Yibin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7589081/publications.pdf Version: 2024-02-01

		10986	14759
247	18,554	71	127
papers	citations	h-index	g-index
254	254	254	24280
all docs	docs citations	times ranked	citing authors

VIRIN WANC

#	Article	IF	CITATIONS
1	Mitochondrial Creatine Kinase Attenuates Pathologic Remodeling in Heart Failure. Circulation Research, 2022, , CIRCRESAHA121319648.	4.5	6
2	YAP: The nexus between metabolism and cardiac remodeling. Journal of Clinical Investigation, 2022, 132, .	8.2	7
3	Location-Specific and Kinase-Independent GRK5 Function in Heart. JACC Basic To Translational Science, 2022, 7, 381-383.	4.1	Ο
4	Cardio-Protective Messengers From "Good Fat― Circulation Research, 2022, 130, 1507-1509.	4.5	0
5	FMO2 (Flavin Containing Monooxygenase 2) Prevents Cardiac Fibrosis via CYP2J3-SMURF2 Axis. Circulation Research, 2022, 131, 189-206.	4.5	10
6	Sex differences in heart mitochondria regulate diastolic dysfunction. Nature Communications, 2022, 13, .	12.8	30
7	Cardioprotective Effect of Anesthetics: Translating Science to Practice. Journal of Cardiothoracic and Vascular Anesthesia, 2021, 35, 730-740.	1.3	6
8	Kidney Function Indicators Predict Adverse Outcomes of COVID-19. Med, 2021, 2, 38-48.e2.	4.4	47
9	The coming of age for branched-chain amino acids. , 2021, 1, .		1
10	Editorsâ \in M Preamble to The Journal of Cardiovascular Aging. , 2021, 1, .		0
11	The Neutrophil-to-Lymphocyte Ratio Determines Clinical Efficacy of Corticosteroid Therapy in Patients with COVID-19. Cell Metabolism, 2021, 33, 258-269.e3.	16.2	87
12	Damage control in broken heart: DNA damage response as a common path in arrhythmogenic cardiomyopathy. Cardiovascular Research, 2021, 117, 2297-2298.	3.8	0
13	The right ventricular transcriptome signature in Ossabaw swine with cardiometabolic heart failure: implications for the coronary vasculature. Physiological Genomics, 2021, 53, 99-115.	2.3	4
14	Metabolism and Inflammation in Cardiovascular Health and Diseases: Mechanisms to Therapies. Journal of Molecular and Cellular Cardiology, 2021, 157, 113-114.	1.9	3
15	mTOR Activation Initiates Renal Cell Carcinoma Development by Coordinating ERK and p38MAPK. Cancer Research, 2021, 81, 3174-3186.	0.9	12
16	Development and validation of a risk score using complete blood count to predict in-hospital mortality in COVID-19 patients. Med, 2021, 2, 435-447.e4.	4.4	20
17	A risk score based on baseline risk factors for predicting mortality in COVID-19 patients. Current Medical Research and Opinion, 2021, 37, 917-927.	1.9	11
18	Cerebrovascular insufficiency and amyloidogenic signaling in Ossabaw swine with cardiometabolic heart failure. JCI Insight, 2021, 6, .	5.0	8

#	Article	IF	CITATIONS
19	Pharmacological inhibition of arachidonate 12-lipoxygenase ameliorates myocardial ischemia-reperfusion injury in multiple species. Cell Metabolism, 2021, 33, 2059-2075.e10.	16.2	35
20	Metal dependent protein phosphatase PPM family in cardiac health and diseases. Cellular Signalling, 2021, 85, 110061.	3.6	2
21	Branched chain amino acids in cardiac growth and pathology – timing is everything. Journal of Molecular and Cellular Cardiology, 2021, 159, 14-15.	1.9	0
22	Early adaptive chromatin remodeling events precede pathologic phenotypes and are reinforced in the failing heart. Journal of Molecular and Cellular Cardiology, 2021, 160, 73-86.	1.9	17
23	Triiodothyronine and dexamethasone alter potassium channel expression and promote electrophysiological maturation of human-induced pluripotent stem cell-derived cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2021, 161, 130-138.	1.9	12
24	Loss of Endothelial Hypoxia Inducible Factorâ€Prolyl Hydroxylase 2 Induces Cardiac Hypertrophy and Fibrosis. Journal of the American Heart Association, 2021, 10, e022077.	3.7	8
25	A small molecule targeting ALOX12-ACC1 ameliorates nonalcoholic steatohepatitis in mice and macaques. Science Translational Medicine, 2021, 13, eabg8116.	12.4	30
26	Multiple omics study identifies an interspecies conserved driver for nonalcoholic steatohepatitis. Science Translational Medicine, 2021, 13, eabg8117.	12.4	23
27	Circular RNA circEsyt2 regulates vascular smooth muscle cell remodeling via splicing regulation. Journal of Clinical Investigation, 2021, 131, .	8.2	44
28	mRNA Metabolism in Cardiac Development and Disease: Life After Transcription. Physiological Reviews, 2020, 100, 673-694.	28.8	30
29	Gut stem cell aging is driven by mTORC1 via a p38 MAPK-p53 pathway. Nature Communications, 2020, 11, 37.	12.8	87
30	The Role of Elevated Branched-Chain Amino Acids in the Effects of Vertical Sleeve Gastrectomy to Reduce Weight and Improve Glucose Regulation. Cell Reports, 2020, 33, 108239.	6.4	13
31	Metformin Is Associated with Higher Incidence of Acidosis, but Not Mortality, in Individuals with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metabolism, 2020, 32, 537-547.e3.	16.2	116
32	Redefining Cardiac Biomarkers in Predicting Mortality of Inpatients With COVID-19. Hypertension, 2020, 76, 1104-1112.	2.7	118
33	Using "old―medications to fight new COVID-19: Re-purposing with a purpose. Journal of Molecular and Cellular Cardiology, 2020, 146, 41-42.	1.9	1
34	Mitochondrial CaMKII causes adverse metabolic reprogramming and dilated cardiomyopathy. Nature Communications, 2020, 11, 4416.	12.8	54
35	MicroRNAs targeting the SARS-CoV-2 entry receptor ACE2 in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2020, 148, 46-49.	1.9	85
36	Low-Dose Sorafenib Acts as a Mitochondrial Uncoupler and Ameliorates Nonalcoholic Steatohepatitis. Cell Metabolism, 2020, 31, 892-908.e11.	16.2	92

