Yibin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7589081/publications.pdf

Version: 2024-02-01

247 papers 18,554 citations

71 h-index

10986

127 g-index

254 all docs

254 docs citations

times ranked

254

24280 citing authors

#	Article	IF	Citations
1	Association of Inpatient Use of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers With Mortality Among Patients With Hypertension Hospitalized With COVID-19. Circulation Research, 2020, 126, 1671-1681.	4.5	948
2	Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nature Medicine, 2005, 11, 214-222.	30.7	831
3	Cardiac Muscle Cell Hypertrophy and Apoptosis Induced by Distinct Members of the p38 Mitogen-activated Protein Kinase Family. Journal of Biological Chemistry, 1998, 273, 2161-2168.	3.4	766
4	Mitogen-Activated Protein Kinase Signaling in the Heart: Angels Versus Demons in a Heart-Breaking Tale. Physiological Reviews, 2010, 90, 1507-1546.	28.8	610
5	p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes and Development, 2005, 19, 1175-1187.	5. 9	516
6	Chronic Phospholamban–Sarcoplasmic Reticulum Calcium ATPase Interaction Is the Critical Calcium Cycling Defect in Dilated Cardiomyopathy. Cell, 1999, 99, 313-322.	28.9	482
7	In-Hospital Use of Statins Is Associated with a Reduced Risk of Mortality among Individuals with COVID-19. Cell Metabolism, 2020, 32, 176-187.e4.	16.2	400
8	Catabolic Defect of Branched-Chain Amino Acids Promotes Heart Failure. Circulation, 2016, 133, 2038-2049.	1.6	390
9	Oxidant stress from nitric oxide synthase–3 uncoupling stimulates cardiac pathologic remodeling from chronic pressure load. Journal of Clinical Investigation, 2005, 115, 1221-1231.	8.2	387
10	Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery. Nature Medicine, 2002, 8, 864-871.	30.7	344
11	The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nature Medicine, 2016, 22, 1131-1139.	30.7	331
12	Sustained Activation of JNK/p38 MAPK Pathways in Response to Cisplatin Leads to Fas Ligand Induction and Cell Death in Ovarian Carcinoma Cells. Journal of Biological Chemistry, 2003, 278, 19245-19256.	3.4	319
13	Cholesterol-induced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor. Journal of Cell Biology, 2005, 171, 61-73.	5.2	311
14	Cardiac Hypertrophy Induced by Mitogen-activated Protein Kinase Kinase 7, a Specific Activator for c-Jun NH2-terminal Kinase in Ventricular Muscle Cells. Journal of Biological Chemistry, 1998, 273, 5423-5426.	3.4	303
15	Mitogen-Activated Protein Kinases in Heart Development and Diseases. Circulation, 2007, 116, 1413-1423.	1.6	264
16	Involvement of the MKK6-p38γ Cascade in γ-Radiation-Induced Cell Cycle Arrest. Molecular and Cellular Biology, 2000, 20, 4543-4552.	2.3	247
17	Targeting BCAA Catabolism to Treat Obesity-Associated Insulin Resistance. Diabetes, 2019, 68, 1730-1746.	0.6	201
18	Analysis of Transcriptome Complexity Through RNA Sequencing in Normal and Failing Murine Hearts. Circulation Research, 2011, 109, 1332-1341.	4.5	194

#	Article	IF	Citations
19	The role of the Grb2–p38 MAPK signaling pathway in cardiac hypertrophy and fibrosis. Journal of Clinical Investigation, 2003, 111, 833-841.	8.2	184
20	Protein phosphatase 2Cm is a critical regulator of branched-chain amino acid catabolism in mice and cultured cells. Journal of Clinical Investigation, 2009, 119, 1678-1687.	8.2	182
21	The Low Molecular Weight GTPase Rho Regulates Myofibril Formation and Organization in Neonatal Rat Ventricular Myocytes. Journal of Biological Chemistry, 1998, 273, 7725-7730.	3.4	176
22	Molecular and Functional Signature of Heart Hypertrophy During Pregnancy. Circulation Research, 2005, 96, 1208-1216.	4.5	173
23	Branched-chain amino acid metabolism in heart disease: an epiphenomenon or a real culprit?. Cardiovascular Research, 2011, 90, 220-223.	3.8	167
24	Extracellular Signal-regulated Kinase Plays an Essential Role in Hypertrophic Agonists, Endothelin-1 and Phenylephrine-induced Cardiomyocyte Hypertrophy. Journal of Biological Chemistry, 2000, 275, 37895-37901.	3.4	166
25	p38 Mitogen-Activated Protein Kinase Mediates a Negative Inotropic Effect in Cardiac Myocytes. Circulation Research, 2002, 90, 190-196.	4.5	164
26	NF-κB-dependent fractalkine induction in rat aortic endothelial cells stimulated by IL-1β, TNF-α, and LPS. Journal of Leukocyte Biology, 2000, 67, 577-584.	3.3	157
27	Free Cholesterol Accumulation in Macrophage Membranes Activates Toll-Like Receptors and p38 Mitogen-Activated Protein Kinase and Induces Cathepsin K. Circulation Research, 2009, 104, 455-465.	4.5	157
28	The role of differential activation of p38â€mitogenâ€activated protein kinase in preconditioned ventricular myocytes. FASEB Journal, 2000, 14, 2237-2246.	0.5	152
29	The Hybrid Mouse Diversity Panel: a resource for systems genetics analyses of metabolic and cardiovascular traits. Journal of Lipid Research, 2016, 57, 925-942.	4.2	143
30	Myocardin Induces Cardiomyocyte Hypertrophy. Circulation Research, 2006, 98, 1089-1097.	4.5	137
31	High-Resolution Mapping of Chromatin Conformation in Cardiac Myocytes Reveals Structural Remodeling of the Epigenome in Heart Failure. Circulation, 2017, 136, 1613-1625.	1.6	135
32	c-Jun N-Terminal Kinase Activation Mediates Downregulation of Connexin43 in Cardiomyocytes. Circulation Research, 2002, 91, 640-647.	4.5	134
33	p38 MAP Kinase Mediates Inflammatory Cytokine Induction in Cardiomyocytes and Extracellular Matrix Remodeling in Heart. Circulation, 2005, 111, 2494-2502.	1.6	134
34	The p38 mitogen-activated protein kinase pathwayâ€"A potential target for intervention in infarction, hypertrophy, and heart failure. Journal of Molecular and Cellular Cardiology, 2011, 51, 485-490.	1.9	134
35	Hybrid mouse diversity panel: a panel of inbred mouse strains suitable for analysis of complex genetic traits. Mammalian Genome, 2012, 23, 680-692.	2.2	134
36	Macrophage deficiency of p38 $\hat{l}\pm$ MAPK promotes apoptosis and plaque necrosis in advanced atherosclerotic lesions in mice. Journal of Clinical Investigation, 2009, 119, 886-98.	8.2	130

