
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7586229/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Full efficacy and long-term immunogenicity induced by the SARS-CoV-2 vaccine candidate MVA-CoV2-S in mice. Npj Vaccines, 2022, 7, 17.	6.0	19
2	Poxvirus MVA Expressing SARS-CoV-2 S Protein Induces Robust Immunity and Protects Rhesus Macaques From SARS-CoV-2. Frontiers in Immunology, 2022, 13, 845887.	4.8	13
3	MVA-CoV2-S Vaccine Candidate Neutralizes Distinct Variants of Concern and Protects Against SARS-CoV-2 Infection in Hamsters. Frontiers in Immunology, 2022, 13, 845969.	4.8	16
4	Low Immune Cross-Reactivity between West Nile Virus and a Zika Virus Vaccine Based on Modified Vaccinia Virus Ankara. Pharmaceuticals, 2022, 15, 354.	3.8	2
5	Abundance, Betweenness Centrality, Hydrophobicity, and Isoelectric Points Are Relevant Factors in the Processing of Parental Proteins of the HLA Class II Ligandome. Journal of Proteome Research, 2022, 21, 164-171.	3.7	0
6	The combined vaccination protocol of DNA/MVA expressing Zika virus structural proteins as efficient inducer of T and B cell immune responses. Emerging Microbes and Infections, 2021, 10, 1441-1456.	6.5	6
7	Emerging SARS-CoV-2 Variants and Impact in Global Vaccination Programs against SARS-CoV-2/COVID-19. Vaccines, 2021, 9, 243.	4.4	217
8	COVID-19 Vaccine Candidates Based on Modified Vaccinia Virus Ankara Expressing the SARS-CoV-2 Spike Protein Induce Robust T- and B-Cell Immune Responses and Full Efficacy in Mice. Journal of Virology, 2021, 95, .	3.4	78
9	SUMOylation modulates the stability and function of PI3K-p110β. Cellular and Molecular Life Sciences, 2021, 78, 4053-4065.	5.4	11
10	Neutrophil subtypes shape HIV-specific CD8 T-cell responses after vaccinia virus infection. Npj Vaccines, 2021, 6, 52.	6.0	6
11	Plasma ACE2 species are differentially altered in COVIDâ€19 patients. FASEB Journal, 2021, 35, e21745.	0.5	18
12	Enhancement of the HIV-1-Specific Immune Response Induced by an mRNA Vaccine through Boosting with a Poxvirus MVA Vector Expressing the Same Antigen. Vaccines, 2021, 9, 959.	4.4	11
13	Modified Vaccinia Virus Ankara as a Viral Vector for Vaccine Candidates against Chikungunya Virus. Biomedicines, 2021, 9, 1122.	3.2	4
14	The Bacterial Mucosal Immunotherapy MV130 Protects Against SARS-CoV-2 Infection and Improves COVID-19 Vaccines Immunogenicity. Frontiers in Immunology, 2021, 12, 748103.	4.8	20
15	A Single Dose of an MVA Vaccine Expressing a Prefusion-Stabilized SARS-CoV-2 Spike Protein Neutralizes Variants of Concern and Protects Mice From a Lethal SARS-CoV-2 Infection. Frontiers in Immunology, 2021, 12, 824728.	4.8	14
16	Immune Profiles Identification by Vaccinomics After MVA Immunization in Randomized Clinical Study. Frontiers in Immunology, 2020, 11, 586124.	4.8	6
17	Enhancement of HIV-1 Env-Specific CD8 T Cell Responses Using Interferon-Stimulated Gene 15 as an Immune Adjuvant. Journal of Virology, 2020, 95, .	3.4	6
18	Optimized Hepatitis C Virus (HCV) E2 Glycoproteins and their Immunogenicity in Combination with MVA-HCV. Vaccines, 2020, 8, 440.	4.4	8

