	Article	IF	CITATIONS
19	Biomolecule-assisted self-assembly of CdS/MoS 2 /graphene hollow spheres as high-efficiency photocatalysts for hydrogen evolution without noble metals. Applied Catalysis B: Environmental, 2016, 182, 504-512.	20.2	175
20	Dechlorination of Trichloroacetic Acid Using a Noble Metal-Free Graphene–Cu Foam Electrode via Direct Cathodic Reduction and Atomic H*. Environmental Science & Samp; Technology, 2016, 50, 3829-3837.	10.0	169
21	Transformation of humic acid and halogenated byproduct formation in UV-chlorine processes. Water Research, 2016, 102, 421-427.	11.3	164
22	Mineralization of an azo dye Acid Red 14 by photoelectro-Fenton process using an activated carbon fiber cathode. Applied Catalysis B: Environmental, 2008, 84, 393-399.	20.2	154
23	Synthesis of Ce(III)-doped Fe3O4 magnetic particles for efficient removal of antimony from aqueous solution. Journal of Hazardous Materials, 2017, 329, 193-204.	12.4	154
24	Improvement of metal adsorption onto chitosan/Sargassum sp. composite sorbent by an innovative ion-imprint technology. Water Research, 2011, 45, 145-154.	11.3	152
25	Photoelectrocatalytic Oxidation of Cu ^{II} –EDTA at the TiO ₂ Electrode and Simultaneous Recovery of Cu ^{II} by Electrodeposition. Environmental Science & Electrode and Technology, 2013, 47, 4480-4488.	10.0	151
26	Heterogeneous photo-Fenton degradation of acid red B over Fe2O3 supported on activated carbon fiber. Journal of Hazardous Materials, 2015, 285, 167-172.	12.4	147
27	Defect Modulation of Z-Scheme TiO ₂ /Cu ₂ O Photocatalysts for Durable Water Splitting. ACS Catalysis, 2019, 9, 8346-8354.	11.2	146
28	Microstructure of carbon nitride affecting synergetic photocatalytic activity: Hydrogen bonds vs. structural defects. Applied Catalysis B: Environmental, 2017, 204, 49-57.	20.2	143
29	Preparation of amino-Fe(III) functionalized mesoporous silica for synergistic adsorption of tetracycline and copper. Chemosphere, 2015, 138, 625-632.	8.2	140
30	Organic Micropollutants in Rivers Downstream of the Megacity Beijing: Sources and Mass Fluxes in a Large-Scale Wastewater Irrigation System. Environmental Science & Environmental Science & 2012, 46, 8680-8688.	10.0	138
31	Characterization of isolated fractions of dissolved organic matter from sewage treatment plant and the related disinfection by-products formation potential. Journal of Hazardous Materials, 2009, 164, 1433-1438.	12.4	137
32	Effects and mechanisms of pre-chlorination on Microcystis aeruginosa removal by alum coagulation: Significance of the released intracellular organic matter. Separation and Purification Technology, 2012, 86, 19-25.	7.9	135
33	Sulfur-based mixotrophic denitrification corresponding to different electron donors and microbial profiling in anoxic fluidized-bed membrane bioreactors. Water Research, 2015, 85, 422-431.	11.3	134
34	Removal of tetracycline from water by Fe-Mn binary oxide. Journal of Environmental Sciences, 2012, 24, 242-247.	6.1	125
35	Role of Aluminum Speciation in the Removal of Disinfection Byproduct Precursors by a Coagulation Process. Environmental Science & Environmental Scienc	10.0	123
36	Adsorption of nitrate and nitrite from aqueous solution onto calcined (Mg–Al) hydrotalcite of different Mg/Al ratio. Chemical Engineering Journal, 2012, 195-196, 241-247.	12.7	123

#	Article	IF	CITATIONS
37	Oxygen Doping to Optimize Atomic Hydrogen Binding Energy on NiCoP for Highly Efficient Hydrogen Evolution. Small, 2018, 14, e1800421.	10.0	122
38	Study of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of nitrate in water. Journal of Hazardous Materials, 2009, 169, 23-28.	12.4	121
39	Facile "Spotâ€Heating―Synthesis of Carbon Dots/Carbon Nitride for Solar Hydrogen Evolution Synchronously with Contaminant Decomposition. Advanced Functional Materials, 2018, 28, 1706462.	14.9	121
40	The electrocatalytic dechlorination of chloroacetic acids at electrodeposited Pd/Fe-modified carbon paper electrode. Applied Catalysis B: Environmental, 2012, 111-112, 628-635.	20.2	120
41	Photoelectrocatalytic Degradation of Triazine-Containing Azo Dyes at γ-Bi ₂ MoO ₆ Film Electrode under Visible Light Irradiation (λ > 420 Nm). Environmental Science & Technology, 2007, 41, 6802-6807.	10.0	118
42	Phosphate removal from water using freshly formed Feâ€"Mn binary oxide: Adsorption behaviors and mechanisms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 455, 11-18.	4.7	117
43	Effect of pH on the aluminum salts hydrolysis during coagulation process: Formation and decomposition of polymeric aluminum species. Journal of Colloid and Interface Science, 2009, 330, 105-112.	9.4	113
44	Removal of tetracycline antibiotics from aqueous solution by amino-Fe (III) functionalized SBA15. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 471, 133-138.	4.7	113
45	Denitrification of groundwater using a sulfur-oxidizing autotrophic denitrifying anaerobic fluidized-bed MBR: performance and bacterial community structure. Applied Microbiology and Biotechnology, 2015, 99, 2815-2827.	3.6	109
46	Arsenate uptake and arsenite simultaneous sorption and oxidation by Fe–Mn binary oxides: Influence of Mn/Fe ratio, pH, Ca2+, and humic acid. Journal of Colloid and Interface Science, 2012, 366, 141-146.	9.4	108
47	Carbon nanodot-modified FeOCl for photo-assisted Fenton reaction featuring synergistic in-situ H2O2 production and activation. Applied Catalysis B: Environmental, 2020, 266, 118665.	20.2	108
48	Effect of moderate pre-oxidation on the removal of Microcystis aeruginosa by KMnO4–Fe(II) process: Significance of the in-situ formed Fe(III). Water Research, 2012, 46, 73-81.	11.3	107
49	pH-Independent Production of Hydroxyl Radical from Atomic H*-Mediated Electrocatalytic H ₂ O ₂ Reduction: A Green Fenton Process without Byproducts. Environmental Science & Enviro	10.0	106
50	Interface Stabilization of Undercoordinated Iron Centers on Manganese Oxides for Nature-Inspired Peroxide Activation. ACS Catalysis, 2018, 8, 1090-1096.	11.2	105
51	Sources and Pathways of Nutrients in the Semi-Arid Region of Beijing–Tianjin, China. Environmental Science & Environmental	10.0	103
52	Organic micropollutants in the Yangtze River: Seasonal occurrence and annual loads. Science of the Total Environment, 2014, 472, 789-799.	8.0	102
53	Graphene-modified Pd/C cathode and Pd/GAC particles for enhanced electrocatalytic removal of bromate in a continuous three-dimensional electrochemical reactor. Water Research, 2015, 77, 1-12.	11.3	100
54	Fe–Mn binary oxide incorporated into diatomite as an adsorbent for arsenite removal: Preparation and evaluation. Journal of Colloid and Interface Science, 2009, 338, 353-358.	9.4	99