#	Article	IF	CITATIONS
37	Myc controls transcriptional regulation of cardiac metabolism and mitochondrial biogenesis in response to pathological stress in mice. Journal of Clinical Investigation, 2010, 120, 1494-1505.	8.2	130
38	Moderate heart dysfunction in mice with inducible cardiomyocyte-specific excision of the Serca2 gene. Journal of Molecular and Cellular Cardiology, 2009, 47, 180-187.	1.9	128
39	A novel mitochondrial matrix serine/threonine protein phosphatase regulates the mitochondria permeability transition pore and is essential for cellular survival and development. Genes and Development, 2007, 21, 784-796.	5.9	125
40	Klf15 Orchestrates Circadian Nitrogen Homeostasis. Cell Metabolism, 2012, 15, 311-323.	16.2	119
41	Redefining Cardiac Biomarkers in Predicting Mortality of Inpatients With COVID-19. Hypertension, 2020, 76, 1104-1112.	2.7	118
42	Stress-Activated MAP Kinases in Cardiac Remodeling and Heart Failure New Insights from Transgenic Studies. Trends in Cardiovascular Medicine, 2004, 14, 50-55.	4.9	117
43	Creatine kinase–mediated improvement of function in failing mouse hearts provides causal evidence the failing heart is energy starved. Journal of Clinical Investigation, 2012, 122, 291-302.	8.2	117
44	Metformin Is Associated with Higher Incidence of Acidosis, but Not Mortality, in Individuals with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metabolism, 2020, 32, 537-547.e3.	16.2	116
45	Junctophilin type 2 is associated with caveolin-3 and is down-regulated in the hypertrophic and dilated cardiomyopathies. Biochemical and Biophysical Research Communications, 2004, 325, 852-856.	2.1	115
46	RBFox1-mediated RNA splicing regulates cardiac hypertrophy and heart failure. Journal of Clinical Investigation, 2015, 126, 195-206.	8.2	114
47	Type V Collagen in Scar Tissue Regulates the Size of Scar after Heart Injury. Cell, 2020, 182, 545-562.e23.	28.9	113
48	p38 MAP kinases in the heart. Gene, 2016, 575, 369-376.	2.2	112
49	Nitric oxide donors protect murine myocardium against infarction via modulation of mitochondrial permeability transition. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H1290-H1295.	3.2	110
50	Role of p38? MAPK in cardiac apoptosis and remodeling after myocardial infarction. Journal of Molecular and Cellular Cardiology, 2005, 38, 617-623.	1.9	107
51	Atrial Chamber-specific Expression of Sarcolipin Is Regulated during Development and Hypertrophic Remodeling. Journal of Biological Chemistry, 2003, 278, 9570-9575.	3.4	102
52	Differential Regulation of Proteasome Function in Isoproterenol-Induced Cardiac Hypertrophy. Circulation Research, 2010, 107, 1094-1101.	4.5	102
53	MAPK-Activated Protein Kinase-2 in Cardiac Hypertrophy and Cyclooxygenase-2 Regulation in Heart. Circulation Research, 2010, 106, 1434-1443.	4.5	101
54	Targeted Activation of c-Jun N-terminal Kinase in Vivo Induces Restrictive Cardiomyopathy and Conduction Defects. Journal of Biological Chemistry, 2004, 279, 15330-15338.	3.4	97