#	Article	IF	CITATIONS
19	Tauopathy Analysis in P301S Mouse Model of Alzheimer Disease Immunized with DNA and MVA Poxvirus-Based Vaccines Expressing Human Full-Length 4R2N or 3RC Tau Proteins. Vaccines, 2020, 8, 127.	4.4	8
20	Deletion of Vaccinia Virus A40R Gene Improves the Immunogenicity of the HIV-1 Vaccine Candidate MVA-B. Vaccines, 2020, 8, 70.	4.4	13
21	Bioluminescence Imaging as a Tool for Poxvirus Biology. Methods in Molecular Biology, 2019, 2023, 269-285.	0.9	3
22	Immunoproteomic analysis of a Chikungunya poxvirus-based vaccine reveals high HLA class II immunoprevalence. PLoS Neglected Tropical Diseases, 2019, 13, e0007547.	3.0	4
23	Induction of Broad and Polyfunctional HIV-1-Specific T Cell Responses by the Multiepitopic Protein TMEP-B Vectored by MVA Virus. Vaccines, 2019, 7, 57.	4.4	5
24	Safety and immunogenicity of a multivalent HIV vaccine comprising envelope protein with either DNA or NYVAC vectors (HVTN 096): a phase 1b, double-blind, placebo-controlled trial. Lancet HIV,the, 2019, 6, e737-e749.	4.7	43
25	Potent Anti-hepatitis C Virus (HCV) T Cell Immune Responses Induced in Mice Vaccinated with DNA-Launched RNA Replicons and Modified Vaccinia Virus Ankara-HCV. Journal of Virology, 2019, 93, .	3.4	9
26	A Novel MVA-Based HIV Vaccine Candidate (MVA-gp145-GPN) Co-Expressing Clade C Membrane-Bound Trimeric gp145 Env and Gag-Induced Virus-Like Particles (VLPs) Triggered Broad and Multifunctional HIV-1-Specific T Cell and Antibody Responses. Viruses, 2019, 11, 160.	3.3	12
27	Comparison of Safety and Vector-Specific Immune Responses in Healthy and HIV-Infected Populations Vaccinated with MVA-B. Vaccines, 2019, 7, 178.	4.4	1
28	An MVA Vector Expressing HIV-1 Envelope under the Control of a Potent Vaccinia Virus Promoter as a Promising Strategy in HIV/AIDS Vaccine Design. Vaccines, 2019, 7, 208.	4.4	5
29	Heterologous Combination of VSV-GP and NYVAC Vectors Expressing HIV-1 Trimeric gp145 Env as Vaccination Strategy to Induce Balanced B and T Cell Immune Responses. Frontiers in Immunology, 2019, 10, 2941.	4.8	9
30	The Envelope-Based Fusion Antigen GP120C14K Forming Hexamer-Like Structures Triggers T Cell and Neutralizing Antibody Responses Against HIV-1. Frontiers in Immunology, 2019, 10, 2793.	4.8	2
31	Priming with a Potent HIV-1 DNA Vaccine Frames the Quality of Immune Responses prior to a Poxvirus and Protein Boost. Journal of Virology, 2019, 93, .	3.4	25
32	Replication-Competent NYVAC-KC Yields Improved Immunogenicity to HIV-1 Antigens in Rhesus Macaques Compared to Nonreplicating NYVAC. Journal of Virology, 2019, 93, .	3.4	13
33	Proteomics Analysis Reveals That Structural Proteins of the Virion Core and Involved in Gene Expression Are the Main Source for HLA Class II Ligands in Vaccinia Virus-Infected Cells. Journal of Proteome Research, 2019, 18, 900-911.	3.7	8
34	Distinct Immunogenicity and Efficacy of Poxvirus-Based Vaccine Candidates against Ebola Virus Expressing GP and VP40 Proteins. Journal of Virology, 2018, 92, .	3.4	36