#	Article	IF	CITATIONS
37	In-Hospital Use of Statins Is Associated with a Reduced Risk of Mortality among Individuals with COVID-19. Cell Metabolism, 2020, 32, 176-187.e4.	16.2	400
38	Response by Zhang et al to Letter Regarding Article, "Association of Inpatient Use of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers With Mortality Among Patients With Hypertension Hospitalized With COVID-19― Circulation Research, 2020, 126, e142-e143.	4.5	79
39	Comparative Impacts of ACE (Angiotensin-Converting Enzyme) Inhibitors Versus Angiotensin II Receptor Blockers on the Risk of COVID-19 Mortality. Hypertension, 2020, 76, e15-e17.	2.7	54
40	Continuation versus discontinuation of ACE inhibitors or angiotensin II receptor blockers in COVID-19: effects on blood pressure control and mortality. European Heart Journal - Cardiovascular Pharmacotherapy, 2020, 6, 412-414.	3.0	51
41	Systems Genetics for Mechanistic Discovery in Heart Diseases. Circulation Research, 2020, 126, 1795-1815.	4.5	8
42	Type V Collagen in Scar Tissue Regulates the Size of Scar after Heart Injury. Cell, 2020, 182, 545-562.e23.	28.9	113
43	Tribute to Dr. Steve Schwartz. Journal of Molecular and Cellular Cardiology, 2020, 147, A5-A6.	1.9	0
44	Cardiovascular molecular mechanisms of disease with COVID-19. Journal of Molecular and Cellular Cardiology, 2020, 141, 107.	1.9	4
45	Association of Inpatient Use of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers With Mortality Among Patients With Hypertension Hospitalized With COVID-19. Circulation Research, 2020, 126, 1671-1681.	4.5	948
46	p38 Mitogen-activated protein kinase regulates chamber-specific perinatal growth in heart. Journal of Clinical Investigation, 2020, 130, 5287-5301.	8.2	19
47	Machine Learningâ€supported Characterization of the Oxidative Stressâ€Sensitive Posttranslational Modifications in ISOâ€induced Murine Cardiac Hypertrophy. FASEB Journal, 2020, 34, 1-1.	0.5	0
48	lsoproterenol-Induced Cardiac Diastolic Dysfunction in Mice: A Systems Genetics Analysis. Frontiers in Cardiovascular Medicine, 2019, 6, 100.	2.4	15
49	Western Diet-Fed, Aortic-Banded Ossabaw Swine. JACC Basic To Translational Science, 2019, 4, 404-421.	4.1	48
50	Implantation of an Isoproterenol Mini-Pump to Induce Heart Failure in Mice. Journal of Visualized Experiments, 2019, , .	0.3	9
51	Therapeutic Effect of Targeting Branchedâ€Chain Amino Acid Catabolic Flux in Pressureâ€Overload Induced Heart Failure. Journal of the American Heart Association, 2019, 8, e011625.	3.7	46
52	A new branch connecting thermogenesis and diabetes. Nature Metabolism, 2019, 1, 845-846.	11.9	8
53	BCAA Catabolic Defect Alters Glucose Metabolism in Lean Mice. Frontiers in Physiology, 2019, 10, 1140.	2.8	37
54	Targeting BCAA Catabolism to Treat Obesity-Associated Insulin Resistance. Diabetes, 2019, 68, 1730-1746.	0.6	201