#	Article	IF	CITATIONS
55	Endothelial deletion of murine <i>Jag1</i> leads to valve calcification and congenital heart defects associated with Alagille syndrome. Development (Cambridge), 2012, 139, 4449-4460.	2.5	96
56	"Good Enough Solutions―and the Genetics of Complex Diseases. Circulation Research, 2012, 111, 493-504.	4.5	94
57	Low-Dose Sorafenib Acts as a Mitochondrial Uncoupler and Ameliorates Nonalcoholic Steatohepatitis. Cell Metabolism, 2020, 31, 892-908.e11.	16.2	92
58	An accumulation of non-farnesylated prelamin A causes cardiomyopathy but not progeria. Human Molecular Genetics, 2010, 19, 2682-2694.	2.9	91
59	Phosphoproteome Analysis Reveals Regulatory Sites in Major Pathways of Cardiac Mitochondria. Molecular and Cellular Proteomics, 2011, 10, S1-S14.	3.8	90
60	Gut stem cell aging is driven by mTORC1 via a p38 MAPK-p53 pathway. Nature Communications, 2020, 11, 37.	12.8	87
61	The Neutrophil-to-Lymphocyte Ratio Determines Clinical Efficacy of Corticosteroid Therapy in Patients with COVID-19. Cell Metabolism, 2021, 33, 258-269.e3.	16.2	87
62	p38-MAPK Induced Dephosphorylation of \hat{l}_{\pm} -Tropomyosin Is Associated With Depression of Myocardial Sarcomeric Tension and ATPase Activity. Circulation Research, 2007, 100, 408-415.	4.5	86
63	Cardiac Fibroblasts Adopt Osteogenic Fates and Can Be Targeted to Attenuate Pathological Heart Calcification. Cell Stem Cell, 2017, 20, 218-232.e5.	11.1	86
64	MicroRNAs targeting the SARS-CoV-2 entry receptor ACE2 in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2020, 148, 46-49.	1.9	85
65	Protein kinetic signatures of the remodeling heart following isoproterenol stimulation. Journal of Clinical Investigation, 2014, 124, 1734-1744.	8.2	83
66	Protective Role of Transient Pore Openings in Calcium Handling by Cardiac Mitochondria. Journal of Biological Chemistry, 2011, 286, 34851-34857.	3.4	81
67	FUNCTIONAL DIVERSITY OF MAMMALIAN TYPE 2C PROTEIN PHOSPHATASE ISOFORMS: NEW TALES FROM AN OLD FAMILY. Clinical and Experimental Pharmacology and Physiology, 2008, 35, 107-112.	1.9	79
68	Response by Zhang et al to Letter Regarding Article, "Association of Inpatient Use of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers With Mortality Among Patients With Hypertension Hospitalized With COVID-19― Circulation Research, 2020, 126, e142-e143.	4.5	79
69	Synergistic Roles of Neuregulin-1 and Insulin-like Growth Factor-I in Activation of the Phosphatidylinositol 3-Kinase Pathway and Cardiac Chamber Morphogenesis. Journal of Biological Chemistry, 1999, 274, 37362-37369.	3.4	77
70	Temporal activation of câ€Jun Nâ€terminal kinase in adult transgenic heart via creâ€loxPâ€mediated DNA recombination. FASEB Journal, 2003, 17, 749-751.	0.5	76
71	Divergent Mitochondrial Biogenesis Responses in Human Cardiomyopathy. Circulation, 2013, 127, 1957-1967.	1.6	76
72	Induction of apoptosis in vascular smooth muscle cells by mechanical stretch. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H1709-H1716.	3.2	75

#	Article	IF	CITATIONS
73	Myocardial Remodeling Is Controlled by Myocyte-Targeted Gene Regulation of Phosphodiesterase Type 5. Journal of the American College of Cardiology, 2010, 56, 2021-2030.	2.8	75
74	TAB-1 Modulates Intracellular Localization of p38 MAP Kinase and Downstream Signaling. Journal of Biological Chemistry, 2006, 281, 6087-6095.	3.4	74
7 5	Systems-based approaches to cardiovascular disease. Nature Reviews Cardiology, 2012, 9, 172-184.	13.7	74
76	Inducible and cardiac specific PTEN inactivation protects ischemia/reperfusion injury. Journal of Molecular and Cellular Cardiology, 2009, 46, 193-200.	1.9	73
77	G i -Biased \hat{I}^2 2 AR Signaling Links GRK2 Upregulation to Heart Failure. Circulation Research, 2012, 110, 265-274.	4.5	72
78	Mapping Genetic Contributions to Cardiac Pathology Induced by Beta-Adrenergic Stimulation in Mice. Circulation: Cardiovascular Genetics, 2015, 8, 40-49.	5.1	71
79	Sarcoplasmic reticulum calcium defect in Ras-induced hypertrophic cardiomyopathy heart. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H424-H433.	3.2	70
80	Genetic Dissection of Cardiac Remodeling in an Isoproterenol-Induced Heart Failure Mouse Model. PLoS Genetics, 2016, 12, e1006038.	3.5	70
81	RelB Modulation of lîºBî± Stability as a Mechanism of Transcription Suppression of Interleukin-1î± (IL-1î±), IL-1î², and Tumor Necrosis Factor Alpha in Fibroblasts. Molecular and Cellular Biology, 1999, 19, 7688-7696.	2.3	69
82	Modulation of In Vivo Cardiac Function by Myocyte-Specific Nitric Oxide Synthase-3. Circulation Research, 2004, 94, 657-663.	4.5	65
83	Repression of Sox9 by Jag1 Is Continuously Required to Suppress the Default Chondrogenic Fate of Vascular Smooth Muscle Cells. Developmental Cell, 2014, 31, 707-721.	7.0	65
84	p38α MAPK regulates proliferation and differentiation of osteoclast progenitors and bone remodeling in an aging-dependent manner. Scientific Reports, 2017, 7, 45964.	3.3	64
85	Robust Adenoviral and Adeno-Associated Viral Gene Transfer to the In Vivo Murine Heart. Circulation, 2003, 108, 2790-2797.	1.6	63
86	Absence of progeria-like disease phenotypes in knock-in mice expressing a non-farnesylated version of progerin. Human Molecular Genetics, 2011, 20, 436-444.	2.9	63
87	Branched chain amino acid metabolic reprogramming in heart failure. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 2270-2275.	3.8	62
88	High-Efficiency, Long-Term Cardiac Expression of Foreign Genes in Living Mouse Embryos and Neonates. Circulation, 2000, 101, 178-184.	1.6	58
89	Genetic Regulation of Fibroblast Activation and Proliferation in Cardiac Fibrosis. Circulation, 2018, 138, 1224-1235.	1.6	56
90	Heart Hypertrophy During Pregnancy: A Better Functioning Heart?. Trends in Cardiovascular Medicine, 2006, 16, 285-291.	4.9	55

