Wang Zhenyu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7587864/publications.pdf

Version: 2024-02-01

28	919	18	25
papers	citations	h-index	g-index
30	30	30	1288
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Porous Co2VO4 Nanodisk as a High-Energy and Fast-Charging Anode for Lithium-Ion Batteries. Nano-Micro Letters, 2022, 14, 5.	27.0	93
2	First-principles insights into tin-based two-dimensional hybrid halide perovskites for photovoltaics. Journal of Materials Chemistry A, 2018, 6, 5652-5660.	10.3	71
3	Room-temperature synthesis of colloidal SnO2 quantum dot solution and ex-situ deposition on carbon nanotubes as anode materials for lithium ion batteries. Journal of Alloys and Compounds, 2016, 680, 109-115.	5.5	68
4	Anchoring silicon on the basal plane of graphite via a three-phase heterostructure for highly reversible lithium storage. Energy Storage Materials, 2021, 34, 311-319.	18.0	65
5	Core–Shell Co ₂ VO ₄ /Carbon Composite Anode for Highly Stable and Fast-Charging Sodium-Ion Batteries. ACS Applied Materials & Description of the American State of the Composite Anode for Highly Stable and Fast-Charging Sodium-Ion Batteries. ACS Applied Materials & Description of the Composite Anode for Highly Stable and Fast-Charging Sodium-Ion Batteries. ACS Applied Materials & Description of the Composite Anode for Highly Stable and Fast-Charging Sodium-Ion Batteries. ACS Applied Materials & Description of the Composite Anode for Highly Stable and Fast-Charging Sodium-Ion Batteries. ACS Applied Materials & Description of the Composite Anode for Highly Stable and Fast-Charging Sodium-Ion Batteries. ACS Applied Materials & Description of the Composite Anode for Highly Stable and Fast-Charging Sodium-Ion Batteries. ACS Applied Materials & Description of the Composite Anode for Highly Stable and Past-Charging Sodium-Ion Batteries. ACS Applied Materials & Description of the Composite Anode Fast-Charging Sodium-Ion Batteries. ACS Applied Materials & Description of the Composite Anode Fast-Charging Sodium-Ion Batteries. ACS Applied Materials & Description of the Composite Anode Fast-Charging Sodium	8.0	65
6	Charge-redistribution-induced new active sites on (0†0†1) facets of α-Mn2O3 for significantly enhanced selective catalytic reduction of NO by NH3. Journal of Catalysis, 2019, 370, 30-37.	6.2	54
7	Cu-ln2S3 nanorod induced the growth of Cu&In co-doped multi-arm CdS hetero-phase junction to promote photocatalytic H2 evolution. Chemical Engineering Journal, 2020, 399, 125785.	12.7	50
8	An ultrathin Al ₂ O ₃ bridging layer between CdS and ZnO boosts photocatalytic hydrogen production. Journal of Materials Chemistry A, 2020, 8, 11031-11042.	10.3	49
9	Work function and band alignment of few-layer violet phosphorene. Journal of Materials Chemistry A, 2020, 8, 8586-8592.	10.3	43
10	Chemisorption of NO ₂ to MoS ₂ Nanostructures and its Effects for MoS ₂ Sensors. ChemNanoMat, 2019, 5, 1123-1130.	2.8	41
11	Carbon nanotube hybrids with MoS2 and WS2 synthesized with control of crystal structure and morphology. Carbon, 2015, 85, 168-175.	10.3	38
12	Synthesis of Hierarchical Sb ₂ MoO ₆ Architectures and Their Electrochemical Behaviors as Anode Materials for Li-Ion Batteries. Inorganic Chemistry, 2016, 55, 7012-7019.	4.0	35
13	Adsorption and Deposition of Li ₂ O ₂ on the Pristine and Oxidized TiC Surface by First-principles Calculation. Journal of Physical Chemistry C, 2015, 119, 25684-25695.	3.1	32
14	Hierarchical Sb2MoO6 microspheres for high-performance sodium-ion battery anode. Energy Storage Materials, 2019, 17, 101-110.	18.0	32
15	Cross structured two-dimensional violet phosphorene with extremely high deformation resistance. Journal of Materials Chemistry A, 2021, 9, 13855-13860.	10.3	31
16	Adsorption and Deposition of Li $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 2 $<$ /sub $>$ 0 on TiC $\{111\}$ Surface. Journal of Physical Chemistry Letters, 2014, 5, 3919-3923.	4.6	30
17	CdS quantum dots modified N-doped titania plates for the photocatalytic mineralization of diclofenac in water under visible light irradiation. Journal of Molecular Catalysis A, 2015, 399, 79-85.	4.8	27
18	Two-dimensional eclipsed arrangement hybrid perovskites for tunable energy level alignments and photovoltaics. Journal of Materials Chemistry C, 2019, 7, 5139-5147.	5.5	22

#	Article	IF	CITATIONS
19	TiC MXene High Energy Density Cathode for Lithium–Air Battery. Advanced Theory and Simulations, 2018, 1, 1800059.	2.8	21
20	Formation mechanism of rectangular-ambulatory-plane TiO ₂ plates: an insight into the role of hydrofluoric acid. Chemical Communications, 2018, 54, 7191-7194.	4.1	15
21	Carbon-doped titania flakes with an octahedral bipyramid skeleton structure for the visible-light photocatalytic mineralization of ciprofloxacin. RSC Advances, 2015, 5, 98361-98365.	3.6	14
22	New Insights into the Electronic Structure and Photoelectrochemical Properties of Nitrogen-Doped HNb3O8 via a Combined in Situ Experimental and DFT Investigation. ACS Applied Materials & Lamp; Interfaces, 2017, 9, 42751-42760.	8.0	7
23	Degradation of 4H-SiC MOSFET body diode under repetitive surge current stress. , 2020, , .		6
24	PEDOT-Coated Red Phosphorus Nanosphere Anodes for Pseudocapacitive Potassium-Ion Storage. Nanomaterials, 2021, 11, 1732.	4.1	5
25	Layered Hexagonal Oxycarbides, Mn+1AO2Xn (M = Sc, Y, La, Cr, and Mo; A = Ca; $X = C$): Unexpected Photovoltaic Ceramics. Journal of Physical Chemistry C, 2018, 122, 14240-14247.	3.1	3
26	Classification of MAOX phases and semiconductor screening for next-generation energy conversion ceramic materials. Journal of Materials Chemistry C, 2019, 7, 6895-6899.	5.5	1
27	Current Characteristic Values Estimation for Losses Calculation of Inductor in Dual Active Bridge. , 2022, , .		1

Lithium–Air Batteries: TiC MXene High Energy Density Cathode for Lithium–Air Battery (Adv. Theory) Tj ETQq0 0 0 rgBT /Qverlock 10 2.8