#	Article	IF	CITATIONS
55	Improvement of aqueous mercury adsorption on activated coke by thiol-functionalization. Chemical Engineering Journal, 2013, 228, 925-934.	12.7	99
56	An activated carbon fiber cathode for the degradation of glyphosate in aqueous solutions by the Electro-Fenton mode: Optimal operational conditions and the deposition of iron on cathode on electrode reusability. Water Research, 2016, 105, 575-582.	11.3	99
57	Microfluidic Flow through Polyaniline Supported by Lamellar-Structured Graphene for Mass-Transfer-Enhanced Electrocatalytic Reduction of Hexavalent Chromium. Environmental Science & Technology, 2015, 49, 13534-13541.	10.0	98
58	Inactivation of Microcystis aeruginosaby Continuous Electrochemical Cycling Process in Tube Using Ti/RuO2Electrodes. Environmental Science & Environme	10.0	97
59	Electrochemically assisted photocatalytic degradation of Orange II: Influence of initial pH values. Journal of Molecular Catalysis A, 2006, 259, 238-244.	4.8	96
60	Preparation and characterization of a novel silica aerogel as adsorbent for toxic organic compounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 347, 38-44.	4.7	95
61	Chlorination of Microcystis aeruginosa suspension: Cell lysis, toxin release and degradation. Journal of Hazardous Materials, 2012, 217-218, 279-285.	12.4	95
62	Simultaneous destruction of Nickel (II)-EDTA with TiO2/Ti film anode and electrodeposition of nickel ions on the cathode. Applied Catalysis B: Environmental, 2014, 144, 478-485.	20.2	95
63	New Insights into Defectâ€Mediated Heterostructures for Photoelectrochemical Water Splitting. Advanced Energy Materials, 2016, 6, 1502268.	19.5	95
64	Adsorption of aromatic organoarsenic compounds by ferric and manganese binary oxide and description of the associated mechanism. Chemical Engineering Journal, 2017, 309, 577-587.	12.7	95
65	A new paradigm of ultrathin 2D nanomaterial adsorbents in aqueous media: graphene and GO, MoS ₂ , MXenes, and 2D MOFs. Journal of Materials Chemistry A, 2019, 7, 16598-16621.	10.3	95
66	Coagulation of humic acid by PACl with high content of Al13: The role of aluminum speciation. Separation and Purification Technology, 2009, 70, 225-230.	7.9	93
67	Polyoxometalates/TiO2 Fenton-like photocatalysts with rearranged oxygen vacancies for enhanced synergetic degradation. Applied Catalysis B: Environmental, 2019, 244, 407-413.	20.2	92
68	Redox Conversion of Chromium(VI) and Arsenic(III) with the Intermediates of Chromium(V) and Arsenic(IV) via AuPd/CNTs Electrocatalysis in Acid Aqueous Solution. Environmental Science & Eamp; Technology, 2015, 49, 9289-9297.	10.0	91
69	Adsorption of Cu(II)–EDTA chelates on tri-ammonium-functionalized mesoporous silica from aqueous solution. Separation and Purification Technology, 2013, 117, 118-123.	7.9	90
70	Simultaneous removal of Cd(II) and Sb(V) by Fe–Mn binary oxide: Positive effects of Cd(II) on Sb(V) adsorption. Journal of Hazardous Materials, 2015, 300, 847-854.	12.4	88
71	Disordering the Atomic Structure of Co(II) Oxide via Bâ€Doping: An Efficient Oxygen Vacancy Introduction Approach for High Oxygen Evolution Reaction Electrocatalysts. Small, 2018, 14, e1802760.	10.0	88
72	Multi-electric field modulation for photocatalytic oxygen evolution: Enhanced charge separation by coupling oxygen vacancies with faceted heterostructures. Nano Energy, 2018, 51, 764-773.	16.0	88

#	Article	IF	CITATIONS
73	Polyoxometalates/TiO2 photocatalysts with engineered facets for enhanced degradation of bisphenol A through persulfate activation. Applied Catalysis B: Environmental, 2020, 268, 118394.	20.2	88
74	Effect of aluminum speciation on arsenic removal during coagulation process. Separation and Purification Technology, 2012, 86, 35-40.	7.9	86
75	Oxygenated, nitrated, methyl and parent polycyclic aromatic hydrocarbons in rivers of Haihe River System, China: Occurrence, possible formation, and source and fate in a water-shortage area. Science of the Total Environment, 2014, 481, 178-185.	8.0	85
76	Hierarchical Nanotubular Anatase/Rutile/TiO ₂ (B) Heterophase Junction with Oxygen Vacancies for Enhanced Photocatalytic H ₂ Production. Langmuir, 2018, 34, 1883-1889.	3.5	85
77	Development of nitrogen-doped carbon for selective metal ion capture. Chemical Engineering Journal, 2018, 350, 608-615.	12.7	85
78	Efficient Microcystis aeruginosa removal by moderate photocatalysis-enhanced coagulation with magnetic Zn-doped Fe3O4 particles. Water Research, 2020, 171, 115448.	11.3	85
79	Photoelectrochemical degradation of anti-inflammatory pharmaceuticals at Bi2MoO6–boron-doped diamond hybrid electrode under visible light irradiation. Applied Catalysis B: Environmental, 2009, 91, 539-545.	20.2	84
80	Performance and Mechanisms of Ultrafiltration Membrane Fouling Mitigation by Coupling Coagulation and Applied Electric Field in a Novel Electrocoagulation Membrane Reactor. Environmental Science & E	10.0	84
81	Preparation and characterization of chitosan encapsulated Sargassum sp. biosorbent for nickel ions sorption. Bioresource Technology, 2011, 102, 2821-2828.	9.6	83
82	Bimetal-organic frameworks with coordinatively unsaturated metal sites for highly efficient Fenton-like catalysis. Chemical Engineering Journal, 2021, 414, 128669.	12.7	83
83	Adsorption of antimony(V) onto Mn(II)-enriched surfaces of manganese-oxide and Fe Mn binary oxide. Chemosphere, 2015, 138, 616-624.	8.2	82
84	Enhancement of the Donnan effect through capacitive ion increase using an electroconductive rGO-CNT nanofiltration membrane. Journal of Materials Chemistry A, 2018, 6, 4737-4745.	10.3	82
85	Using the combined bioelectrochemical and sulfur autotrophic denitrification system for groundwater denitrification. Bioresource Technology, 2009, 100, 142-148.	9.6	81
86	Oxygen vacancy mediated construction of anatase/brookite heterophase junctions for high-efficiency photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 24989-24994.	10.3	81
87	Anaerobically-digested sludge disintegration by transition metal ions-activated peroxymonosulfate (PMS): Comparison between Co2+, Cu2+, Fe2+ and Mn2+. Science of the Total Environment, 2020, 713, 136530.	8.0	80
88	Elimination of polar micropollutants and anthropogenic markers by wastewater treatment in Beijing, China. Chemosphere, 2015, 119, 1054-1061.	8.2	79
89	Hydrogen-Bond-Mediated Self-Assembly of Carbon-Nitride-Based Photo-Fenton-like Membranes for Wastewater Treatment. Environmental Science & Technology, 2019, 53, 6981-6988.	10.0	79
90	Removal of arsenite by simultaneous electro-oxidation and electro-coagulation process. Journal of Hazardous Materials, 2010, 184, 472-476.	12.4	78

#	Article	IF	Citations
91	Characteristic transformation of humic acid during photoelectrocatalysis process and its subsequent disinfection byproduct formation potential. Water Research, 2011, 45, 6131-6140.	11.3	78
92	Effect of Aluminum Speciation and Structure Characterization on Preferential Removal of Disinfection Byproduct Precursors by Aluminum Hydroxide Coagulation. Environmental Science & Technology, 2009, 43, 5067-5072.	10.0	76
93	Prechlorination of algae-laden water: The effects of transportation time on cell integrity, algal organic matter release, and chlorinated disinfection byproduct formation. Water Research, 2016, 102, 221-228.	11.3	76
94	Photoactuation Healing of αâ€FeOOH@gâ€C ₃ N ₄ Catalyst for Efficient and Stable Activation of Persulfate. Small, 2017, 13, 1702225.	10.0	76
95	Triggering of Low-Valence Molybdenum in Multiphasic MoS ₂ for Effective Reactive Oxygen Species Output in Catalytic Fenton-like Reactions. ACS Applied Materials & Diterfaces, 2019, 11, 26781-26788.	8.0	76
96	Transformation of para arsanilic acid by manganese oxide: Adsorption, oxidation, and influencing factors. Water Research, 2017, 116, 126-134.	11.3	75
97	\hat{l}_{\pm} - and \hat{l}_{\pm} - and \hat{l}_{\pm} -Fe2O3 nanoparticle/nitrogen doped carbon nanotube catalysts for high-performance oxygen reduction reaction. Science China Materials, 2015, 58, 683-692.	6.3	73
98	Effects of calcium ions on surface characteristics and adsorptive properties of hydrous manganese dioxide. Journal of Colloid and Interface Science, 2009, 331, 275-280.	9.4	72
99	Disinfection by-products formation and precursors transformation during chlorination and chloramination of highly-polluted source water: Significance of ammonia. Water Research, 2013, 47, 5901-5910.	11.3	72
100	Ni(II)/Ni(III) redox couple endows Ni foam-supported Ni2P with excellent capability for direct ammonia oxidation. Chemical Engineering Journal, 2021, 404, 126795.	12.7	72
101	Efficient conversion of dimethylarsinate into arsenic and its simultaneous adsorption removal over FeCx/N-doped carbon fiber composite in an electro-Fenton process. Water Research, 2016, 100, 57-64.	11.3	71
102	Effects of amino acids on microcystin production of the Microcystis aeruginosa. Journal of Hazardous Materials, 2009, 161, 730-736.	12.4	70
103	Electrochemical removal of haloacetic acids in a three-dimensional electrochemical reactor with Pd-GAC particles as fixed filler and Pd-modified carbon paper as cathode. Water Research, 2014, 51, 134-143.	11.3	68
104	Occurrence, behavior and removal of typical substituted and parent polycyclic aromatic hydrocarbons in a biological wastewater treatmentÂplant. Water Research, 2014, 52, 11-19.	11.3	68
105	KMnO 4 –Fe(II) pretreatment to enhance Microcystis aeruginosa removal by aluminum coagulation: Does it work after long distance transportation?. Water Research, 2016, 88, 127-134.	11.3	67
106	Reaction of Cu(CN)32â° with H2O2 in water under alkaline conditions: Cyanide oxidation, Cu+/Cu2+catalysis and H2O2 decomposition. Applied Catalysis B: Environmental, 2014, 158-159, 85-90.	20.2	66
107	Adsorption combined with superconducting high gradient magnetic separation technique used for removal of arsenic and antimony. Journal of Hazardous Materials, 2018, 343, 36-48.	12.4	66
108	Application of nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, UVâ€"Visible spectroscopy and kinetic modeling for elucidation of adsorption chemistry in uptake of tetracycline by zeolite beta. Journal of Colloid and Interface Science, 2011, 354, 261-267.	9.4	65