#	Article	IF	CITATIONS
91	Specific Regulation of Noncanonical p38α Activation by Hsp90-Cdc37 Chaperone Complex in Cardiomyocyte. Circulation Research, 2010, 106, 1404-1412.	4.5	54
92	Mitochondrial CaMKII causes adverse metabolic reprogramming and dilated cardiomyopathy. Nature Communications, 2020, 11 , 4416 .	12.8	54
93	Comparative Impacts of ACE (Angiotensin-Converting Enzyme) Inhibitors Versus Angiotensin II Receptor Blockers on the Risk of COVID-19 Mortality. Hypertension, 2020, 76, e15-e17.	2.7	54
94	Quantitative Analysis of the Chromatin Proteome in Disease Reveals Remodeling Principles and Identifies High Mobility Group Protein B2 as a Regulator of Hypertrophic Growth. Molecular and Cellular Proteomics, 2012, 11, M111.014258.	3.8	53
95	Tissue-specific and Nutrient Regulation of the Branched-chain α-Keto Acid Dehydrogenase Phosphatase, Protein Phosphatase 2Cm (PP2Cm). Journal of Biological Chemistry, 2012, 287, 23397-23406.	3.4	53
96	Inhibition of p38 \hat{l} ± MAPK rescues cardiomyopathy induced by overexpressed \hat{l}^2 2-adrenergic receptor, but not \hat{l}^2 1-adrenergic receptor. Journal of Clinical Investigation, 2007, 117, 1335-1343.	8.2	53
97	Catabolism of Branched-Chain Amino Acids in Heart Failure: Insights from Genetic Models. Pediatric Cardiology, 2011, 32, 305-310.	1.3	51
98	The chromatin-binding protein Smyd1 restricts adult mammalian heart growth. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H1234-H1247.	3.2	51
99	Continuation versus discontinuation of ACE inhibitors or angiotensin II receptor blockers in COVID-19: effects on blood pressure control and mortality. European Heart Journal - Cardiovascular Pharmacotherapy, 2020, 6, 412-414.	3.0	51
100	An increase in the myocardial PCr/ATP ratio in GLUT4 null mice. FASEB Journal, 2002, 16, 613-615.	0.5	50
101	Overexpression of Bone Morphogenetic Protein 10 in Myocardium Disrupts Cardiac Postnatal Hypertrophic Growth. Journal of Biological Chemistry, 2006, 281, 27481-27491.	3.4	49
102	Rescue of Pressure Overloadâ€Induced Heart Failure by Estrogen Therapy. Journal of the American Heart Association, 2016, 5, .	3.7	48
103	Western Diet-Fed, Aortic-Banded Ossabaw Swine. JACC Basic To Translational Science, 2019, 4, 404-421.	4.1	48
104	Targeted Disruption of Mapk14 (p38MAPk \hat{l} ±) in Granulosa Cells and Cumulus Cells Causes Cell-Specific Changes in Gene Expression Profiles that Rescue COC Expansion and Maintain Fertility. Molecular Endocrinology, 2010, 24, 1794-1804.	3.7	47
105	Kidney Function Indicators Predict Adverse Outcomes of COVID-19. Med, 2021, 2, 38-48.e2.	4.4	47
106	Adenovirus technology for gene manipulation and functional studies. Drug Discovery Today, 2000, 5, 10-16.	6.4	46
107	Role of 14-3-3-Mediated p38 Mitogen-Activated Protein Kinase Inhibition in Cardiac Myocyte Survival. Circulation Research, 2003, 93, 1026-1028.	4.5	46
108	EZH2 RIP-seq Identifies Tissue-specific Long Non-coding RNAs. Current Gene Therapy, 2018, 18, 275-285.	2.0	46