#	Article	IF	CITATIONS
55	Effects of branched-chain amino acids on glucose metabolism in obese, prediabetic men and women: a randomized, crossover study. American Journal of Clinical Nutrition, 2019, 109, 1569-1577.	4.7	25
56	Glucagon Receptor Antagonism Ameliorates Progression of Heart Failure. JACC Basic To Translational Science, 2019, 4, 161-172.	4.1	14
57	RBFox2-miR-34a-Jph2 axis contributes to cardiac decompensation during heart failure. Proceedings of the United States of America, 2019, 116, 6172-6180.	7.1	32
58	Direct visualization of cardiac transcription factories reveals regulatory principles of nuclear architecture during pathological remodeling. Journal of Molecular and Cellular Cardiology, 2019, 128, 198-211.	1.9	13
59	Epigenetics in dilated cardiomyopathy. Current Opinion in Cardiology, 2019, 34, 260-269.	1.8	13
60	WIPI1 is a conserved mediator of right ventricular failure. JCI Insight, 2019, 4, .	5.0	16
61	Right Ventricular Hypertrophy is Associated with Increased MAPK8, Fibronectin, and Extracellular Matrix Regulatory Biomarker (MMP/TIMP) mRNA Levels in a Preâ€Clinical Swine Model of HFpEF. FASEB Journal, 2019, 33, 530.4.	0.5	1
62	Increased Left Ventricular mRNA Levels of the Inflammatory Biomarkers Pentraxinâ€3 and Interleukin 1 Receptorâ€Like 1 are Correlated with Diastolic Dysfunction in a Preâ€Clinical Swine Model of HFpEF. FASEB Journal, 2019, 33, 532.13.	0.5	0
63	ADC at 3.0†T as a noninvasive biomarker for preoperative prediction of Ki67 expression in invasive ductal carcinoma of breast. Clinical Imaging, 2018, 52, 16-22.	1.5	27
64	A personalized, multiomics approach identifies genes involved in cardiac hypertrophy and heart failure. Npj Systems Biology and Applications, 2018, 4, 12.	3.0	22
65	Systems Genetics Approach to Biomarker Discovery: GPNMB and Heart Failure in Mice and Humans. G3: Genes, Genomes, Genetics, 2018, 8, 3499-3506.	1.8	14
66	Epigenomic regulation of heart failure: integrating histone marks, long noncoding RNAs, and chromatin architecture. F1000Research, 2018, 7, 1713.	1.6	20
67	EZH2 RIP-seq Identifies Tissue-specific Long Non-coding RNAs. Current Gene Therapy, 2018, 18, 275-285.	2.0	46
68	The serine/threonine-protein kinase/endoribonuclease IRE1α protects the heart against pressure overload–induced heart failure. Journal of Biological Chemistry, 2018, 293, 9652-9661.	3.4	20
69	Genetic Regulation of Fibroblast Activation and Proliferation in Cardiac Fibrosis. Circulation, 2018, 138, 1224-1235.	1.6	56
70	Humanin analog enhances the protective effect of dexrazoxane against doxorubicin-induced cardiotoxicity. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H634-H643.	3.2	30
71	MR diffusion kurtosis imaging for cancer diagnosis: A meta-analysis of the diagnostic accuracy of quantitative kurtosis value and diffusion coefficient. Clinical Imaging, 2018, 52, 44-56.	1.5	9
72	Excessive βetaâ€adrenergic receptor stimulation induces cardiomyocyte necroptosis via a RIP3â€dependent pathway. FASEB Journal, 2018, 32, 616.6.	0.5	0

#	Article	IF	CITATIONS
73	Light-sheet fluorescence imaging to localize cardiac lineage and protein distribution. Scientific Reports, 2017, 7, 42209.	3.3	41
74	Cardiac myocyte p38α kinase regulates angiogenesis via myocyte-endothelial cell cross-talk during stress-induced remodeling in the heart. Journal of Biological Chemistry, 2017, 292, 12787-12800.	3.4	25
75	A Sarcoplasmic Reticulum Localized Protein Phosphatase Regulates Phospholamban Phosphorylation andÂPromotes Ischemia Reperfusion InjuryÂinÂthe Heart. JACC Basic To Translational Science, 2017, 2, 160-180.	4.1	18
76	A systems genetics approach identifiesTrp53inp2as a link between cardiomyocyte glucose utilization and hypertrophic response. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H728-H741.	3.2	12
77	p38α MAPK regulates proliferation and differentiation of osteoclast progenitors and bone remodeling in an aging-dependent manner. Scientific Reports, 2017, 7, 45964.	3.3	64
78	Function Beyond RNA Splicing for RBFox Family Members in Heart. Journal of Molecular and Cellular Cardiology, 2017, 112, 146-147.	1.9	1
79	Untangle a Broken Heart via Janus Kinase 1. Circulation Research, 2017, 121, 589-590.	4.5	1
80	High-Resolution Mapping of Chromatin Conformation in Cardiac Myocytes Reveals Structural Remodeling of the Epigenome in Heart Failure. Circulation, 2017, 136, 1613-1625.	1.6	135
81	Cardiac Fibroblasts Adopt Osteogenic Fates and Can Be Targeted to Attenuate Pathological Heart Calcification. Cell Stem Cell, 2017, 20, 218-232.e5.	11.1	86
82	Systems Genetics Approach Identifies Gene Pathways and Adamts2 as Drivers of Isoproterenol-Induced Cardiac Hypertrophy and Cardiomyopathy in Mice. Cell Systems, 2017, 4, 121-128.e4.	6.2	39
83	Branched-Chain Amino Acid Negatively Regulates KLF15 Expression via PI3K-AKT Pathway. Frontiers in Physiology, 2017, 8, 853.	2.8	29
84	A Path to Implement Precision Child Health Cardiovascular Medicine. Frontiers in Cardiovascular Medicine, 2017, 4, 36.	2.4	12
85	Inflammatory and apoptotic remodeling in autonomic nervous system following myocardial infarction. PLoS ONE, 2017, 12, e0177750.	2.5	24
86	Wnt11 regulates cardiac chamber development and disease during perinatal maturation. JCI Insight, 2017, 2, .	5.0	21
87	The Calcineurin-FoxO-MuRF1 signaling pathway regulates myofibril integrity in cardiomyocytes. ELife, 2017, 6, .	6.0	33
88	Abstract 345: Maturation of Cardiomyocytes via Rbfox1. Circulation Research, 2017, 121, .	4.5	0
89	Rescue of Pressure Overloadâ€induced Heart Failure by Estrogen Therapy. Journal of the American Heart Association, 2016, 5, .	3.7	48
90	Genetic Dissection of Cardiac Remodeling in an Isoproterenol-Induced Heart Failure Mouse Model. PLoS Genetics, 2016, 12, e1006038.	3.5	70