#	Article	IF	Citations
109	Simultaneous removal of arsenite and fluoride via an integrated electro-oxidation and electrocoagulation process. Chemosphere, 2011, 83, 726-729.	8.2	64
110	Anaerobically-digested sludge conditioning by activated peroxymonosulfate: Significance of EDTA chelated-Fe2+. Water Research, 2019, 160, 454-465.	11.3	64
111	Selective adsorption of fluoride from drinking water using NiAl-layered metal oxide film electrode. Journal of Colloid and Interface Science, 2019, 539, 146-151.	9.4	64
112	Preparation of a manganese dioxide/carbon fiber electrode for electrosorptive removal of copper ions from water. Journal of Colloid and Interface Science, 2015, 446, 359-365.	9.4	63
113	Removal of Se(IV) and Se(VI) from drinking water by coagulation. Separation and Purification Technology, 2015, 142, 65-70.	7.9	61
114	Adsorption of Sb(III) and Sb(V) on Freshly Prepared Ferric Hydroxide (FeOxHy). Environmental Engineering Science, 2015, 32, 95-102.	1.6	61
115	Efficient electrochemical reduction of bromate by a Pd/rGO/CFP electrode with low applied potentials. Applied Catalysis B: Environmental, 2014, 160-161, 179-187.	20.2	60
116	Effect of low dosage of coagulant on the ultrafiltration membrane performance in feedwater treatment. Water Research, 2014, 51, 277-283.	11.3	60
117	Enhanced Stabilization and Effective Utilization of Atomic Hydrogen on Pd–In Nanoparticles in a Flow-through Electrode. Environmental Science & Env	10.0	60
118	Simultaneous removal of arsenate and fluoride by iron and aluminum binary oxide: Competitive adsorption effects. Separation and Purification Technology, 2012, 92, 100-105.	7.9	59
119	Boosting photoelectrochemical activities of heterostructured photoanodes through interfacial modulation of oxygen vacancies. Nano Energy, 2017, 35, 290-298.	16.0	59
120	Defluoridation by freshly prepared aluminum hydroxides. Chemical Engineering Journal, 2011, 175, 144-149.	12.7	57
121	Removal of arsenic(III) from aqueous solution using a low-cost by-product in Fe-removal plants—Fe-based backwashing sludge. Chemical Engineering Journal, 2013, 226, 393-401.	12.7	57
122	Enhanced indirect atomic H* reduction at a hybrid Pd/graphene cathode for electrochemical dechlorination under low negative potentials. Environmental Science: Nano, 2018, 5, 2282-2292.	4.3	57
123	Enhanced membrane fouling mitigation by modulating cake layer porosity and hydrophilicity in an electro-coagulation/oxidation membrane reactor (ECOMR). Journal of Membrane Science, 2018, 550, 72-79.	8.2	55
124	Surface charge and hydrophilicity improvement of graphene membranes via modification of pore surface oxygen-containing groups to enhance permeability and selectivity. Carbon, 2019, 145, 140-148.	10.3	55
125	3-D hierarchical Ag/ZnO@CF for synergistically removing phenol and Cr(VI): Heterogeneous vs. homogeneous photocatalysis. Journal of Colloid and Interface Science, 2020, 558, 85-94.	9.4	55
126	Characterization of dissolved organic matter from surface waters with low to high dissolved organic carbon and the related disinfection byproduct formation potential. Journal of Hazardous Materials, 2014, 271, 228-235.	12.4	54

#	Article	IF	Citations
127	Bromate removal by electrochemical reduction at boron-doped diamond electrode. Electrochimica Acta, 2012, 62, 181-184.	5.2	53
128	Modification of ultrafiltration membrane with nanoscale zerovalent iron layers for humic acid fouling reduction. Water Research, 2015, 71, 140-149.	11.3	53
129	Effect of ozonation on the characteristics of effluent organic matter fractions and subsequent associations with disinfection by-products formation. Science of the Total Environment, 2018, 610-611, 1057-1064.	8.0	53
130	Emerging graphitic carbon nitride-based membranes for water purification. Water Research, 2021, 200, 117207.	11.3	53
131	Cyanobacteria and their toxins in Guanting Reservoir of Beijing, China. Journal of Hazardous Materials, 2008, 153, 470-477.	12.4	52
132	Fabrication and photoelectrocatalytic properties of nanocrystalline monoclinic BiVO4 thin-film electrode. Journal of Environmental Sciences, 2011, 23, 151-159.	6.1	52
133	Reductive dechlorination of trichloroacetic acid (TCAA) by electrochemical process over Pd-In/Al2O3 catalyst. Electrochimica Acta, 2017, 232, 13-21.	5.2	52
134	Synergistic effect of dual sites on bimetal-organic frameworks for highly efficient peroxide activation. Journal of Hazardous Materials, 2021, 406, 124692.	12.4	52
135	Moderate KMnO4-Fe(II) pre-oxidation for alleviating ultrafiltration membrane fouling by algae during drinking water treatment. Water Research, 2018, 142, 96-104.	11.3	51
136	Metagenomics Unravels Differential Microbiome Composition and Metabolic Potential in Rapid Sand Filters Purifying Surface Water Versus Groundwater. Environmental Science & Environmental Science & 2020, 54, 5197-5206.	10.0	51
137	Polycyclic aromatic hydrocarbons in wastewater, WWTPs effluents and in the recipient waters of Beijing, China. Environmental Science and Pollution Research, 2013, 20, 4254-4260.	5.3	50
138	Strongly Coupled Metal Oxide/Reassembled Carbon Nitride/Coâ€"Pi Heterostructures for Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Samp; Interfaces, 2018, 10, 6424-6432.	8.0	50
139	Intercalation of Nanosized Fe ₃ C in Iron/Carbon To Construct Multifunctional Interface with Reduction, Catalysis, Corrosion Resistance, and Immobilization Capabilities. ACS Applied Materials & Diterfaces, 2019, 11, 15709-15717.	8.0	50
140	Chlorination and chloramination of high-bromide natural water: DBPs species transformation. Separation and Purification Technology, 2013, 102, 86-93.	7.9	49
141	Rapidly catalysis of oxygen evolution through sequential engineering of vertically layered FeNi structure. Nano Energy, 2018, 43, 359-367.	16.0	49
142	Effect of liquid property on adsorption and catalytic reduction of nitrate over hydrotalcite-supported Pd-Cu catalyst. Journal of Molecular Catalysis A, 2007, 272, 31-37.	4.8	48
143	Mn(VII)–Fe(II) pre-treatment for Microcystis aeruginosa removal by Al coagulation: Simultaneous enhanced cyanobacterium removal and residual coagulant control. Water Research, 2014, 65, 73-84.	11.3	48
144	Capillary-Flow-Optimized Heat Localization Induced by an Air-Enclosed Three-Dimensional Hierarchical Network for Elevated Solar Evaporation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 9974-9983.	8.0	48