#	Article	IF	Citations
109	Therapeutic Effect of Targeting Branchedâ€Chain Amino Acid Catabolic Flux in Pressureâ€Overload Induced Heart Failure. Journal of the American Heart Association, 2019, 8, e011625.	3.7	46
110	Creatine Kinase-Overexpression Improves Myocardial Energetics, Contractile Dysfunction and Survival in Murine Doxorubicin Cardiotoxicity. PLoS ONE, 2013, 8, e74675.	2.5	45
111	Circular RNA circEsyt2 regulates vascular smooth muscle cell remodeling via splicing regulation. Journal of Clinical Investigation, 2021, 131, .	8.2	44
112	Viral sequences enable efficient and tissue-specific expression of transgenes in Xenopus. Nature Biotechnology, 1998, 16, 253-257.	17.5	43
113	Electrochemical Properties and Myocyte Interaction of Carbon Nanotube Microelectrodes. Nano Letters, 2010, 10, 4321-4327.	9.1	43
114	Distinct gene expression profiles in adult mouse heart following targeted MAP kinase activation. Physiological Genomics, 2006, 25, 50-59.	2.3	41
115	Light-sheet fluorescence imaging to localize cardiac lineage and protein distribution. Scientific Reports, 2017, 7, 42209.	3.3	41
116	DNA Methylation Indicates Susceptibility to Isoproterenol-Induced Cardiac Pathology and Is Associated With Chromatin States. Circulation Research, 2016, 118, 786-797.	4.5	40
117	Decoding the Long Noncoding RNA During Cardiac Maturation. Circulation: Cardiovascular Genetics, 2016, 9, 395-407.	5.1	39
118	Systems Genetics Approach Identifies Gene Pathways and Adamts2 as Drivers of Isoproterenol-Induced Cardiac Hypertrophy and Cardiomyopathy in Mice. Cell Systems, 2017, 4, 121-128.e4.	6.2	39
119	${\sf Gi\hat{l}\pm 1\text{-}Mediated}$ Cardiac Electrophysiological Remodeling and Arrhythmia in Hypertrophic Cardiomyopathy. Circulation, 2007, 116, 596-605.	1.6	37
120	PPM1l encodes an inositol requiring-protein 1 (IRE1) specific phosphatase that regulates the functional outcome of the ER stress response. Molecular Metabolism, 2013, 2, 405-416.	6.5	37
121	High-Density Genotypes of Inbred Mouse Strains: Improved Power and Precision of Association Mapping. G3: Genes, Genomes, Genetics, 2015, 5, 2021-2026.	1.8	37
122	BCAA Catabolic Defect Alters Glucose Metabolism in Lean Mice. Frontiers in Physiology, 2019, 10, 1140.	2.8	37
123	Signal transduction in cardiac hypertrophy â€" dissecting compensatory versus pathological pathways utilizing a transgenic approach. Current Opinion in Pharmacology, 2001, 1, 134-140.	3.5	36
124	Recombinant adenoviral expression of dominant negative $\hat{\mathbb{I}}^{\mathbb{B}}\hat{\mathbb{I}}^{\pm}$ protects brain from cerebral ischemic injury. Biochemical and Biophysical Research Communications, 2002, 299, 14-17.	2.1	35
125	Zebrafish as a model for cardiovascular development and disease. Drug Discovery Today: Disease Models, 2008, 5, 135-140.	1.2	35
126	Pharmacological inhibition of arachidonate 12-lipoxygenase ameliorates myocardial ischemia-reperfusion injury in multiple species. Cell Metabolism, 2021, 33, 2059-2075.e10.	16.2	35

#	Article	IF	Citations
127	Calmodulin Regulation of Excitation-Contraction Coupling in Cardiac Myocytes. Circulation Research, 2003, 92, 659-667.	4.5	33
128	The Calcineurin-FoxO-MuRF1 signaling pathway regulates myofibril integrity in cardiomyocytes. ELife, 2017, 6, .	6.0	33
129	Cdc37/Hsp90 Protein-mediated Regulation of IRE1α Protein Activity in Endoplasmic Reticulum Stress Response and Insulin Synthesis in INS-1 Cells. Journal of Biological Chemistry, 2012, 287, 6266-6274.	3.4	32
130	Induction of SENP1 in myocardium contributes to abnormities of mitochondria and cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2015, 79, 115-122.	1.9	32
131	p38α MAPK Regulates Lineage Commitment and OPG Synthesis of Bone Marrow Stromal Cells to Prevent Bone Loss under Physiological and Pathological Conditions. Stem Cell Reports, 2016, 6, 566-578.	4.8	32
132	RBFox2-miR-34a-Jph2 axis contributes to cardiac decompensation during heart failure. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6172-6180.	7.1	32
133	Calcineurin Enhances Acetylcholinesterase mRNA Stability during C2-C12 Muscle Cell Differentiation. Molecular Pharmacology, 1999, 56, 886-894.	2.3	31
134	Role of an alternatively spliced form of $\hat{l}\pm II$ -spectrin in localization of connexin 43 in cardiomyocytes and regulation by stress-activated protein kinase. Journal of Molecular and Cellular Cardiology, 2007, 42, 572-581.	1.9	31
135	Loss of Bmx Nonreceptor Tyrosine Kinase Prevents Pressure Overload–Induced Cardiac Hypertrophy. Circulation Research, 2008, 103, 1359-1362.	4.5	31
136	Systems proteomics of cardiac chromatin identifies nucleolin as a regulator of growth and cellular plasticity in cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H1624-H1638.	3.2	31
137	Creatine kinase overexpression improves ATP kinetics and contractile function in postischemic myocardium. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H844-H852.	3.2	30
138	Reciprocal Regulation of the Cardiac Epigenome by Chromatin Structural Proteins Hmgb and Ctcf. Journal of Biological Chemistry, 2016, 291, 15428-15446.	3.4	30
139	Humanin analog enhances the protective effect of dexrazoxane against doxorubicin-induced cardiotoxicity. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H634-H643.	3.2	30
140	mRNA Metabolism in Cardiac Development and Disease: Life After Transcription. Physiological Reviews, 2020, 100, 673-694.	28.8	30
141	A small molecule targeting ALOX12-ACC1 ameliorates nonalcoholic steatohepatitis in mice and macaques. Science Translational Medicine, 2021, 13, eabg8116.	12.4	30
142	Sex differences in heart mitochondria regulate diastolic dysfunction. Nature Communications, 2022, 13, .	12.8	30
143	Branched-Chain Amino Acid Negatively Regulates KLF15 Expression via PI3K-AKT Pathway. Frontiers in Physiology, 2017, 8, 853.	2.8	29
144	Genetics of common forms of heart failure. Current Opinion in Cardiology, 2015, 30, 222-227.	1.8	28