35	Immunogenicity of NYVAC Prime-Protein Boost Human Immunodeficiency Virus Type 1 Envelope Vaccination and Simian-Human Immunodeficiency Virus Challenge of Nonhuman Primates. Journal of Virology, 2018, 92, .	3.4	10
36	Development of a Safe and Effective Vaccinia Virus Oncolytic Vector WR-Δ4 with a Set of Gene Deletions on Several Viral Pathways. Molecular Therapy - Oncolytics, 2018, 8, 27-40.	4.4	22

#	Article	IF	CITATIONS
37	Potent HIV-1-Specific CD8 T Cell Responses Induced in Mice after Priming with a Multiepitopic DNA-TMEP and Boosting with the HIV Vaccine MVA-B. Viruses, 2018, 10, 424.	3.3	9
38	A Vaccine Based on a Modified Vaccinia Virus Ankara Vector Expressing Zika Virus Structural Proteins Controls Zika Virus Replication in Mice. Scientific Reports, 2018, 8, 17385.	3.3	43
39	Removal of the C6 Vaccinia Virus Interferon-β Inhibitor in the Hepatitis C Vaccine Candidate MVA-HCV Elicited in Mice High Immunogenicity in Spite of Reduced Host Gene Expression. Viruses, 2018, 10, 414.	3.3	10
40	Immune Modulation of NYVAC-Based HIV Vaccines by Combined Deletion of Viral Genes that Act on Several Signalling Pathways. Viruses, 2018, 10, 7.	3.3	9
41	Antigenicity of Leishmania-Activated C-Kinase Antigen (LACK) in Human Peripheral Blood Mononuclear Cells, and Protective Effect of Prime-Boost Vaccination With pCI-neo-LACK Plus Attenuated LACK-Expressing Vaccinia Viruses in Hamsters. Frontiers in Immunology, 2018, 9, 843.	4.8	12
42	DNA-launched RNA replicon vaccines induce potent anti-Ebolavirus immune responses that can be further improved by a recombinant MVA boost. Scientific Reports, 2018, 8, 12459.	3.3	21
43	HIV/AIDS Vaccine Candidates Based on Replication-Competent Recombinant Poxvirus NYVAC-C-KC Expressing Trimeric gp140 and Gag-Derived Virus-Like Particles or Lacking the Viral Molecule B19 That Inhibits Type I Interferon Activate Relevant HIV-1-Specific B and T Cell Immune Functions in Nonhuman Primates, Journal of Virology, 2017, 91.	3.4	26
44	Distinct Roles of Vaccinia Virus NF-κB Inhibitor Proteins A52, B15, and K7 in the Immune Response. Journal of Virology, 2017, 91, .	3.4	31
45	A Prime/Boost PfCS14K ^M /MVA-sPfCS ^M Vaccination Protocol Generates Robust CD8 ⁺ T Cell and Antibody Responses to Plasmodium falciparum Circumsporozoite Protein and Protects Mice against Malaria. Vaccine Journal, 2017, 24, .	3.1	10
46	Phosphorylable tyrosine residue 162 in the double-stranded RNA-dependent kinase PKR modulates its interaction with SUMO. Scientific Reports, 2017, 7, 14055.	3.3	6
47	Enhanced anti-tumour immunity requires the interplay between resident and circulating memory CD8+ T cells. Nature Communications, 2017, 8, 16073.	12.8	222
48	A Comparative Phase I Study of Combination, Homologous Subtype-C DNA, MVA, and Env gp140 Protein/Adjuvant HIV Vaccines in Two Immunization Regimes. Frontiers in Immunology, 2017, 8, 149.	4.8	35
49	Attenuated and vectored vaccines protect nonhuman primates against Chikungunya virus. JCI Insight, 2017, 2, e83527.	5.0	62
50	Complex antigen presentation pathway for an HLA-A*0201-restricted epitope from Chikungunya 6K protein. PLoS Neglected Tropical Diseases, 2017, 11, e0006036.	3.0	7