#	Article	IF	CITATIONS
145	Insight into the Key Role of Cr Intermediates in the Efficient and Simultaneous Degradation of Organic Contaminants and Cr(VI) Reduction via g-C ₃ N ₄ -Assisted Photocatalysis. Environmental Science & Degradation of Organic Science & Degradation of Organic Photocatalysis.	10.0	48
146	Permanganate oxidation of diclofenac: The pH-dependent reaction kinetics and a ring-opening mechanism. Chemosphere, 2015, 136, 297-304.	8.2	47
147	Coagulation behaviors of aluminum salts towards fluoride: Significance of aluminum speciation and transformation. Separation and Purification Technology, 2016, 165, 137-144.	7.9	47
148	An effective method for improving electrocoagulation process: Optimization of Al 13 polymer formation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 489, 234-240.	4.7	46
149	Facile Dispersion of Nanosized NiFeP for Highly Effective Catalysis of Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 7206-7211.	6.7	46
150	Fe(II)-regulated moderate pre-oxidation of Microcystis aeruginosa and formation of size-controlled algae flocs for efficient flotation of algae cell and organic matter. Water Research, 2018, 137, 57-63.	11.3	46
151	Enhanced Photoelectrocatalytic Decomposition of Copper Cyanide Complexes and Simultaneous Recovery of Copper with a Bi ₂ MoO ₆ Electrode under Visible Light by EDTA/K ₄ P ₂ O ₇ . Environmental Science & Edition (Science & Edition (Sc	10.0	45
152	Electrically Poreâ€Sizeâ€Tunable Polypyrrole Membrane for Antifouling and Selective Separation. Advanced Functional Materials, 2019, 29, 1903081.	14.9	45
153	Synchronous Reduction–Oxidation Process for Efficient Removal of Trichloroacetic Acid: H* Initiates Dechlorination and ·OH Is Responsible for Removal Efficiency. Environmental Science & Emp; Technology, 2019, 53, 14586-14594.	10.0	45
154	Role of the Mg/Al atomic ratio in hydrotalcite-supported Pd/Sn catalysts for nitrate adsorption and hydrogenation reduction. Journal of Colloid and Interface Science, 2009, 332, 151-157.	9.4	44
155	Electric Double-Layer Effects Induce Separation of Aqueous Metal Ions. ACS Nano, 2015, 9, 10922-10930.	14.6	43
156	Nitrate electro-sorption/reduction in capacitive deionization using a novel Pd/NiAl-layered metal oxide film electrode. Chemical Engineering Journal, 2018, 335, 475-482.	12.7	43
157	Effects of protein properties on ultrafiltration membrane fouling performance in water treatment. Journal of Environmental Sciences, 2019, 77, 273-281.	6.1	43
158	Nitrobenzene biodegradation ability of microbial communities in water and sediments along the Songhua River after a nitrobenzene pollution event. Journal of Environmental Sciences, 2008, 20, 778-786.	6.1	42
159	Treatment of dye wastewater with permanganate oxidation and in situ formed manganese dioxides adsorption: Cation blue as model pollutant. Journal of Hazardous Materials, 2010, 176, 926-931.	12.4	42
160	As(III) Oxidation by Active Chlorine and Subsequent Removal of As(V) by Al ₁₃ Polymer Coagulation Using a Novel Dual Function Reagent. Environmental Science & Envir	10.0	42
161	Visible-Light Induced Photocatalytic Activity of Electrospun-TiO ₂ in Arsenic(III) Oxidation. ACS Applied Materials & Discourse (III) Oxidation.	8.0	42
162	Porous Nanobimetallic Fe–Mn Cubes with High Valent Mn and Highly Efficient Removal of Arsenic(III). ACS Applied Materials & Company (Interfaces, 2017, 9, 14868-14877.	8.0	42

#	Article	IF	CITATIONS
163	Hotâ€Electronâ€Induced Photothermal Catalysis for Energyâ€Dependent Molecular Oxygen Activation. Angewandte Chemie - International Edition, 2021, 60, 4872-4878.	13.8	42
164	Removal of natural organic matter for controlling disinfection by-products formation by enhanced coagulation: A case study. Separation and Purification Technology, 2012, 84, 41-45.	7.9	41
165	Preparation and characterization of polyaluminum chloride containing high content of Al13 and active chlorine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 260, 109-117.	4.7	40
166	Relationship of energy charge and toxin content of Microcystis aeruginosa in nitrogen-limited or phosphorous-limited cultures. Toxicon, 2008, 51, 649-658.	1.6	40
167	Ultrafiltration membrane fouling induced by humic acid with typical inorganic salts. Chemosphere, 2018, 197, 793-802.	8.2	40
168	Enhanced oxidative and adsorptive capability towards antimony by copper-doping into magnetite magnetic particles. RSC Advances, 2016, 6, 66990-67001.	3.6	39
169	Enhanced Electroreductive Removal of Bromate by a Supported Pd–In Bimetallic Catalyst: Kinetics and Mechanism Investigation. Environmental Science & Eachnology, 2016, 50, 11872-11878.	10.0	39
170	Substitution Boosts Charge Separation for High Solar-Driven Photocatalytic Performance. ACS Applied Materials & Driven Photocatalytic Performance Photocatalytic Photocatalytic Performance Photocatalytic Photocatalytic Photocatalytic Photocatalytic Photocatalytic Photoca	8.0	39
171	Multiple dynamic Al-based floc layers on ultrafiltration membrane surfaces for humic acid and reservoir water fouling reduction. Water Research, 2018, 139, 291-300.	11.3	39
172	Synergetic Hydroxyl Radical Oxidation with Atomic Hydrogen Reduction Lowers the Organochlorine Conversion Barrier and Potentiates Effective Contaminant Mineralization. Environmental Science & Environmental Science & Environmental Science & Environmental Science & Environmental Science	10.0	39
173	Adsorption and reduction of nitrate in water on hydrotalcite-supported Pd-Cu catalyst. Catalysis Today, 2007, 126, 476-482.	4.4	38
174	Simultaneous surface-adsorbed organic matter desorption and cell integrity maintenance by moderate prechlorination to enhance Microcystis aeruginosa removal in KMnO4Fe(II) process. Water Research, 2016, 105, 551-558.	11.3	38
175	Simultaneous determination of typical substituted and parent polycyclic aromatic hydrocarbons in water and solid matrix by gas chromatography–mass spectrometry. Journal of Chromatography A, 2013, 1291, 129-136.	3.7	37
176	AuPd/Fe3O4-based three-dimensional electrochemical system for efficiently catalytic degradation of 1-butyl-3-methylimidazolium hexafluorophosphate. Electrochimica Acta, 2015, 186, 328-336.	5. 2	37
177	Enhanced antimony(V) removal using synergistic effects of Fe hydrolytic flocs and ultrafiltration membrane with sludge discharge evaluation. Water Research, 2017, 121, 171-177.	11.3	37
178	Zinc Substitutionâ€Induced Subtle Lattice Distortion Mediates the Active Center of Cobalt Diselenide Electrocatalysts for Enhanced Oxygen Evolution. Small, 2020, 16, e1907001.	10.0	37
179	Effects of copper(II) and copper oxides on THMs formation in copper pipe. Chemosphere, 2007, 68, 2153-2160.	8.2	36
180	Removal of dieldrin from aqueous solution by a novel triolein-embedded composite adsorbent. Journal of Hazardous Materials, 2007, 141, 61-69.	12.4	36