#	Article	IF	Citations
145	Mice carrying a conditional Serca2flox allele for the generation of Ca2+ handling-deficient mouse models. Cell Calcium, 2009, 46, 219-225.	2.4	27
146	Cardiac vulnerability to ischemia/reperfusion injury drastically increases in late pregnancy. Basic Research in Cardiology, 2012, 107, 271.	5.9	27
147	ADC at 3.0â€T as a noninvasive biomarker for preoperative prediction of Ki67 expression in invasive ductal carcinoma of breast. Clinical Imaging, 2018, 52, 16-22.	1.5	27
148	Compensatory hypertrophy induced by ventricular cardiomyocyte-specific COX-2 expression in mice. Journal of Molecular and Cellular Cardiology, 2010, 49, 88-94.	1.9	25
149	Novel Ser/Thr Protein Phosphatases in Cell Death Regulation. Physiology, 2012, 27, 43-52.	3.1	25
150	Deletion of MLIP (Muscle-enriched A-type Lamin-interacting Protein) Leads to Cardiac Hyperactivation of Akt/Mammalian Target of Rapamycin (mTOR) and Impaired Cardiac Adaptation. Journal of Biological Chemistry, 2015, 290, 26699-26714.	3.4	25
151	Cardiac myocyte p38î± kinase regulates angiogenesis via myocyte-endothelial cell cross-talk during stress-induced remodeling in the heart. Journal of Biological Chemistry, 2017, 292, 12787-12800.	3.4	25
152	Effects of branched-chain amino acids on glucose metabolism in obese, prediabetic men and women: a randomized, crossover study. American Journal of Clinical Nutrition, 2019, 109, 1569-1577.	4.7	25
153	JNK activation decreases PP2A regulatory subunit B56α expression and mRNA stability and increases AUF1 expression in cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H1183-H1192.	3.2	24
154	Inflammatory and apoptotic remodeling in autonomic nervous system following myocardial infarction. PLoS ONE, 2017, 12, e0177750.	2.5	24
155	Multiple omics study identifies an interspecies conserved driver for nonalcoholic steatohepatitis. Science Translational Medicine, 2021, 13, eabg8117.	12.4	23
156	Novel regulation of cardiac forceâ€frequency relation by CREM (cAMP response element modulator). FASEB Journal, 2003, 17, 144-151.	0.5	22
157	A personalized, multiomics approach identifies genes involved in cardiac hypertrophy and heart failure. Npj Systems Biology and Applications, 2018, 4, 12.	3.0	22
158	Wnt $11\mathrm{regulates}$ cardiac chamber development and disease during perinatal maturation. JCI Insight, 2017, 2, .	5.0	21
159	Chapter 14 Functional Characterization of a Mitochondrial Ser/Thr Protein Phosphatase in Cell Death Regulation. Methods in Enzymology, 2009, 457, 255-273.	1.0	20
160	Epigenomic regulation of heart failure: integrating histone marks, long noncoding RNAs, and chromatin architecture. F1000Research, 2018, 7, 1713.	1.6	20
161	The serine/threonine-protein kinase/endoribonuclease IRE1α protects the heart against pressure overload–induced heart failure. Journal of Biological Chemistry, 2018, 293, 9652-9661.	3.4	20
162	Development and validation of a risk score using complete blood count to predict in-hospital mortality in COVID-19 patients. Med, 2021, 2, 435-447.e4.	4.4	20

#	Article	IF	CITATIONS
163	Return of calcium: Manipulating intracellular calcium to prevent cardiac pathologies. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5697-5698.	7.1	19
164	p38 Mitogen-activated protein kinase regulates chamber-specific perinatal growth in heart. Journal of Clinical Investigation, 2020, 130, 5287-5301.	8.2	19
165	Nuclear phosphatase PPM1G in cellular survival and neural development. Developmental Dynamics, 2013, 242, 1101-1109.	1.8	18
166	Activation of Notch3 promotes pulmonary arterial smooth muscle cells proliferation via Hes1/p27Kip1 signaling pathway. FEBS Open Bio, 2015, 5, 656-660.	2.3	18
167	A Sarcoplasmic Reticulum Localized Protein Phosphatase Regulates Phospholamban Phosphorylation andÂPromotes Ischemia Reperfusion InjuryÂinÂthe Heart. JACC Basic To Translational Science, 2017, 2, 160-180.	4.1	18
168	Preserved heart function and maintained response to cardiac stresses in a genetic model of cardiomyocyte-targeted deficiency of cyclooxygenase-2. Journal of Molecular and Cellular Cardiology, 2010, 49, 196-209.	1.9	17
169	$p38\hat{l}^3$ activity is required for maintenance of slow skeletal muscle size. Muscle and Nerve, 2012, 45, 266-273.	2.2	17
170	Early adaptive chromatin remodeling events precede pathologic phenotypes and are reinforced in the failing heart. Journal of Molecular and Cellular Cardiology, 2021, 160, 73-86.	1.9	17
171	IRE1 Phosphatase PP2Ce Regulates Adaptive ER Stress Response in the Postpartum Mammary Gland. PLoS ONE, 2014, 9, e111606.	2.5	17
172	Mechanism-Based Engineering Against Anthracycline Cardiotoxicity. Circulation, 2013, 128, 98-100.	1.6	16
173	Keto acid metabolites of branched-chain amino acids inhibit oxidative stress-induced necrosis and attenuate myocardial ischemia–reperfusion injury. Journal of Molecular and Cellular Cardiology, 2016, 101, 90-98.	1.9	16
174	WIPI1 is a conserved mediator of right ventricular failure. JCI Insight, 2019, 4, .	5.0	16
175	Pressure overload induces greater hypertrophy and mortality in female mice with p38α MAPK inhibition. Journal of Molecular and Cellular Cardiology, 2006, 41, 680-688.	1.9	15
176	Post-translational regulation of calsarcin-1 during pressure overload-induced cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 2010, 48, 1206-1214.	1.9	15
177	Interferon Regulatory Factors in Heart. Hypertension, 2014, 63, 663-664.	2.7	15
178	Isoproterenol-Induced Cardiac Diastolic Dysfunction in Mice: A Systems Genetics Analysis. Frontiers in Cardiovascular Medicine, 2019, 6, 100.	2.4	15
179	Dawn of The Epi-LncRNAs. Circulation Research, 2015, 116, 235-236.	4.5	14
180	Systems Genetics Approach to Biomarker Discovery: GPNMB and Heart Failure in Mice and Humans. G3: Genes, Genomes, Genetics, 2018, 8, 3499-3506.	1.8	14