#	Article	IF	CITATIONS
91	Deconvolution of the Human Endothelial Transcriptome. Cell Systems, 2016, 3, 218-220.	6.2	1
92	Relationship of disease-associated gene expression to cardiac phenotype is buffered by genetic diversity and chromatin regulation. Physiological Genomics, 2016, 48, 601-615.	2.3	4
93	The chromatin-binding protein Smyd1 restricts adult mammalian heart growth. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H1234-H1247.	3.2	51
94	Catabolic Defect of Branched-Chain Amino Acids Promotes Heart Failure. Circulation, 2016, 133, 2038-2049.	1.6	390
95	Cardiac Over-Expression of Creatine Kinase Differentially Affects Cardiomyocyte Function in Ischemic and Non-Ischemic Heart Failure. Biophysical Journal, 2016, 110, 599a.	0.5	0
96	The Hybrid Mouse Diversity Panel: a resource for systems genetics analyses of metabolic and cardiovascular traits. Journal of Lipid Research, 2016, 57, 925-942.	4.2	143
97	Decoding the Long Noncoding RNA During Cardiac Maturation. Circulation: Cardiovascular Genetics, 2016, 9, 395-407.	5.1	39
98	Positive Role for a Negative Calcineurin Regulator in Cardiac Hypertrophy. Hypertension, 2016, 67, 841-842.	2.7	5
99	Patient-related factors that influence coronary artery density in CCTA: a retrospective clinical study. International Journal of Clinical Practice, 2016, 70, B72-B78.	1.7	1
100	Branched chain amino acid metabolic reprogramming in heart failure. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 2270-2275.	3.8	62
101	The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nature Medicine, 2016, 22, 1131-1139.	30.7	331
102	Operationalizing Precision Cardiovascular Medicine. Circulation Research, 2016, 119, 984-987.	4.5	7
103	Keto acid metabolites of branched-chain amino acids inhibit oxidative stress-induced necrosis and attenuate myocardial ischemia–reperfusion injury. Journal of Molecular and Cellular Cardiology, 2016, 101, 90-98.	1.9	16
104	Reciprocal Regulation of the Cardiac Epigenome by Chromatin Structural Proteins Hmgb and Ctcf. Journal of Biological Chemistry, 2016, 291, 15428-15446.	3.4	30
105	p38α MAPK Regulates Lineage Commitment and OPG Synthesis of Bone Marrow Stromal Cells to Prevent Bone Loss under Physiological and Pathological Conditions. Stem Cell Reports, 2016, 6, 566-578.	4.8	32
106	DNA Methylation Indicates Susceptibility to Isoproterenol-Induced Cardiac Pathology and Is Associated With Chromatin States. Circulation Research, 2016, 118, 786-797.	4.5	40
107	p38 MAP kinases in the heart. Gene, 2016, 575, 369-376.	2.2	112
108	Abstract 240: Differential Impact of RBFox Family Proteins in Adult Murine Heart. Circulation Research, 2016, 119, .	4.5	0

#	Article	IF	CITATIONS
109	Cardiac Over-Expression of Creatine Kinase Improves Function in Failing Myocytes. Biophysical Journal, 2015, 108, 595a.	0.5	1
110	Activation of Notch3 promotes pulmonary arterial smooth muscle cells proliferation via Hes1/p27Kip1 signaling pathway. FEBS Open Bio, 2015, 5, 656-660.	2.3	18
111	M1 of Murine Gamma-Herpesvirus 68 Induces Endoplasmic Reticulum Chaperone Production. Scientific Reports, 2015, 5, 17228.	3.3	4
112	High-Density Genotypes of Inbred Mouse Strains: Improved Power and Precision of Association Mapping. G3: Genes, Genomes, Genetics, 2015, 5, 2021-2026.	1.8	37
113	Genetics of common forms of heart failure. Current Opinion in Cardiology, 2015, 30, 222-227.	1.8	28
114	The Elusive Philosopher's Stone in Young Blood. Circulation Research, 2015, 117, 906-908.	4.5	2
115	Deletion of MLIP (Muscle-enriched A-type Lamin-interacting Protein) Leads to Cardiac Hyperactivation of Akt/Mammalian Target of Rapamycin (mTOR) and Impaired Cardiac Adaptation. Journal of Biological Chemistry, 2015, 290, 26699-26714.	3.4	25
116	Mapping Genetic Contributions to Cardiac Pathology Induced by Beta-Adrenergic Stimulation in Mice. Circulation: Cardiovascular Genetics, 2015, 8, 40-49.	5.1	71
117	Hypertrophic Preconditioning. Circulation, 2015, 131, 1468-1470.	1.6	0
118	Dawn of The Epi-LncRNAs. Circulation Research, 2015, 116, 235-236.	4.5	14
119	The Genetic Basis of Coronary Artery Disease and Atrial Fibrillation: A Search for Disease Mechanisms and Therapeutic Targets. Journal of Cardiothoracic and Vascular Anesthesia, 2015, 29, 1328-1332.	1.3	6
120	A H(a)rd Way to Adapt in Cardiac Hypertrophy. Circulation Research, 2015, 117, 484-486.	4.5	2
121	Induction of SENP1 in myocardium contributes to abnormities of mitochondria and cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2015, 79, 115-122.	1.9	32
122	Branched Chain Amino Acids in Heart Failure. , 2015, , 81-88.		1
123	RBFox1-mediated RNA splicing regulates cardiac hypertrophy and heart failure. Journal of Clinical Investigation, 2015, 126, 195-206.	8.2	114
124	Abstract 15: Global RNA Splicing Regulation in Cardiac Maturation. Circulation Research, 2015, 117, .	4.5	0
125	Interferon Regulatory Factors in Heart. Hypertension, 2014, 63, 663-664.	2.7	15
126	Repression of Sox9 by Jag1 Is Continuously Required to Suppress the Default Chondrogenic Fate of Vascular Smooth Muscle Cells. Developmental Cell, 2014, 31, 707-721.	7.0	65