#	Article	IF	Citations
181	Efficient Nitrate Reduction in a Fluidized Electrochemical Reactor Promoted by Pd–Sn/AC Particles. Catalysis Letters, 2016, 146, 91-99.	2.6	36
182	Pore Structure-Dependent Mass Transport in Flow-through Electrodes for Water Remediation. Environmental Science & Environmenta	10.0	36
183	Removal and transformation characterization of refractory components from biologically treated landfill leachate by Fe2+/NaClO and Fenton oxidation. Separation and Purification Technology, 2013, 116, 107-113.	7.9	35
184	Effects of bromide on the formation and transformation of disinfection by-products during chlorination and chloramination. Science of the Total Environment, 2018, 625, 252-261.	8.0	35
185	Decomplexation of Cu(II)-EDTA over oxygen-doped g-C3N4: An available resource towards environmental sustainability. Chemical Engineering Journal, 2018, 345, 138-146.	12.7	35
186	Cu(II)-catalyzed THM formation during water chlorination and monochloramination: A comparison study. Journal of Hazardous Materials, 2009, 170, 58-65.	12.4	34
187	Removal of glyphosate from water by electrochemically assisted MnO2 oxidation process. Separation and Purification Technology, 2013, 117, 30-34.	7.9	34
188	Defluoridation by Al-based coagulation and adsorption: Species transformation of aluminum and fluoride. Separation and Purification Technology, 2015, 148, 68-75.	7.9	34
189	Synergistic process using Fe hydrolytic flocs and ultrafiltration membrane for enhanced antimony(V) removal. Journal of Membrane Science, 2017, 537, 93-100.	8.2	34
190	Strongly coupled polyoxometalates/oxygen doped g-C3N4 nanocomposites as Fenton-like catalysts for efficient photodegradation of sulfosalicylic acid. Catalysis Communications, 2018, 112, 63-67.	3.3	34
191	Inactivation and risk control of pathogenic microorganisms in municipal sludge treatment: A review. Frontiers of Environmental Science and Engineering, 2022, 16, 70.	6.0	34
192	Facet-dependent activity of TiO2/covalent organic framework S-scheme heterostructures for CO2 photoreduction. Chemical Engineering Journal, 2022, 442, 135279.	12.7	34
193	Removal of disinfection by-products precursors by polyaluminum chloride coagulation coupled with chlorination. Separation and Purification Technology, 2008, 62, 464-469.	7.9	33
194	Removal of persistent organic pollutants from micro-polluted drinking water by triolein embedded absorbent. Bioresource Technology, 2009, 100, 2995-3002.	9.6	33
195	The influence of colloids on the geochemical behavior of metals in polluted water using as an example Yongdingxin River, Tianjin, China. Chemosphere, 2010, 78, 360-367.	8.2	33
196	Arsenic removal from a high-arsenic wastewater using in situ formed Fe–Mn binary oxide combined with coagulation by poly-aluminum chloride. Journal of Hazardous Materials, 2011, 185, 990-995.	12.4	33
197	Biological catalyzed denitrification by a functional electropolymerization biocarrier modified by redox mediator. Bioresource Technology, 2012, 107, 144-150.	9.6	33
198	Enhanced efficiency in HA removal by electrocoagulation through optimizing flocs properties: Role of current density and pH. Separation and Purification Technology, 2017, 175, 248-254.	7.9	33

#	Article	IF	Citations
199	Tungsten-Assisted Phase Tuning of Molybdenum Carbide for Efficient Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Samp; Interfaces, 2018, 10, 2451-2459.	8.0	33
200	The removal efficiency and insight into the mechanism of para arsanilic acid adsorption on Fe-Mn framework. Science of the Total Environment, 2017, 601-602, 713-722.	8.0	32
201	Electrochemical oxidation of ammonia accompanied with electricity generation based on reverse electrodialysis. Electrochimica Acta, 2018, 269, 128-135.	5.2	32
202	Interfacial Engineering of SeO Ligands on Tellurium Featuring Synergistic Functionalities of Bond Activation and Chemical States Buffering toward Electrocatalytic Conversion of Nitrogen to Ammonia. Advanced Science, 2019, 6, 1901627.	11.2	32
203	Enhanced phosphate removal using zirconium hydroxide encapsulated in quaternized cellulose. Journal of Environmental Sciences, 2020, 89, 102-112.	6.1	32
204	Effect of dosage strategy on Al-humic flocs growth and re-growth. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 404, 106-111.	4.7	31
205	Characterization of flocs generated by preformed and in situ formed Al13 polymer. Chemical Engineering Journal, 2012, 197, 10-15.	12.7	30
206	Facile Synthesis of Graphite-Reduced Graphite Oxide Core–Sheath Fiber via Direct Exfoliation of Carbon Fiber for Supercapacitor Application. ACS Applied Materials & Samp; Interfaces, 2014, 6, 9496-9502.	8.0	30
207	Highly Efficient AuPd/Carbon Nanotube Nanocatalysts for the Electroâ€Fenton Process. Chemistry - A European Journal, 2015, 21, 7611-7620.	3.3	30
208	Coagulation of methylated arsenic from drinking water: Influence of methyl substitution. Journal of Hazardous Materials, 2015, 293, 97-104.	12.4	30
209	Insight into the adsorption of tetracycline onto amino and amino–Fe3+ gunctionalized mesoporous silica: Effect of functionalized groups. Journal of Environmental Sciences, 2018, 65, 171-178.	6.1	30
210	Reversible superwettability switching of a conductive polymer membrane for oil-water separation and self-cleaning. Journal of Membrane Science, 2020, 605, 118088.	8.2	30
211	Combination of electroreduction with biosorption for enhancement for removal of hexavalent chromium. Journal of Colloid and Interface Science, 2012, 385, 147-153.	9.4	29
212	Faceted TiO2 photocatalytic degradation of anthraquinone in aquatic solution under solar irradiation. Science of the Total Environment, 2019, 688, 592-599.	8.0	29
213	Microfluidic-enhanced 3-D photoanodes with free interfacial energy barrier for photoelectrochemical applications. Applied Catalysis B: Environmental, 2019, 244, 740-747.	20.2	29
214	Enhanced alleviation of ultrafiltration membrane fouling by regulating cake layer thickness with pre-coagulation during drinking water treatment. Journal of Membrane Science, 2020, 596, 117732.	8.2	29
215	Arrayed Cobalt Phosphide Electrocatalyst Achieves Low Energy Consumption and Persistent H2 Liberation from Anodic Chemical Conversion. Nano-Micro Letters, 2020, 12, 154.	27.0	29
216	Interface-modulated nanojunction and microfluidic platform for photoelectrocatalytic chemicals upgrading. Applied Catalysis B: Environmental, 2021, 282, 119541.	20.2	29

#	Article	IF	Citations
217	Characterization of dissolved organic matter fractions and its relationship with the disinfection by-product formation. Journal of Environmental Sciences, 2009, 21, 54-61.	6.1	28
218	Effects of fluoride on coagulation performance of aluminum chloride towards Kaolin suspension. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 421, 84-90.	4.7	28
219	Simultaneous removal of arsenic and fluoride by freshly-prepared aluminum hydroxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 466, 147-153.	4.7	28
220	Formation of oxygenated polycyclic aromatic hydrocarbons from polycyclic aromatic hydrocarbons during aerobic activated sludge treatment and their removal process. Chemical Engineering Journal, 2016, 302, 50-57.	12.7	28
221	Fabrication of FeOOH hollow microboxes for purification of heavy metal-contaminated water. Physical Chemistry Chemical Physics, 2016, 18, 9437-9445.	2.8	28
222	Intensification of anodic charge transfer by contaminant degradation for efficient H ₂ production. Journal of Materials Chemistry A, 2018, 6, 10297-10303.	10.3	28
223	One-step exfoliation of polymeric C3N4 by atmospheric oxygen doping for photocatalytic persulfate activation. Journal of Colloid and Interface Science, 2020, 579, 455-462.	9.4	28
224	Optimum conditions for Al13 polymer formation in PACl preparation by electrolysis process. Chemosphere, 2004, 55, 51-56.	8.2	27
225	Aluminum speciation of coagulants with low concentration: Analysis by electrospray ionization mass spectrometry. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 379, 43-50.	4.7	27
226	Formation of disinfection by-products in the chlorination of ammonia-containing effluents: Significance of Cl2/N ratios and the DOM fractions. Journal of Hazardous Materials, 2011, 190, 645-651.	12.4	27
227	Optimization and control of Electro-Fenton process by pH inflection points: A case of treating acrylic fiber manufacturing wastewater. Chemical Engineering Journal, 2015, 269, 399-407.	12.7	27
228	Efficient design principle for interfacial charge separation in hydrogen-intercalated nonstoichiometric oxides. Nano Energy, 2018, 53, 887-897.	16.0	27
229	A salt-rejecting anisotropic structure for efficient solar desalination ⟨i⟩via⟨/i⟩ heat–mass flux decoupling. Journal of Materials Chemistry A, 2020, 8, 12089-12096.	10.3	27
230	Characterization of the Songhua River sediments and evaluation of their adsorption behavior for nitrobenzene. Journal of Environmental Sciences, 2008, 20, 796-802.	6.1	26
231	Chlorination of tramadol: Reaction kinetics, mechanism and genotoxicity evaluation. Chemosphere, 2015, 141, 282-289.	8.2	26
232	Biomolecule-assisted synthesis of defect-mediated Cd _{1â^x} Zn _x S/MoS ₂ /graphene hollow spheres for highly efficient hydrogen evolution. Physical Chemistry Chemical Physics, 2016, 18, 16208-16215.	2.8	26
233	Low electronegativity Mn bulk doping intensifies charge storage of Ni ₂ P redox shuttle for membrane-free water electrolysis. Journal of Materials Chemistry A, 2020, 8, 4073-4082.	10.3	26
234	Microbial community structures and functions of hypersaline heterotrophic denitrifying process: Lab-scale and pilot-scale studies. Bioresource Technology, 2020, 310, 123244.	9.6	26