51	Virological and immunological outcome of treatment interruption in HIV-1-infected subjects vaccinated with MVA-B. PLoS ONE, 2017, 12, e0184929.	2.5	13
52	Safety and vaccine-induced HIV-1 immune responses in healthy volunteers following a late MVA-B boost 4 years after the last immunization. PLoS ONE, 2017, 12, e0186602.	2.5	20
53	Balance between activation and regulation of HIV-specific CD8+ T-cell response after modified vaccinia Ankara B therapeutic vaccination. Aids, 2016, 30, 553-562.	2.2	6
54	Clay-lipid nanohybrids: towards influenza vaccines and beyond. Clay Minerals, 2016, 51, 529-538.	0.6	8

#	Article	IF	CITATIONS
55	Vaccines Against Chikungunya Virus Infection. , 2016, , 45-62.		3
56	NYVAC vector modified by C7L viral gene insertion improves T cell immune responses and effectiveness against leishmaniasis. Virus Research, 2016, 220, 1-11.	2.2	4
57	Potential To Streamline Heterologous DNA Prime and NYVAC/Protein Boost HIV Vaccine Regimens in Rhesus Macaques by Employing Improved Antigens. Journal of Virology, 2016, 90, 4133-4149.	3.4	22
58	Suppression of NYVAC Infection in HeLa Cells Requires RNase L but Is Independent of Protein Kinase R Activity. Journal of Virology, 2016, 90, 2135-2141.	3.4	1
59	Conjugation of SUMO to p85 leads to a novel mechanism of PI3K regulation. Oncogene, 2016, 35, 2873-2880.	5.9	21
60	Alphavirus Replicon DNA Expressing HIV Antigens Is an Excellent Prime for Boosting with Recombinant Modified Vaccinia Ankara (MVA) or with HIV gp140 Protein Antigen. PLoS ONE, 2015, 10, e0117042.	2.5	27
61	Modification of promoter spacer length in vaccinia virus as a strategy to control the antigen expression. Journal of General Virology, 2015, 96, 2360-2371.	2.9	14
62	NFκB activation by modified vaccinia virus as a novel strategy to enhance neutrophil migration and HIV-specific T-cell responses. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1333-E1342.	7.1	26
63	Comparison of Immunogenicity in Rhesus Macaques of Transmitted-Founder, HIV-1 Group M Consensus, and Trivalent Mosaic Envelope Vaccines Formulated as a DNA Prime, NYVAC, and Envelope Protein Boost. Journal of Virology, 2015, 89, 6462-6480.	3.4	40
64	Interleukin-1- and Type I Interferon-Dependent Enhanced Immunogenicity of an NYVAC-HIV-1 Env-Gag-Pol-Nef Vaccine Vector with Dual Deletions of Type I and Type II Interferon-Binding Proteins. Journal of Virology, 2015, 89, 3819-3832.	3.4	10
65	The Evolution of Poxvirus Vaccines. Viruses, 2015, 7, 1726-1803.	3.3	164
66	Therapeutics and Vaccines Against Chikungunya Virus. Vector-Borne and Zoonotic Diseases, 2015, 15, 250-257.	1.5	58
67	Distinct p21 requirements for regulating normal and self-reactive T cells through IFN-Î ³ production. Scientific Reports, 2015, 5, 7691.	3.3	22
68	Safety and immunogenicity of a modified vaccinia Ankara-based HIV-1 vaccine (MVA-B) in HIV-1-infected patients alone or in combination with a drug to reactivate latent HIV-1. Journal of Antimicrobial Chemotherapy, 2015, 70, 1833-1842.	3.0	56
69	Neutrophil and vaccine. Cell Cycle, 2015, 14, 1615-1616.	2.6	1