#	Article	IF	CITATIONS
127	Decoding the Noncoding Transcripts in Human Heart Failure. Circulation, 2014, 129, 958-960.	1.6	9
128	Transcriptome Complexity in Cardiac Development and Diseases. Circulation Journal, 2014, 78, 1038-1047.	1.6	4
129	Blind Dates in Sciences. Circulation Research, 2014, 114, 944-946.	4.5	3
130	Protein kinetic signatures of the remodeling heart following isoproterenol stimulation. Journal of Clinical Investigation, 2014, 124, 1734-1744.	8.2	83
131	IRE1 Phosphatase PP2Ce Regulates Adaptive ER Stress Response in the Postpartum Mammary Gland. PLoS ONE, 2014, 9, e111606.	2.5	17
132	Mechanism-Based Engineering Against Anthracycline Cardiotoxicity. Circulation, 2013, 128, 98-100.	1.6	16
133	PPM1l encodes an inositol requiring-protein 1 (IRE1) specific phosphatase that regulates the functional outcome of the ER stress response. Molecular Metabolism, 2013, 2, 405-416.	6.5	37
134	Systems proteomics of cardiac chromatin identifies nucleolin as a regulator of growth and cellular plasticity in cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H1624-H1638.	3.2	31
135	Divergent Mitochondrial Biogenesis Responses in Human Cardiomyopathy. Circulation, 2013, 127, 1957-1967.	1.6	76
136	Nuclear phosphatase PPM1G in cellular survival and neural development. Developmental Dynamics, 2013, 242, 1101-1109.	1.8	18
137	Creatine Kinase-Overexpression Improves Myocardial Energetics, Contractile Dysfunction and Survival in Murine Doxorubicin Cardiotoxicity. PLoS ONE, 2013, 8, e74675.	2.5	45
138	Abstract 235: Global RNA Splicing and Regulation in Cardiac Maturation and Diseases. Circulation Research, 2013, 113, .	4.5	0
139	Quantitative Analysis of the Chromatin Proteome in Disease Reveals Remodeling Principles and Identifies High Mobility Group Protein B2 as a Regulator of Hypertrophic Growth. Molecular and Cellular Proteomics, 2012, 11, M111.014258.	3.8	53
140	Prostaglandin E2 in Remote Control of Myocardial Remodeling. Circulation, 2012, 125, 2818-2820.	1.6	3
141	"Good Enough Solutions―and the Genetics of Complex Diseases. Circulation Research, 2012, 111, 493-504.	4.5	94
142	G i -Biased β 2 AR Signaling Links GRK2 Upregulation to Heart Failure. Circulation Research, 2012, 110, 265-274.	4.5	72
143	Endothelial deletion of murine <i>Jag1</i> leads to valve calcification and congenital heart defects associated with Alagille syndrome. Development (Cambridge), 2012, 139, 4449-4460.	2.5	96
144	Cdc37/Hsp90 Protein-mediated Regulation of IRE1α Protein Activity in Endoplasmic Reticulum Stress Response and Insulin Synthesis in INS-1 Cells. Journal of Biological Chemistry, 2012, 287, 6266-6274.	3.4	32

#	Article	IF	CITATIONS
145	Systems-based approaches to cardiovascular disease. Nature Reviews Cardiology, 2012, 9, 172-184.	13.7	74
146	Hybrid mouse diversity panel: a panel of inbred mouse strains suitable for analysis of complex genetic traits. Mammalian Genome, 2012, 23, 680-692.	2.2	134
147	Tissue-specific and Nutrient Regulation of the Branched-chain α-Keto Acid Dehydrogenase Phosphatase, Protein Phosphatase 2Cm (PP2Cm). Journal of Biological Chemistry, 2012, 287, 23397-23406.	3.4	53
148	Klf15 Orchestrates Circadian Nitrogen Homeostasis. Cell Metabolism, 2012, 15, 311-323.	16.2	119
149	Global impact of RNA splicing on transcriptome remodeling in the heart. Journal of Zhejiang University: Science B, 2012, 13, 603-608.	2.8	1
150	Creatine kinase overexpression improves ATP kinetics and contractile function in postischemic myocardium. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H844-H852.	3.2	30
151	Cardiac vulnerability to ischemia/reperfusion injury drastically increases in late pregnancy. Basic Research in Cardiology, 2012, 107, 271.	5.9	27
152	Intracellular Signaling Pathways in Cardiac Remodeling. , 2012, , 299-308.		1
153	Novel Ser/Thr Protein Phosphatases in Cell Death Regulation. Physiology, 2012, 27, 43-52.	3.1	25
154	p38γ activity is required for maintenance of slow skeletal muscle size. Muscle and Nerve, 2012, 45, 266-273.	2.2	17
155	Creatine kinase–mediated improvement of function in failing mouse hearts provides causal evidence the failing heart is energy starved. Journal of Clinical Investigation, 2012, 122, 291-302.	8.2	117
156	Cardiac Linker Histones Are Differentially Regulated Following Hypertrophic Stimuli. FASEB Journal, 2012, 26, 1127.9.	0.5	0
157	Analysis of Transcriptome Complexity Through RNA Sequencing in Normal and Failing Murine Hearts. Circulation Research, 2011, 109, 1332-1341.	4.5	194
158	Phosphoproteome Analysis Reveals Regulatory Sites in Major Pathways of Cardiac Mitochondria. Molecular and Cellular Proteomics, 2011, 10, S1-S14.	3.8	90
159	The p38 mitogen-activated protein kinase pathway—A potential target for intervention in infarction, hypertrophy, and heart failure. Journal of Molecular and Cellular Cardiology, 2011, 51, 485-490.	1.9	134
160	Protective Role of Transient Pore Openings in Calcium Handling by Cardiac Mitochondria. Journal of Biological Chemistry, 2011, 286, 34851-34857.	3.4	81
161	Catabolism of Branched-Chain Amino Acids in Heart Failure: Insights from Genetic Models. Pediatric Cardiology, 2011, 32, 305-310.	1.3	51
162	Restriction of Big Hearts by a Small RNA. Circulation Research, 2011, 108, 274-276.	4.5	9

