Michael A Packer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7590492/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anti-biofouling functional surfaces for marine aquaculture. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 639, 128313.	4.7	2
2	Benefits and risks of including the bromoform containing seaweed Asparagopsis in feed for the reduction of methane production from ruminants. Algal Research, 2022, 64, 102673.	4.6	54
3	Angiotensin-I-Converting Enzyme Inhibitory Activity of Protein Hydrolysates Generated from the Macroalga Laminaria digitata (Hudson) JV Lamouroux 1813. Foods, 2022, 11, 1792.	4.3	8
4	Aquaculture Production of the Brown Seaweeds Laminaria digitata and Macrocystis pyrifera: Applications in Food and Pharmaceuticals. Molecules, 2021, 26, 1306.	3.8	35
5	Direct electron transport as a possible mechanism of electrogenic activity across a range of benthic cyanobacteria in a photosynthetic microbial fuel cell. New Zealand Journal of Botany, 2020, 58, 378-388.	1.1	2
6	Early biomarker indicators of health in two commercially produced microalgal species important for aquaculture. Aquaculture, 2020, 521, 735053.	3.5	8
7	Biology and biotechnological applications of microalgae and photosynthetic prokaryotes: part 2. New Zealand Journal of Botany, 2020, 58, 275-333.	1.1	2
8	Nitrous oxide emissions from microalgae: potential pathways and significance. Journal of Applied Phycology, 2019, 31, 1-8.	2.8	33
9	Biology and biotechnological applications of microalgae and photosynthetic prokaryotes: Part 1. New Zealand Journal of Botany, 2019, 57, 65-69.	1.1	1
10	Nitrous oxide (N2O) emissions during real domestic wastewater treatment in an outdoor pilot-scale high rate algae pond. Algal Research, 2019, 44, 101670.	4.6	23
11	Greenshellâ"¢ Mussels: A Review of Veterinary Trials and Future Research Directions. Veterinary Sciences, 2018, 5, 36.	1.7	9
12	Evaluation of Photocurrent Generation from Different Photosynthetic Organisms. ChemElectroChem, 2017, 4, 412-417.	3.4	38
13	Demonstration of the use of a photosynthetic microbial fuel cell as an environmental biosensor. International Journal of Nanotechnology, 2017, 14, 213.	0.2	18
14	The biosynthesis of nitrous oxide in the green alga <i>Chlamydomonas reinhardtii</i> . Plant Journal, 2017, 91, 45-56.	5.7	26
15	Introduction: proceedings of the 2015 New Zealand symposium on algae and photosynthetic prokaryotes. New Zealand Journal of Botany, 2017, 55, 1-4.	1.1	4
16	N2O emissions during microalgae outdoor cultivation in 50 L column photobioreactors. Algal Research, 2017, 26, 348-353.	4.6	29
17	Optimising conditions for growth and xanthophyll production in continuous culture of <i>Tisochrysis lutea</i> using photobioreactor arrays and central composite design experiments. New Zealand Journal of Botany, 2017, 55, 64-78.	1.1	11
18	The Cawthron Institute Culture Collection of Micro-algae: a significant national collection. New Zealand Journal of Marine and Freshwater Research, 2016, 50, 291-316.	2.0	18