70	Vaccine-Induced Linear Epitope-Specific Antibodies to Simian Immunodeficiency Virus SIVmac239 Envelope Are Distinct from Those Induced to the Human Immunodeficiency Virus Type 1 Envelope in Nonhuman Primates. Journal of Virology, 2015, 89, 8643-8650.	3.4	42
71	Head-to-Head Comparison of Poxvirus NYVAC and ALVAC Vectors Expressing Identical HIV-1 Clade C Immunogens in Prime-Boost Combination with Env Protein in Nonhuman Primates. Journal of Virology, 2015, 89, 8525-8539.	3.4	35
72	Virological and Immunological Characterization of Novel NYVAC-Based HIV/AIDS Vaccine Candidates Expressing Clade C Trimeric Soluble gp140(ZM96) and Gag(ZM96)-Pol-Nef(CN54) as Virus-Like Particles. Journal of Virology, 2015, 89, 970-988.	3.4	30

#	Article	IF	CITATIONS
73	Synthetic long peptide booster immunization in rhesus macaques primed with replication-competent NYVAC-C-KC induces a balanced CD4/CD8 T-cell and antibody response against the conserved regions of HIV-1. Journal of General Virology, 2015, 96, 1478-1483.	2.9	10
74	A Chimeric HIV-1 gp120 Fused with Vaccinia Virus 14K (A27) Protein as an HIV Immunogen. PLoS ONE, 2015, 10, e0133595.	2.5	8
75	A Phase I Randomized Therapeutic MVA-B Vaccination Improves the Magnitude and Quality of the T Cell Immune Responses in HIV-1-Infected Subjects on HAART. PLoS ONE, 2015, 10, e0141456.	2.5	24
76	Activation of the Double-stranded RNA-dependent Protein Kinase PKR by Small Ubiquitin-like Modifier (SUMO). Journal of Biological Chemistry, 2014, 289, 26357-26367.	3.4	22
77	Enhancing poxvirus vectors vaccine immunogenicity. Human Vaccines and Immunotherapeutics, 2014, 10, 2235-2244.	3.3	73
78	The impact of PKR activation: from neurodegeneration to cancer. FASEB Journal, 2014, 28, 1965-1974.	0.5	90
79	Vaccinia Virus with Selective Deletions Enhances T Cell Response to HIV Antigens by Specific Neutrophil Recruitment. AIDS Research and Human Retroviruses, 2014, 30, A241-A241.	1.1	0
80	Bivalent NYVAC-based Vaccine Candidates against HIV/AIDS Expressing Clade C Trimeric Soluble gp140(ZM96) and Gag(ZM96)-Pol-Nef(CN54) as VLPs. AIDS Research and Human Retroviruses, 2014, 30, A119-A119.	1.1	0
81	Deletion of the Vaccinia Virus N2L Gene Encoding an Inhibitor of IRF3 Improves the Immunogenicity of Modified Vaccinia Virus Ankara Expressing HIV-1 Antigens. Journal of Virology, 2014, 88, 3392-3410.	3.4	41
82	Novel insights on the progression of intermediate viral forms in the morphogenesis of vaccinia virus. Virus Research, 2014, 183, 23-29.	2.2	2
83	A Novel Poxvirus-Based Vaccine, MVA-CHIKV, Is Highly Immunogenic and Protects Mice against Chikungunya Infection. Journal of Virology, 2014, 88, 3527-3547.	3.4	101
84	Prime-Boost Immunization Strategies against Chikungunya Virus. Journal of Virology, 2014, 88, 13333-13343.	3.4	63
85	Kinetic and Phenotypic Analysis of CD8 ⁺ T Cell Responses after Priming with Alphavirus Replicons and Homologous or Heterologous Booster Immunizations. Journal of Virology, 2014, 88, 12438-12451.	3.4	31
86	Glucopyranosyl Lipid A Adjuvant Significantly Enhances HIV Specific T and B Cell Responses Elicited by a DNA-MVA-Protein Vaccine Regimen. PLoS ONE, 2014, 9, e84707.	2.5	36