#	Article	IF	CITATIONS
163	Absence of progeria-like disease phenotypes in knock-in mice expressing a non-farnesylated version of progerin. Human Molecular Genetics, 2011, 20, 436-444.	2.9	63
164	Branched-chain amino acid metabolism in heart disease: an epiphenomenon or a real culprit?. Cardiovascular Research, 2011, 90, 220-223.	3.8	167
165	MAPK-Activated Protein Kinase-2 in Cardiac Hypertrophy and Cyclooxygenase-2 Regulation in Heart. Circulation Research, 2010, 106, 1434-1443.	4.5	101
166	An accumulation of non-farnesylated prelamin A causes cardiomyopathy but not progeria. Human Molecular Genetics, 2010, 19, 2682-2694.	2.9	91
167	Specific Regulation of Noncanonical p38α Activation by Hsp90-Cdc37 Chaperone Complex in Cardiomyocyte. Circulation Research, 2010, 106, 1404-1412.	4.5	54
168	Differential Regulation of Proteasome Function in Isoproterenol-Induced Cardiac Hypertrophy. Circulation Research, 2010, 107, 1094-1101.	4.5	102
169	Mitogen-Activated Protein Kinase Signaling in the Heart: Angels Versus Demons in a Heart-Breaking Tale. Physiological Reviews, 2010, 90, 1507-1546.	28.8	610
170	Targeted Disruption of Mapk14 (p38MAPKα) in Granulosa Cells and Cumulus Cells Causes Cell-Specific Changes in Gene Expression Profiles that Rescue COC Expansion and Maintain Fertility. Molecular Endocrinology, 2010, 24, 1794-1804.	3.7	47
171	Myocardial Remodeling Is Controlled by Myocyte-Targeted Gene Regulation of Phosphodiesterase Type 5. Journal of the American College of Cardiology, 2010, 56, 2021-2030.	2.8	75
172	Electrochemical Properties and Myocyte Interaction of Carbon Nanotube Microelectrodes. Nano Letters, 2010, 10, 4321-4327.	9.1	43
173	Compensatory hypertrophy induced by ventricular cardiomyocyte-specific COX-2 expression in mice. Journal of Molecular and Cellular Cardiology, 2010, 49, 88-94.	1.9	25
174	Post-translational regulation of calsarcin-1 during pressure overload-induced cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 2010, 48, 1206-1214.	1.9	15
175	Preserved heart function and maintained response to cardiac stresses in a genetic model of cardiomyocyte-targeted deficiency of cyclooxygenase-2. Journal of Molecular and Cellular Cardiology, 2010, 49, 196-209.	1.9	17
176	Myc controls transcriptional regulation of cardiac metabolism and mitochondrial biogenesis in response to pathological stress in mice. Journal of Clinical Investigation, 2010, 120, 1494-1505.	8.2	130
177	Protein phosphatase 2Cm is a critical regulator of branched-chain amino acid catabolism in mice and cultured cells. Journal of Clinical Investigation, 2009, 119, 1678-1687.	8.2	182
178	Chapter 14 Functional Characterization of a Mitochondrial Ser/Thr Protein Phosphatase in Cell Death Regulation. Methods in Enzymology, 2009, 457, 255-273.	1.0	20
179	Free Cholesterol Accumulation in Macrophage Membranes Activates Toll-Like Receptors and p38 Mitogen-Activated Protein Kinase and Induces Cathepsin K. Circulation Research, 2009, 104, 455-465.	4.5	157
180	Mice carrying a conditional Serca2flox allele for the generation of Ca2+ handling-deficient mouse models. Cell Calcium, 2009, 46, 219-225.	2.4	27