#	Article	IF	Citations
235	Synergetic Lipid Extraction with Oxidative Damage Amplifies Cellâ€Membraneâ€Destructive Stresses and Enables Rapid Sterilization. Angewandte Chemie - International Edition, 2021, 60, 7744-7751.	13.8	26
236	A dual-biomimetic photocatalytic fuel cell for efficient electricity generation from degradation of refractory organic pollutants. Applied Catalysis B: Environmental, 2021, 298, 120501.	20.2	26
237	Fragmentation of typical sulfonamide drugs via heterolytic bond cleavage and stepwise rearrangement. RSC Advances, 2014, 4, 48426-48432.	3.6	25
238	New insights into the surface-dependent activity of graphitic felts for the electro-generation of H2O2. Applied Surface Science, 2020, 509, 144875.	6.1	25
239	Defect-enhanced activation of carbon nitride/horseradish peroxidase nanohybrids for visible-light-driven photobiocatalytic water purification. Chemical Engineering Journal, 2021, 408, 127231.	12.7	25
240	Ionic Liquid Assisted Electrospun Cellulose Acetate Fibers for Aqueous Removal of Triclosan. Langmuir, 2015, 31, 1820-1827.	3.5	24
241	Effect of aluminum speciation on ultrafiltration membrane fouling by low dose aluminum coagulation with bovine serum albumin (BSA). Journal of Membrane Science, 2015, 492, 88-94.	8.2	24
242	Optimization of a Hierarchical Porous-Structured Reactor to Mitigate Mass Transport Limitations for Efficient Electrocatalytic Ammonia Oxidation through a Three-Electron-Transfer Pathway. Environmental Science & Environmen	10.0	24
243	Effect of iron/aluminum hydrolyzed precipitate layer on ultrafiltration membrane. Desalination, 2013, 330, 16-21.	8.2	23
244	Confining Free Radicals in Close Vicinity to Contaminants Enables Ultrafast Fentonâ€like Processes in the Interspacing of MoS ₂ Membranes. Angewandte Chemie, 2019, 131, 8218-8222.	2.0	23
245	Removal of arsenic(<scp>iii</scp>) from water by 2D zeolitic imidazolate framework-67 nanosheets. Environmental Science: Nano, 2020, 7, 3616-3626.	4.3	23
246	Spatiotemporal variation and risk assessment of phthalate acid esters (PAEs) in surface water of the Yangtze River Basin, China. Science of the Total Environment, 2022, 836, 155677.	8.0	23
247	Polycyclic aromatic hydrocarbons in effluents from wastewater treatment plants and receiving streams in Tianjin, China. Environmental Monitoring and Assessment, 2011, 177, 467-480.	2.7	22
248	Magneticallyâ€Confined Feâ€Mn Bimetallic Oxide Encapsulation as an Efficient and Recoverable Adsorbent for Arsenic(III) Removal. Particle and Particle Systems Characterization, 2016, 33, 323-331.	2.3	22
249	Modulation of cation trans-membrane transport in GO-MoS2 membranes through simultaneous control of interlayer spacing and ion-nanochannel interactions. Chemosphere, 2019, 222, 156-164.	8.2	22
250	NOM fouling resistance in response to electric field during electro-ultrafiltration: Significance of molecular polarity and weight. Journal of Colloid and Interface Science, 2019, 539, 11-18.	9.4	22
251	Oxygenated polycyclic aromatic hydrocarbons in the surface water environment: Occurrence, ecotoxicity, and sources. Environment International, 2022, 163, 107232.	10.0	22
252	Visualizing the Interfacial Charge Transfer between Photoactive <i>Microcystis aeruginosa</i> and Hydrogenated TiO ₂ . Environmental Science & Technology, 2020, 54, 10323-10332.	10.0	21

#	Article	IF	Citations
253	Wastewater treatment plant upgrade induces the receiving river retaining bioavailable nitrogen sources. Environmental Pollution, 2020, 263, 114478.	7. 5	21
254	Isolation of dissolved organic matter in effluents from sewage treatment plant and evaluation of the influences on its DBPs formation. Separation and Purification Technology, 2008, 64, 31-37.	7.9	20
255	Phototransformation of nitrobenzene in the Songhua River: Kinetics and photoproduct analysis. Journal of Environmental Sciences, 2008, 20, 787-795.	6.1	20
256	Determination of rapid chlorination rate constants by a stopped-flow spectrophotometric competition kinetics method. Water Research, 2014, 55, 126-132.	11.3	20
257	Integrated Fe-based floc-membrane process for alleviating ultrafiltration membrane fouling by humic acid and reservoir water. Journal of Membrane Science, 2018, 563, 873-881.	8.2	20
258	Enhanced Photoreduction of Chromium(VI) Intercalated Ion Exchange in BiOBr0.75I0.25 Layers Structure by Bulk Charge Transfer. ACS Sustainable Chemistry and Engineering, 2019, 7, 2429-2436.	6.7	20
259	Comparison of iron (III) and alum salt on ultrafiltration membrane fouling by alginate. Desalination, 2014, 354, 153-159.	8.2	19
260	Facet-dependent intermediate formation and reaction mechanism of photocatalytic removing hydrophobic anthracene under simulated solar irradiation. Applied Catalysis B: Environmental, 2017, 206, 194-202.	20.2	19
261	Nanostructure-induced colored TiO ₂ array photoelectrodes with full solar spectrum harvesting. Journal of Materials Chemistry A, 2017, 5, 3145-3151.	10.3	19
262	Antifouling by pre-deposited Al hydrolytic flocs on ultrafiltration membrane in the presence of humic acid and bovine serum albumin. Journal of Membrane Science, 2017, 538, 34-40.	8.2	19
263	Synergy of cyano groups and cobalt single atoms in graphitic carbon nitride for enhanced bio-denitrification. Water Research, 2022, 218, 118465.	11.3	19
264	Effect of preozonation on the characteristic transformation of fulvic acid and its subsequent trichloromethane formation potential: Presence or absence of bicarbonate. Chemosphere, 2008, 71, 1639-1645.	8.2	18
265	Preparation of hollow Fe-Al binary metal oxyhydroxide for efficient aqueous fluoride removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520, 580-589.	4.7	18
266	Light absorption modulation of novel Fe ₂ TiO ₅ inverse opals for photoelectrochemical water splitting. New Journal of Chemistry, 2017, 41, 7966-7971.	2.8	18
267	Synergetic Photocatalytic Pure Water Splitting and Self-Supplied Oxygen Activation by 2-D WO ₃ /TiO ₂ Heterostructures. ACS Sustainable Chemistry and Engineering, 2019, 7, 19902-19909.	6.7	18
268	Insight into electroreductive activation process of peroxydisulfate for eliminating organic pollution: Essential role of atomic hydrogen. Chemical Engineering Journal, 2021, 426, 128355.	12.7	18
269	Study of a combined sulfur autotrophic with proton-exchange membrane electrodialytic denitrification technology: Sulfate control and pH balance. Bioresource Technology, 2011, 102, 10803-10809.	9.6	17
270	PAH desorption from sediments with different contents of organic carbon from wastewater receiving rivers. Environmental Science and Pollution Research, 2011, 18, 346-354.	5.3	17