#	Article	IF	CITATIONS
181	Glucagon Receptor Antagonism Ameliorates Progression of Heart Failure. JACC Basic To Translational Science, 2019, 4, 161-172.	4.1	14
182	Direct visualization of cardiac transcription factories reveals regulatory principles of nuclear architecture during pathological remodeling. Journal of Molecular and Cellular Cardiology, 2019, 128, 198-211.	1.9	13
183	Epigenetics in dilated cardiomyopathy. Current Opinion in Cardiology, 2019, 34, 260-269.	1.8	13
184	The Role of Elevated Branched-Chain Amino Acids in the Effects of Vertical Sleeve Gastrectomy to Reduce Weight and Improve Glucose Regulation. Cell Reports, 2020, 33, 108239.	6.4	13
185	A systems genetics approach identifiesTrp53inp2as a link between cardiomyocyte glucose utilization and hypertrophic response. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H728-H741.	3.2	12
186	A Path to Implement Precision Child Health Cardiovascular Medicine. Frontiers in Cardiovascular Medicine, 2017, 4, 36.	2.4	12
187	mTOR Activation Initiates Renal Cell Carcinoma Development by Coordinating ERK and p38MAPK. Cancer Research, 2021, 81, 3174-3186.	0.9	12
188	Triiodothyronine and dexamethasone alter potassium channel expression and promote electrophysiological maturation of human-induced pluripotent stem cell-derived cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2021, 161, 130-138.	1.9	12
189	A risk score based on baseline risk factors for predicting mortality in COVID-19 patients. Current Medical Research and Opinion, 2021, 37, 917-927.	1.9	11
190	FMO2 (Flavin Containing Monooxygenase 2) Prevents Cardiac Fibrosis via CYP2J3-SMURF2 Axis. Circulation Research, 2022, 131, 189-206.	4.5	10
191	Restriction of Big Hearts by a Small RNA. Circulation Research, 2011, 108, 274-276.	4.5	9
192	Decoding the Noncoding Transcripts in Human Heart Failure. Circulation, 2014, 129, 958-960.	1.6	9
193	MR diffusion kurtosis imaging for cancer diagnosis: A meta-analysis of the diagnostic accuracy of quantitative kurtosis value and diffusion coefficient. Clinical Imaging, 2018, 52, 44-56.	1.5	9
194	Implantation of an Isoproterenol Mini-Pump to Induce Heart Failure in Mice. Journal of Visualized Experiments, $2019, , .$	0.3	9
195	A new branch connecting thermogenesis and diabetes. Nature Metabolism, 2019, 1, 845-846.	11.9	8
196	Systems Genetics for Mechanistic Discovery in Heart Diseases. Circulation Research, 2020, 126, 1795-1815.	4.5	8
197	Cerebrovascular insufficiency and amyloidogenic signaling in Ossabaw swine with cardiometabolic heart failure. JCI Insight, 2021, 6, .	5.0	8
198	Loss of Endothelial Hypoxia Inducible Factorâ€Prolyl Hydroxylase 2 Induces Cardiac Hypertrophy and Fibrosis. Journal of the American Heart Association, 2021, 10, e022077.	3.7	8

#	Article	IF	Citations
199	Operationalizing Precision Cardiovascular Medicine. Circulation Research, 2016, 119, 984-987.	4.5	7
200	YAP: The nexus between metabolism and cardiac remodeling. Journal of Clinical Investigation, 2022, 132, .	8.2	7
201	Fill a Gab(1) in Cardiac Hypertrophy Signaling. Circulation Research, 2003, 93, 186-188.	4.5	6
202	A New (Heat) Shocking Player in Cardiac Hypertrophy. Circulation Research, 2008, 103, 1194-1196.	4.5	6
203	The Genetic Basis of Coronary Artery Disease and Atrial Fibrillation: A Search for Disease Mechanisms and Therapeutic Targets. Journal of Cardiothoracic and Vascular Anesthesia, 2015, 29, 1328-1332.	1.3	6
204	Cardioprotective Effect of Anesthetics: Translating Science to Practice. Journal of Cardiothoracic and Vascular Anesthesia, 2021, 35, 730-740.	1.3	6
205	Mitochondrial Creatine Kinase Attenuates Pathologic Remodeling in Heart Failure. Circulation Research, 2022, , CIRCRESAHA121319648.	4.5	6
206	Positive Role for a Negative Calcineurin Regulator in Cardiac Hypertrophy. Hypertension, 2016, 67, 841-842.	2.7	5
207	Transcriptome Complexity in Cardiac Development and Diseases. Circulation Journal, 2014, 78, 1038-1047.	1.6	4
208	M1 of Murine Gamma-Herpesvirus 68 Induces Endoplasmic Reticulum Chaperone Production. Scientific Reports, 2015, 5, 17228.	3.3	4
209	Relationship of disease-associated gene expression to cardiac phenotype is buffered by genetic diversity and chromatin regulation. Physiological Genomics, 2016, 48, 601-615.	2.3	4
210	Cardiovascular molecular mechanisms of disease with COVID-19. Journal of Molecular and Cellular Cardiology, 2020, 141, 107.	1.9	4
211	The right ventricular transcriptome signature in Ossabaw swine with cardiometabolic heart failure: implications for the coronary vasculature. Physiological Genomics, 2021, 53, 99-115.	2.3	4
212	Prostaglandin E2 in Remote Control of Myocardial Remodeling. Circulation, 2012, 125, 2818-2820.	1.6	3
213	Blind Dates in Sciences. Circulation Research, 2014, 114, 944-946.	4.5	3
214	Metabolism and Inflammation in Cardiovascular Health and Diseases: Mechanisms to Therapies. Journal of Molecular and Cellular Cardiology, 2021, 157, 113-114.	1.9	3
215	Distinguishing Mechanisms From Markers of Cardiac Contractile Dysfunction. Circulation, 2000, 101, 738-739.	1.6	2
216	Embryonic and Neonatal Cardiac Gene Transfer In Vivo. , 2003, 219, 169-178.		2