#	Article	IF	CITATIONS
181	Inducible and cardiac specific PTEN inactivation protects ischemia/reperfusion injury. Journal of Molecular and Cellular Cardiology, 2009, 46, 193-200.	1.9	73
182	Moderate heart dysfunction in mice with inducible cardiomyocyte-specific excision of the Serca2 gene. Journal of Molecular and Cellular Cardiology, 2009, 47, 180-187.	1.9	128
183	Macrophage deficiency of p38α MAPK promotes apoptosis and plaque necrosis in advanced atherosclerotic lesions in mice. Journal of Clinical Investigation, 2009, 119, 886-98.	8.2	130
184	Proteomic insights into cardiac cell death and survival. Proteomics - Clinical Applications, 2008, 2, 837-844.	1.6	0
185	FUNCTIONAL DIVERSITY OF MAMMALIAN TYPE 2C PROTEIN PHOSPHATASE ISOFORMS: NEW TALES FROM AN OLD FAMILY. Clinical and Experimental Pharmacology and Physiology, 2008, 35, 107-112.	1.9	79
186	Zebrafish as a model for cardiovascular development and disease. Drug Discovery Today: Disease Models, 2008, 5, 135-140.	1.2	35
187	A New (Heat) Shocking Player in Cardiac Hypertrophy. Circulation Research, 2008, 103, 1194-1196.	4.5	6
188	Loss of Bmx Nonreceptor Tyrosine Kinase Prevents Pressure Overload–Induced Cardiac Hypertrophy. Circulation Research, 2008, 103, 1359-1362.	4.5	31
189	A novel mitochondrial matrix serine/threonine protein phosphatase regulates the mitochondria permeability transition pore and is essential for cellular survival and development. Genes and Development, 2007, 21, 784-796.	5.9	125
190	Gi $\hat{l}\pm 1$ -Mediated Cardiac Electrophysiological Remodeling and Arrhythmia in Hypertrophic Cardiomyopathy. Circulation, 2007, 116, 596-605.	1.6	37
191	p38-MAPK Induced Dephosphorylation of $\hat{I}\pm$ -Tropomyosin Is Associated With Depression of Myocardial Sarcomeric Tension and ATPase Activity. Circulation Research, 2007, 100, 408-415.	4.5	86
192	Mitogen-Activated Protein Kinases in Heart Development and Diseases. Circulation, 2007, 116, 1413-1423.	1.6	264
193	Role of an alternatively spliced form of αII-spectrin in localization of connexin 43 in cardiomyocytes and regulation by stress-activated protein kinase. Journal of Molecular and Cellular Cardiology, 2007, 42, 572-581.	1.9	31
194	Inhibition of p38α MAPK rescues cardiomyopathy induced by overexpressed β2-adrenergic receptor, but not β1-adrenergic receptor. Journal of Clinical Investigation, 2007, 117, 1335-1343.	8.2	53
195	Pressure overload induces greater hypertrophy and mortality in female mice with p38α MAPK inhibition. Journal of Molecular and Cellular Cardiology, 2006, 41, 680-688.	1.9	15
196	Distinct gene expression profiles in adult mouse heart following targeted MAP kinase activation. Physiological Genomics, 2006, 25, 50-59.	2.3	41
197	Heart Hypertrophy During Pregnancy: A Better Functioning Heart?. Trends in Cardiovascular Medicine, 2006, 16, 285-291.	4.9	55
198	JNK activation decreases PP2A regulatory subunit B56α expression and mRNA stability and increases AUF1 expression in cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H1183-H1192.	3.2	24

#	Article	IF	CITATIONS
199	TAB-1 Modulates Intracellular Localization of p38 MAP Kinase and Downstream Signaling. Journal of Biological Chemistry, 2006, 281, 6087-6095.	3.4	74
200	Myocardin Induces Cardiomyocyte Hypertrophy. Circulation Research, 2006, 98, 1089-1097.	4.5	137
201	Overexpression of Bone Morphogenetic Protein 10 in Myocardium Disrupts Cardiac Postnatal Hypertrophic Growth. Journal of Biological Chemistry, 2006, 281, 27481-27491.	3.4	49
202	Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nature Medicine, 2005, 11, 214-222.	30.7	831
203	Nitric oxide donors protect murine myocardium against infarction via modulation of mitochondrial permeability transition. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H1290-H1295.	3.2	110
204	p38 MAP Kinase Mediates Inflammatory Cytokine Induction in Cardiomyocytes and Extracellular Matrix Remodeling in Heart. Circulation, 2005, 111, 2494-2502.	1.6	134
205	Cholesterol-induced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor. Journal of Cell Biology, 2005, 171, 61-73.	5.2	311
206	Molecular and Functional Signature of Heart Hypertrophy During Pregnancy. Circulation Research, 2005, 96, 1208-1216.	4.5	173
207	p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes and Development, 2005, 19, 1175-1187.	5.9	516
208	Role of p38? MAPK in cardiac apoptosis and remodeling after myocardial infarction. Journal of Molecular and Cellular Cardiology, 2005, 38, 617-623.	1.9	107
209	Oxidant stress from nitric oxide synthase–3 uncoupling stimulates cardiac pathologic remodeling from chronic pressure load. Journal of Clinical Investigation, 2005, 115, 1221-1231.	8.2	387
210	Sarcoplasmic reticulum calcium defect in Ras-induced hypertrophic cardiomyopathy heart. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H424-H433.	3.2	70
211	Modulation of In Vivo Cardiac Function by Myocyte-Specific Nitric Oxide Synthase-3. Circulation Research, 2004, 94, 657-663.	4.5	65
212	Return of calcium: Manipulating intracellular calcium to prevent cardiac pathologies. Proceedings of the United States of America, 2004, 101, 5697-5698.	7.1	19
213	Targeted Activation of c-Jun N-terminal Kinase in Vivo Induces Restrictive Cardiomyopathy and Conduction Defects. Journal of Biological Chemistry, 2004, 279, 15330-15338.	3.4	97
214	Stress-Activated MAP Kinases in Cardiac Remodeling and Heart Failure New Insights from Transgenic Studies. Trends in Cardiovascular Medicine, 2004, 14, 50-55.	4.9	117
215	Junctophilin type 2 is associated with caveolin-3 and is down-regulated in the hypertrophic and dilated cardiomyopathies. Biochemical and Biophysical Research Communications, 2004, 325, 852-856.	2.1	115