#	Article	IF	Citations
271	Melem-based derivatives as metal-free photocatalysts for simultaneous reduction of Cr(VI) and degradation of 5-Sulfosalicylic acid. Journal of Colloid and Interface Science, 2017, 507, 162-171.	9.4	17
272	Preferential binding between intracellular organic matters and Al13 polymer to enhance coagulation performance. Journal of Environmental Sciences, 2019, 76, 1-11.	6.1	17
273	Regioselective oxidation of tetracycline by permanganate through alternating susceptible moiety and increasing electron donating ability. Journal of Environmental Sciences, 2020, 87, 281-288.	6.1	17
274	Potassium-Ion Recovery with a Polypyrrole Membrane Electrode in Novel Redox Transistor Electrodialysis. Environmental Science & Electrodialysis. Environmental Science & Electrodialysis.	10.0	17
275	Improving ion rejection of graphene oxide conductive membranes by applying electric field. Journal of Membrane Science, 2020, 604, 118077.	8.2	17
276	A biomimetic absorbent for removal of trace level persistent organic pollutants from water. Environmental Pollution, 2007, 147, 337-342.	7. 5	16
277	Electrochemical Degradation of Cyanobacterial Toxin Microcystin-LR Using Ti/RuO ₂ Electrodes in a Continuous Tubular Reactor. Environmental Engineering Science, 2008, 25, 635-642.	1.6	16
278	Aggregation and Dissociation of Aqueous Al ₁₃ Induced by Fluoride Substitution. Environmental Science & Environmenta	10.0	16
279	Capacitive deionization from reconstruction of NiCoAl-mixed metal oxide film electrode based on the "memory effect― Applied Surface Science, 2018, 459, 767-773.	6.1	16
280	Acidic permanganate oxidation of sulfamethoxazole by stepwise electron-proton transfer. Chemosphere, 2019, 222, 71-82.	8.2	16
281	Revealing Surface Charge Population on Flake-Like BiVO (sub) 4 (/sub) Photocatalysts by Single Particle Imaging Spectroscopies. ACS Applied Energy Materials, 2021, 4, 2543-2551.	5.1	16
282	Simultaneous removal of aromatic pollutants and nitrate at high concentrations by hypersaline denitrification:Long-term continuous experiments investigation. Water Research, 2022, 216, 118292.	11.3	16
283	The biogeochemical responses of hyporheic groundwater to the long-run managed aquifer recharge: Linking microbial communities to hydrochemistry and micropollutants. Journal of Hazardous Materials, 2022, 431, 128587.	12.4	16
284	Photoelectrocatalytic degradation of organic contaminant at hybrid BDD-ZnWO4 electrode. Catalysis Communications, 2010, 12, 76-79.	3.3	15
285	Catalyzing denitrification of Paracoccus versutus by immobilized 1,5-dichloroanthraquinone. Biodegradation, 2012, 23, 399-405.	3.0	15
286	Comparison of the effects of aluminum and iron(III) salts on ultrafiltration membrane biofouling in drinking water treatment. Journal of Environmental Sciences, 2018, 63, 96-104.	6.1	15
287	Defect-enhanced photocatalytic removal of dimethylarsinic acid over mixed-phase mesoporous TiO2. Journal of Environmental Sciences, 2020, 91, 35-42.	6.1	15
288	Mo, Fe-codoped metal phosphide nanosheets derived from Prussian blue analogues for efficient overall water splitting. Journal of Colloid and Interface Science, 2022, 615, 456-464.	9.4	15

#	Article	IF	Citations
289	Visualization of Electrochemically Accessible Sites in Flow-through Mode for Maximizing Available Active Area toward Superior Electrocatalytic Ammonia Oxidation. Environmental Science & Eamp; Technology, 2022, 56, 9722-9731.	10.0	15
290	Mechanism of $Cu(II)$ -catalyzed monochloramine decomposition in aqueous solution. Science of the Total Environment, 2009, 407, 4105-4109.	8.0	14
291	Arsenic Species Transformation and Transportation in Arsenic Removal by Fe-Mn Binary Oxide–Coated Diatomite: Pilot-Scale Field Study. Journal of Environmental Engineering, ASCE, 2011, 137, 1122-1127.	1.4	14
292	Treatment of low-turbidity source water by permanganate pre-oxidation: In situ formed hydrous manganese dioxide as filter aid. Separation and Purification Technology, 2013, 117, 69-74.	7.9	14
293	Influence of sedimentation with pre-coagulation on ultrafiltration membrane fouling performance. Science of the Total Environment, 2020, 708, 134671.	8.0	14
294	Profiling microbial removal of micropollutants in sand filters: Biotransformation pathways and associated bacteria. Journal of Hazardous Materials, 2022, 423, 127167.	12.4	14
295	Development and application of innovative technologies for drinking water quality assurance in China. Frontiers of Environmental Science and Engineering in China, 2007, 1, 257-269.	0.8	13
296	Effects of fluoride on the removal of cadmium and phosphate by aluminum coagulation. Journal of Environmental Sciences, 2015, 32, 118-125.	6.1	13
297	Effective treatment of cadmium–cyanide complex by a reagent with combined function of oxidation and coagulation. Chemical Engineering Journal, 2015, 262, 96-100.	12.7	13
298	Identification of Al ₁₃ on the Colloid Surface Using Surface-Enhanced Raman Spectroscopy. Environmental Science & Eamp; Technology, 2017, 51, 2899-2906.	10.0	13
299	Speciation matching mechanisms between orthophosphate and aluminum species during advanced P removal process. Science of the Total Environment, 2018, 642, 1311-1319.	8.0	13
300	Oxygen vacancy modulation of {010}-dominated TiO2 for enhanced photodegradation of Sulfamethoxazole. Catalysis Communications, 2019, 118, 35-38.	3.3	13
301	Development of Amyloid-Fibrils-like Functional Materials from Both Anaerobically Digested Sludge and Waste Activated Sludge for Heavy Metal Adsorption. ACS Sustainable Chemistry and Engineering, 2020, 8, 7795-7805.	6.7	13
302	Epilithic biofilm as a reservoir for functional virulence factors in wastewater-dominant rivers after WWTP upgrade. Journal of Environmental Sciences, 2021, 101, 27-35.	6.1	13
303	Transformation of typical components in anaerobically digested sludge during its conditioning process by KMnO4. Resources, Conservation and Recycling, 2021, 171, 105657.	10.8	13
304	Photocatalytic reduction of bromate at C60 modified Bi2MoO6 under visible light irradiation. Applied Catalysis B: Environmental, $2011, \ldots$	20.2	12
305	Enhanced Oxidation of Tetracycline by Permanganate via the Alkali-Induced Alteration of the Highest Occupied Molecular Orbital and the Electrostatic Potential. Industrial & Engineering Chemistry Research, 2017, 56, 4703-4708.	3.7	12
306	Field-Enhanced Nanoconvection Accelerated Electrocatalytic Conversion of Water Contaminants and Electricity Generation. Environmental Science & Electricity Generation.	10.0	12

#	Article	IF	Citations
307	Rapid control of black and odorous substances from heavily-polluted sediment by oxidation: Efficiency and effects. Frontiers of Environmental Science and Engineering, 2019, 13, 1.	6.0	12
308	Manipulation of Neighboring Palladium and Mercury Atoms for Efficient *OH Transformation in Anodic Alcohol Oxidation and Cathodic Oxygen Reduction Reactions. ACS Applied Materials & Samp; Interfaces, 2020, 12, 12677-12685.	8.0	12
309	Can radicals-orientated chemical oxidation improve the reduction of antibiotic resistance genes (ARGs) by mesophilic anaerobic digestion of sludge?. Journal of Hazardous Materials, 2022, 426, 128001.	12.4	12
310	Systematic Design of a Flow-Through Titanium Electrode-Based Device with Strong Oil Droplet Rejection Property for Superior Oil-in-Water Emulsion Separation Performance. Environmental Science & Envi	10.0	12
311	Fabrication of TiO2/Ti nanotube electrode and the photoelectrochemical behaviors in NaCl solutions. Journal of Solid State Electrochemistry, 2009, 13, 1959-1964.	2.5	11
312	Oxidative removal of quinclorac by permanganate through a rate-limiting $[3 + 2]$ cycloaddition reaction. Environmental Sciences: Processes and Impacts, 2018, 20, 790-797.	3.5	11
313	Determination of pKa and the corresponding structures of quinclorac using combined experimental and theoretical approaches. Journal of Molecular Structure, 2018, 1152, 53-60.	3.6	11
314	Response of ammonia oxidation activities to water-level fluctuations in riparian zones in a column experiment. Chemosphere, 2021, 269, 128702.	8.2	11
315	Regulating Oriented Adsorption on Targeted Nickel Sites for Antibiotic Oxidation with Simultaneous Hydrogen Energy Recovery by a Direct Electrochemical Process. ACS Applied Materials & Samp; Interfaces, 2021, 13, 18673-18682.	8.0	11
316	Coagulation behavior of aluminum salts in eutrophic water: significance of Al13 species and pH control. Environmental Science & Environmental Science	10.0	11
317	Utilization of aluminum hydroxide waste generated in fluoride adsorption and coagulation processes for adsorptive removal of cadmium ion. Frontiers of Environmental Science and Engineering, 2016, 10, 467-476.	6.0	10
318	Synergetic Lipid Extraction with Oxidative Damage Amplifies Cellâ€Membraneâ€Destructive Stresses and Enables Rapid Sterilization. Angewandte Chemie, 2021, 133, 7823-7830.	2.0	10
319	Synchronous Moderate Oxidation and Adsorption on the Surface of Î ³ -MnO ₂ for Efficient lodide Removal from Water. Environmental Science &	10.0	10
320	Hydrotalcite-supported Pd-Cu catalyst for nitrate adsorption and reduction from water. Science Bulletin, 2006, 51, 1431-1438.	9.0	9
321	Formation and distribution of disinfection by-products during chlorine disinfection in the presence of bromide ion. Science Bulletin, 2008, 53, 2717-2723.	9.0	9
322	Partitioning and sources of PAHs in wastewater receiving streams of Tianjin, China. Environmental Monitoring and Assessment, 2012, 184, 1847-1855.	2.7	9
323	Hotâ€Electronâ€Induced Photothermal Catalysis for Energyâ€Dependent Molecular Oxygen Activation. Angewandte Chemie, 2021, 133, 4922-4928.	2.0	9
324	Sustainable nitrogen fixation over Ru single atoms decorated Cu2O using electrons produced from photoelectrocatalytic organics degradation. Chemical Engineering Journal, 2022, 428, 130373.	12.7	9