87	Clinical applications of attenuated MVA poxvirus strain. Expert Review of Vaccines, 2013, 12, 1395-1416.	4.4	66
88	New vaccinia virus promoter as a potential candidate for future vaccines. Journal of General Virology, 2013, 94, 2771-2776.	2.9	22
89	Comparative Analysis of the Magnitude, Quality, Phenotype, and Protective Capacity of Simian Immunodeficiency Virus Gag-Specific CD8+ T Cells following Human-, Simian-, and Chimpanzee-Derived Recombinant Adenoviral Vector Immunization. Journal of Immunology, 2013, 190, 2720-2735.	0.8	99
90	High, Broad, Polyfunctional, and Durable T Cell Immune Responses Induced in Mice by a Novel Hepatitis C Virus (HCV) Vaccine Candidate (MVA-HCV) Based on Modified Vaccinia Virus Ankara Expressing the Nearly Full-Length HCV Genome. Journal of Virology, 2013, 87, 7282-7300.	3.4	39

#	Article	IF	CITATIONS
91	Involvement of the Cellular Phosphatase DUSP1 in Vaccinia Virus Infection. PLoS Pathogens, 2013, 9, e1003719.	4.7	23
92	ISG15 Regulates Peritoneal Macrophages Functionality against Viral Infection. PLoS Pathogens, 2013, 9, e1003632.	4.7	37
93	Attenuated and Replication-Competent Vaccinia Virus Strains M65 and M101 with Distinct Biology and Immunogenicity as Potential Vaccine Candidates against Pathogens. Journal of Virology, 2013, 87, 6955-6974.	3.4	14
94	Deletion of the Vaccinia Virus Gene A46R, Encoding for an Inhibitor of TLR Signalling, Is an Effective Approach to Enhance the Immunogenicity in Mice of the HIV/AIDS Vaccine Candidate NYVAC-C. PLoS ONE, 2013, 8, e74831.	2.5	25
95	Improving Adaptive and Memory Immune Responses of an HIV/AIDS Vaccine Candidate MVA-B by Deletion of Vaccinia Virus Genes (C6L and K7R) Blocking Interferon Signaling Pathways. PLoS ONE, 2013, 8, e66894.	2.5	60
96	Adjuvant-like Effect of Vaccinia Virus 14K Protein: A Case Study with Malaria Vaccine Based on the Circumsporozoite Protein. Journal of Immunology, 2012, 188, 6407-6417.	0.8	9
97	Improving the MVA Vaccine Potential by Deleting the Viral Gene Coding for the IL-18 Binding Protein. PLoS ONE, 2012, 7, e32220.	2.5	54
98	Vaccine Efficacy against Malaria by the Combination of Porcine Parvovirus-Like Particles and Vaccinia Virus Vectors Expressing CS of Plasmodium. PLoS ONE, 2012, 7, e34445.	2.5	11
99	Reasons for Not Participating in a Phase 1 Preventive HIV Vaccine Study in a Resource-Rich Country. AIDS Patient Care and STDs, 2012, 26, 379-382.	2.5	4
100	Poxvirus vectors as HIV/AIDS vaccines in humans. Human Vaccines and Immunotherapeutics, 2012, 8, 1192-1207.	3.3	73
101	Regulation of the tumor suppressor PTEN by SUMO. Cell Death and Disease, 2012, 3, e393-e393.	6.3	68
102	Removal of Vaccinia Virus Genes That Block Interferon Type I and II Pathways Improves Adaptive and Memory Responses of the HIV/AIDS Vaccine Candidate NYVAC-C in Mice. Journal of Virology, 2012, 86, 5026-5038.	3.4	38
103	Vector replication and expression of HIV-1 antigens by the HIV/AIDS vaccine candidate MVA-B is not affected by HIV-1 protease inhibitors. Virus Research, 2012, 167, 391-396.	2.2	3