216 Embryonic and Neonatal Cardiac Gene Transfer In Vivo. , 2003, 219, 169-178.

#	Article	IF	CITATIONS
217	Role of 14-3-3-Mediated p38 Mitogen-Activated Protein Kinase Inhibition in Cardiac Myocyte Survival. Circulation Research, 2003, 93, 1026-1028.	4.5	46
218	Fill a Gab(1) in Cardiac Hypertrophy Signaling. Circulation Research, 2003, 93, 186-188.	4.5	6
219	Temporal activation of câ€Jun Nâ€terminal kinase in adult transgenic heart via creâ€loxPâ€mediated DNA recombination. FASEB Journal, 2003, 17, 749-751.	0.5	76
220	Robust Adenoviral and Adeno-Associated Viral Gene Transfer to the In Vivo Murine Heart. Circulation, 2003, 108, 2790-2797.	1.6	63
221	Atrial Chamber-specific Expression of Sarcolipin Is Regulated during Development and Hypertrophic Remodeling. Journal of Biological Chemistry, 2003, 278, 9570-9575.	3.4	102
222	Sustained Activation of JNK/p38 MAPK Pathways in Response to Cisplatin Leads to Fas Ligand Induction and Cell Death in Ovarian Carcinoma Cells. Journal of Biological Chemistry, 2003, 278, 19245-19256.	3.4	319
223	Novel regulation of cardiac forceâ€frequency relation by CREM (cAMP response element modulator). FASEB Journal, 2003, 17, 144-151.	0.5	22
224	Calmodulin Regulation of Excitation-Contraction Coupling in Cardiac Myocytes. Circulation Research, 2003, 92, 659-667.	4.5	33
225	The role of the Grb2–p38 MAPK signaling pathway in cardiac hypertrophy and fibrosis. Journal of Clinical Investigation, 2003, 111, 833-841.	8.2	184
226	An increase in the myocardial PCr/ATP ratio in GLUT4 null mice. FASEB Journal, 2002, 16, 613-615.	0.5	50
227	p38 Mitogen-Activated Protein Kinase Mediates a Negative Inotropic Effect in Cardiac Myocytes. Circulation Research, 2002, 90, 190-196.	4.5	164
228	c-Jun N-Terminal Kinase Activation Mediates Downregulation of Connexin43 in Cardiomyocytes. Circulation Research, 2002, 91, 640-647.	4.5	134
229	Induction of apoptosis in vascular smooth muscle cells by mechanical stretch. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H1709-H1716.	3.2	75
230	Recombinant adenoviral expression of dominant negative lκBα protects brain from cerebral ischemic injury. Biochemical and Biophysical Research Communications, 2002, 299, 14-17.	2.1	35
231	Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery. Nature Medicine, 2002, 8, 864-871.	30.7	344
232	Signal transduction in cardiac hypertrophy — dissecting compensatory versus pathological pathways utilizing a transgenic approach. Current Opinion in Pharmacology, 2001, 1, 134-140.	3.5	36
233	NF-κB-dependent fractalkine induction in rat aortic endothelial cells stimulated by IL-1β, TNF-α, and LPS. Journal of Leukocyte Biology, 2000, 67, 577-584.	3.3	157
234	Adenovirus technology for gene manipulation and functional studies. Drug Discovery Today, 2000, 5, 10-16.	6.4	46

#	Article	IF	CITATIONS
235	Extracellular Signal-regulated Kinase Plays an Essential Role in Hypertrophic Agonists, Endothelin-1 and Phenylephrine-induced Cardiomyocyte Hypertrophy. Journal of Biological Chemistry, 2000, 275, 37895-37901.	3.4	166
236	Involvement of the MKK6-p38γ Cascade in γ-Radiation-Induced Cell Cycle Arrest. Molecular and Cellular Biology, 2000, 20, 4543-4552.	2.3	247
237	Distinguishing Mechanisms From Markers of Cardiac Contractile Dysfunction. Circulation, 2000, 101, 738-739.	1.6	2
238	The role of differential activation of p38â€mitogenâ€activated protein kinase in preconditioned ventricular myocytes. FASEB Journal, 2000, 14, 2237-2246.	0.5	152
239	High-Efficiency, Long-Term Cardiac Expression of Foreign Genes in Living Mouse Embryos and Neonates. Circulation, 2000, 101, 178-184.	1.6	58
240	Calcineurin Enhances Acetylcholinesterase mRNA Stability during C2-C12 Muscle Cell Differentiation. Molecular Pharmacology, 1999, 56, 886-894.	2.3	31
241	Synergistic Roles of Neuregulin-1 and Insulin-like Growth Factor-I in Activation of the Phosphatidylinositol 3-Kinase Pathway and Cardiac Chamber Morphogenesis. Journal of Biological Chemistry, 1999, 274, 37362-37369.	3.4	77
242	Chronic Phospholamban–Sarcoplasmic Reticulum Calcium ATPase Interaction Is the Critical Calcium Cycling Defect in Dilated Cardiomyopathy. Cell, 1999, 99, 313-322.	28.9	482
243	RelB Modulation of ll̂®Bα Stability as a Mechanism of Transcription Suppression of Interleukin-1α (IL-1α), IL-1β, and Tumor Necrosis Factor Alpha in Fibroblasts. Molecular and Cellular Biology, 1999, 19, 7688-7696.	2.3	69
244	Viral sequences enable efficient and tissue-specific expression of transgenes in Xenopus. Nature Biotechnology, 1998, 16, 253-257.	17.5	43
245	Cardiac Muscle Cell Hypertrophy and Apoptosis Induced by Distinct Members of the p38 Mitogen-activated Protein Kinase Family. Journal of Biological Chemistry, 1998, 273, 2161-2168.	3.4	766
246	The Low Molecular Weight GTPase Rho Regulates Myofibril Formation and Organization in Neonatal Rat Ventricular Myocytes. Journal of Biological Chemistry, 1998, 273, 7725-7730.	3.4	176
247	Cardiac Hypertrophy Induced by Mitogen-activated Protein Kinase Kinase 7, a Specific Activator for c-Jun NH2-terminal Kinase in Ventricular Muscle Cells. Journal of Biological Chemistry, 1998, 273, 5423-5426.	3.4	303