#	Article	IF	Citations
325	Red mud supported on reduced graphene oxide as photo-Fenton catalysts for organic contaminant degradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640, 128461.	4.7	9
326	Proportion of bromo-DBPs in total DBPs during reclaimed-water chlorination and its related influencing factors. Science in China Series B: Chemistry, 2008, 51, 1000-1008.	0.8	8
327	Influence of floc charge and related distribution mechanisms of humic substances on ultrafiltration membrane behavior. Journal of Membrane Science, 2020, 609, 118260.	8.2	8
328	A promising treatment method for Cr(VI) detoxification and recovery by coupling Fe0/Fe3C/C fine powders and circulating fluidized bed. Chemical Engineering Journal, 2020, 398, 125565.	12.7	8
329	Bioâ€electrochemical denitrification by a novel protonâ€exchange membrane electrodialysis system—a batch mode study. Journal of Chemical Technology and Biotechnology, 2010, 85, 1540-1546.	3.2	7
330	Effect of Hydrous Manganese Dioxide on the Treatment of Low-Turbidity Source Water: Plant-Scale Experience. Journal of Environmental Engineering, ASCE, 2011, 137, 481-486.	1.4	7
331	Optimum conditions for the formation of Al13 polymer and active chlorine in electrolysis process with Ti/RuO2-TiO2 anodes. Journal of Environmental Sciences, 2012, 24, 297-302.	6.1	7
332	Combined genotoxicity of chlorinated products from tyrosine and benzophenone-4. Journal of Hazardous Materials, 2017, 322, 387-393.	12.4	7
333	Enhanced Production of in Situ Keggin Al ₁₃ ⁷⁺ Polymer by a Combined Fe-Al Coagulation Process for the Treatment of High Alkalinity Water. ACS Sustainable Chemistry and Engineering, 2019, 7, 9544-9552.	6.7	7
334	Selection of water source for water transfer based on algal growth potential to prevent algal blooms. Journal of Environmental Sciences, 2021, 103, 246-254.	6.1	7
335	Mixing regime shapes the community assembly process, microbial interaction and proliferation of cyanobacterial species Planktothrix in a stratified lake. Journal of Environmental Sciences, 2022, 115, 103-113.	6.1	7
336	Potential Oscillated Electrochemical Metal Recovery System with Improved Conversion Kinetics and High Levelized Quality. Environmental Science & Eamp; Technology, 2021, 55, 15380-15389.	10.0	7
337	Silvered TiO2 for Facet-Dependent Photocatalytic Denitrification. ACS Applied Nano Materials, 0, , .	5.0	7
338	Utilization of annealed aluminum hydroxide waste with incorporated fluoride for adsorptive removal of heavy metals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 504, 95-104.	4.7	6
339	Species transformation and structure variation of fulvic acid during ozonation. Science in China Series B: Chemistry, 2008, 51, 373-378.	0.8	5
340	Effect of chlorination and ozone pre-oxidation on the photobacteria acute toxicity for dissolved organic matter from sewage treatment plants. Science China Chemistry, 2010, 53, 2394-2398.	8.2	5
341	Species distribution of arsenic in sediments after an unexpected emergent discharge of high-arsenic wastewater into a river. Frontiers of Environmental Science and Engineering, 2013, 7, 568-578.	6.0	5
342	Siderophores provoke extracellular superoxide production by ⟨i⟩Arthrobacter⟨/i⟩ strains during carbon sourcesâ€level fluctuation. Environmental Microbiology, 2022, 24, 894-904.	3.8	5

#	Article	IF	CITATIONS
343	Characteristics and formation of [AlO4Al12(OH)24(H2O)12]7+ in electrolysis process. Science in China Series B: Chemistry, 2002, 45, 515.	0.8	4
344	The effects of different nitrogen compounds on the growth and microcystin production of Microcystis aeruginosa. Journal of Water Supply: Research and Technology - AQUA, 2009, 58, 277-284.	1.4	4
345	Probing Coagulation Behavior of Individual Aluminum Species for Removing Corresponding Disinfection Byproduct Precursors: The Role of Specific Ultraviolet Absorbance. PLoS ONE, 2016, 11, e0148020.	2.5	4
346	Micro-electrode system designed to determine H+ concentration distribution at particle-water interface. Science of the Total Environment, 2019, 646, 544-550.	8.0	4
347	Influence of floc dynamic protection layer on alleviating ultrafiltration membrane fouling induced by humic substances. Journal of Environmental Sciences, 2020, 90, 10-19.	6.1	4
348	Reusability of Al-F Hydroxide Precipitates Generated in Adsorption and Coagulation Treatment of Fluoride for Adsorptive Removal of Arsenic. Environmental Engineering Science, 2015, 32, 613-621.	1.6	3
349	Phosphate Removal from Water Using Novel Fe2+-KMnO4 Process: Significant Role of In Situ–Formed Fe(III). Journal of Environmental Engineering, ASCE, 2015, 141, .	1.4	3
350	Sustainable water environment and water use: A perspective on water resource utilization. Journal of Environmental Sciences, 2016, 50, 1-2.	6.1	3
351	Site-specific surface tailoring for metal ion selectivity <i>via</i> under-coordinated structure engineering. Nanoscale Horizons, 2018, 3, 632-639.	8.0	3
352	Removal of p-arsanilic acid and phenylarsonic acid from water by Fenton coagulation process: influence of substituted amino group. Environmental Science and Pollution Research, 2021, 28, 63319-63329.	5.3	3
353	Characterization on the formation mechanism of FeO/Fe3C/C nanostructure and its effect on PMS activation performance towards BPA degradation. Chemical Engineering Journal, 2022, 435, 134709.	12.7	3
354	Coagulation properties of an electrochemically prepared polyaluminum chloride containing active chlorine. Science Bulletin, 2006, 51, 1955-1960.	1.7	2
355	Microbial responses to the use of NaClO in sediment treatment. Frontiers of Environmental Science and Engineering, 2021, 16 , 1 .	6.0	2
356	Organic P transformations and release from riparian soils responding to water level fluctuation. Environmental Monitoring and Assessment, 2021, 193, 781.	2.7	2
357	Do NH4+-N and AOB affect atenolol removal during simulated riverbank filtration?. Chemosphere, 2022, 301, 134653.	8.2	2
358	Coagulation and Disinfection Efficiency of an Electrochemically Prepared Dual-Function Reagent in Municipal Wastewater. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2006, 41, 2387-2398.	1.7	1
359	Modification of ultrafiltration membrane with iron/aluminum mixed hydrolyzed precipitate layer for humic acid fouling reduction. Desalination and Water Treatment, 2016, 57, 26022-26030.	1.0	1
360	Dual-Functional Ice/Water Interface Allows High-Yield Formation of Al13with Low Energy. ACS Sustainable Chemistry and Engineering, 2017, 5, 8513-8517.	6.7	1

#	Article	IF	CITATIONS
361	A homogeneous reagent for Ni2+ capture from wastewater: The phase transition mechanism and impact evaluation for aerobic sludge. Chemical Engineering Journal, 2022, 440, 135809.	12.7	1