MICHAEL A PACKER

#	Article	IF	CITATIONS
19	The use of a mucus trap by Dinophysis acuta for the capture of Mesodinium rubrum prey under culture conditions. Harmful Algae, 2016, 58, 1-7.	4.8	14
20	Food and Feed Applications of Algae. Green Energy and Technology, 2016, , 217-247.	0.6	12
21	Photoelectrochemical Wiring of <i>Paulschulzia pseudovolvox</i> (Algae) to Osmium Polymer Modified Electrodes for Harnessing Solar Energy. Advanced Energy Materials, 2015, 5, 1501100.	19.5	63
22	Changes in lipid class content and composition of Isochrysis sp. (T-Iso) grown in batch culture. Aquaculture International, 2015, 23, 1293-1312.	2.2	15
23	Algal and cyanobacterial bioenergy and diversity. New Zealand Journal of Botany, 2014, 52, 1-5.	1.1	5
24	Isolation and characterisation of halo-tolerant <i>Dunaliella</i> strains from Lake Grassmere/Kapara Te Hau, New Zealand. New Zealand Journal of Botany, 2014, 52, 136-152.	1.1	10
25	Photo-electrochemical communication between cyanobacteria (Leptolyngbia sp.) and osmium redox polymer modified electrodes. Physical Chemistry Chemical Physics, 2014, 16, 24676-24680.	2.8	79
26	Changes in oil content, lipid class and fatty acid composition of the microalga <i>Chaetoceros calcitrans</i> over different phases of batch culture. Aquaculture Research, 2014, 45, 1634-1647.	1.8	17
27	A cost-effective microbial fuel cell to detect and select for photosynthetic electrogenic activity in algae and cyanobacteria. Journal of Applied Phycology, 2014, 26, 15-23.	2.8	47
28	Influence of anode potentials on selection of Geobacter strains in microbial electrolysis cells. Bioresource Technology, 2013, 139, 226-234.	9.6	88
29	Characterisation of Antarctic cyanobacteria and comparison with New Zealand strains. Hydrobiologia, 2013, 711, 139-154.	2.0	21
30	Harnessing the self-harvesting capability of benthic cyanobacteria for use in benthic photobioreactors. AMB Express, 2011, 1, 19.	3.0	12
31	Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energy Policy, 2009, 37, 3428-3437.	8.8	331
32	Neuronal Nitric Oxide Synthase Contributes to the Regulation of Hematopoiesis. Molecular Medicine, 2008, 14, 141-149.	4.4	31
33	Nitric oxide negatively regulates mammalian adult neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9566-9571.	7.1	295
34	Urinary selenium and iodine during pregnancy and lactation. Journal of Trace Elements in Medicine and Biology, 2001, 14, 210-217.	3.0	56
35	Peroxynitrite. General Pharmacology, 1998, 31, 179-186.	0.7	165
36	Bioenergetic consequences of accumulating the common 4977-bp mitochondrial DNA deletion. FEBS Journal, 1998, 257, 192-201.	0.2	141

MICHAEL A PACKER

#	Article	IF	CITATIONS
37	INDUCTION OF THE MITOCHONDRIAL PERMEABILITY TRANSITION BY PEROXYNITRITE. Biochemical Society Transactions, 1997, 25, 383S-383S.	3.4	0
38	Induction of the mitochondrial permeability transition by peroxynitrite. Biochemical Society Transactions, 1997, 25, 909-914.	3.4	58
39	Exposure to the parkinsonian neurotoxin 1-methyl-4-phenylpyridinium (MPP+) and nitric oxide simultaneously causes cyclosporin A-sensitive mitochondrial calcium efflux and depolarisation. Biochemical Pharmacology, 1996, 51, 267-273.	4.4	46
40	Alterations to glutathione and nicotinamide nucleotides during the mitochondrial permeability transition induced by peroxynitrite. Biochemical Pharmacology, 1996, 52, 1047-1055.	4.4	83
41	PEROXYNITRITE FORMATION AND MITOCHONDRIAL CALCIUM EFFLUX MAY BE INVOLVED IN CELL DEATH CAUSED BY THE PARKINSONIAN NEUROTOXIN MPP+. Biochemical Society Transactions, 1996, 24, 544S-544S.	3.4	0
42	MITOCHONDRIAL TURNOVER AND DEGRADATION DURING APOPTOSIS IN PC12 CELLS. Biochemical Society Transactions, 1996, 24, 544S-544S.	3.4	0
43	An Evaluation of Urinary Measures of Iodine and Selenium Status. Journal of Trace Elements in Medicine and Biology, 1996, 10, 214-222.	3.0	51
44	Peroxynitrite Formed by Simultaneous Nitric Oxide and Superoxide Generation Causes Cyclosporin-A-Sensitive Mitochondrial Calcium Efflux and Depolarisation. FEBS Journal, 1995, 234, 231-239.	0.2	125
45	Peroxynitrite causes calcium efflux from mitochondria which is prevented by Cyclosporin A. FEBS Letters, 1994, 345, 237-240.	2.8	129