#	Article	IF	CITATIONS
217	The Elusive Philosopher's Stone in Young Blood. Circulation Research, 2015, 117, 906-908.	4.5	2
218	A H(a)rd Way to Adapt in Cardiac Hypertrophy. Circulation Research, 2015, 117, 484-486.	4.5	2
219	Metal dependent protein phosphatase PPM family in cardiac health and diseases. Cellular Signalling, 2021, 85, 110061.	3.6	2
220	Global impact of RNA splicing on transcriptome remodeling in the heart. Journal of Zhejiang University: Science B, 2012, 13, 603-608.	2.8	1
221	Intracellular Signaling Pathways in Cardiac Remodeling. , 2012, , 299-308.		1
222	Cardiac Over-Expression of Creatine Kinase Improves Function in Failing Myocytes. Biophysical Journal, 2015, 108, 595a.	0.5	1
223	Deconvolution of the Human Endothelial Transcriptome. Cell Systems, 2016, 3, 218-220.	6.2	1
224	Patient-related factors that influence coronary artery density in CCTA: a retrospective clinical study. International Journal of Clinical Practice, 2016, 70, B72-B78.	1.7	1
225	Function Beyond RNA Splicing for RBFox Family Members in Heart. Journal of Molecular and Cellular Cardiology, 2017, 112, 146-147.	1.9	1
226	Untangle a Broken Heart via Janus Kinase 1. Circulation Research, 2017, 121, 589-590.	4.5	1
227	Using "old―medications to fight new COVID-19: Re-purposing with a purpose. Journal of Molecular and Cellular Cardiology, 2020, 146, 41-42.	1.9	1
228	The coming of age for branched-chain amino acids. , 2021, 1, .		1
229	Branched Chain Amino Acids in Heart Failure. , 2015, , 81-88.		1
230	Right Ventricular Hypertrophy is Associated with Increased MAPK8, Fibronectin, and Extracellular Matrix Regulatory Biomarker (MMP/TIMP) mRNA Levels in a Preâ€Clinical Swine Model of HFpEF. FASEB Journal, 2019, 33, 530.4.	0.5	1
231	Proteomic insights into cardiac cell death and survival. Proteomics - Clinical Applications, 2008, 2, 837-844.	1.6	0
232	Hypertrophic Preconditioning. Circulation, 2015, 131, 1468-1470.	1.6	0
233	Cardiac Over-Expression of Creatine Kinase Differentially Affects Cardiomyocyte Function in Ischemic and Non-Ischemic Heart Failure. Biophysical Journal, 2016, 110, 599a.	0.5	0
234	Tribute to Dr. Steve Schwartz. Journal of Molecular and Cellular Cardiology, 2020, 147, A5-A6.	1.9	0

#	Article	IF	CITATIONS
235	Editors' Preamble to The Journal of Cardiovascular Aging. , 2021, 1, .		O
236	Damage control in broken heart: DNA damage response as a common path in arrhythmogenic cardiomyopathy. Cardiovascular Research, 2021 , 117 , 2297 - 2298 .	3.8	0
237	Branched chain amino acids in cardiac growth and pathology – timing is everything. Journal of Molecular and Cellular Cardiology, 2021, 159, 14-15.	1.9	O
238	Cardiac Linker Histones Are Differentially Regulated Following Hypertrophic Stimuli. FASEB Journal, 2012, 26, 1127.9.	0.5	0
239	Abstract 235: Global RNA Splicing and Regulation in Cardiac Maturation and Diseases. Circulation Research, 2013, 113, .	4.5	0
240	Abstract 15: Global RNA Splicing Regulation in Cardiac Maturation. Circulation Research, 2015, 117, .	4.5	0
241	Abstract 240: Differential Impact of RBFox Family Proteins in Adult Murine Heart. Circulation Research, 2016, 119, .	4.5	0
242	Abstract 345: Maturation of Cardiomyocytes via Rbfox1. Circulation Research, 2017, 121, .	4.5	0
243	Excessive βetaâ€adrenergic receptor stimulation induces cardiomyocyte necroptosis via a RIP3â€dependent pathway. FASEB Journal, 2018, 32, 616.6.	0.5	O
244	Increased Left Ventricular mRNA Levels of the Inflammatory Biomarkers Pentraxinâ€3 and Interleukin 1 Receptorâ€Like 1 are Correlated with Diastolic Dysfunction in a Preâ€Clinical Swine Model of HFpEF. FASEB Journal, 2019, 33, 532.13.	0.5	0
245	Machine Learningâ€supported Characterization of the Oxidative Stressâ€Sensitive Posttranslational Modifications in ISOâ€induced Murine Cardiac Hypertrophy. FASEB Journal, 2020, 34, 1-1.	0.5	0
246	Location-Specific and Kinase-Independent GRK5 Function in Heart. JACC Basic To Translational Science, 2022, 7, 381-383.	4.1	0
247	Cardio-Protective Messengers From "Good Fat― Circulation Research, 2022, 130, 1507-1509.	4. 5	O