104	Cryo X-ray nano-tomography of vaccinia virus infected cells. Journal of Structural Biology, 2012, 177, 202-211.	2.8	70
105	Systems Analysis of MVA-C Induced Immune Response Reveals Its Significance as a Vaccine Candidate against HIV/AIDS of Clade C. PLoS ONE, 2012, 7, e35485.	2.5	30
106	High Quality Long-Term CD4+ and CD8+ Effector Memory Populations Stimulated by DNA-LACK/MVA-LACK Regimen in Leishmania major BALB/c Model of Infection. PLoS ONE, 2012, 7, e38859.	2.5	30
107	A Novel HIV Vaccine Adjuvanted by IC31 Induces Robust and Persistent Humoral and Cellular Immunity. PLoS ONE, 2012, 7, e42163.	2.5	11
108	Deletion of the Viral Anti-Apoptotic Gene F1L in the HIV/AIDS Vaccine Candidate MVA-C Enhances Immune Responses against HIV-1 Antigens. PLoS ONE, 2012, 7, e48524.	2.5	30

#	Article	IF	CITATIONS
109	The HIV/AIDS Vaccine Candidate MVA-B Administered as a Single Immunogen in Humans Triggers Robust, Polyfunctional, and Selective Effector Memory T Cell Responses to HIV-1 Antigens. Journal of Virology, 2011, 85, 11468-11478.	3.4	63
110	Immunization with recombinant DNA and modified vaccinia virus Ankara (MVA) vectors delivering PSCA and STEAP1 antigens inhibits prostate cancer progression. Vaccine, 2011, 29, 1504-1513.	3.8	38
111	Safety and immunogenicity of a modified pox vector-based HIV/AIDS vaccine candidate expressing Env, Gag, Pol and Nef proteins of HIV-1 subtype B (MVA-B) in healthy HIV-1-uninfected volunteers: A phase I clinical trial (RISVAC02). Vaccine, 2011, 29, 8309-8316.	3.8	70
112	Improved Innate and Adaptive Immunostimulation by Genetically Modified HIV-1 Protein Expressing NYVAC Vectors. PLoS ONE, 2011, 6, e16819.	2.5	42
113	Improved NYVAC-Based Vaccine Vectors. PLoS ONE, 2011, 6, e25674.	2.5	59
114	A Human Multi-Epitope Recombinant Vaccinia Virus as a Universal T Cell Vaccine Candidate against Influenza Virus. PLoS ONE, 2011, 6, e25938.	2.5	42
115	Host-Range Restriction of Vaccinia Virus E3L Deletion Mutant Can Be Overcome In Vitro, but Not In Vivo, by Expression of the Influenza Virus NS1 Protein. PLoS ONE, 2011, 6, e28677.	2.5	13
116	MVA and NYVAC as Vaccines against Emergent Infectious Diseases and Cancer. Current Gene Therapy, 2011, 11, 189-217.	2.0	100
117	SIRT1 stabilizes PML promoting its sumoylation. Cell Death and Differentiation, 2011, 18, 72-79.	11.2	49
118	Virus infection rapidly activates the P58IPK pathway, delaying peak kinase activation to enhance viral replication. Virology, 2011, 417, 27-36.	2.4	17
119	Immunization with HIV Gag targeted to dendritic cells followed by recombinant New York vaccinia virus induces robust T-cell immunity in nonhuman primates. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7131-7136.	7.1	121
120	Regulation of Vaccinia Virus E3 Protein by Small Ubiquitin-Like Modifier Proteins. Journal of Virology, 2011, 85, 12890-12900.	3.4	27
121	DNA/NYVAC Vaccine Regimen Induces HIV-Specific CD4 and CD8 T-Cell Responses in Intestinal Mucosa. Journal of Virology, 2011, 85, 9854-9862.	3.4	35
122	Diversity in Viral Anti-PKR Mechanisms: A Remarkable Case of Evolutionary Convergence. PLoS ONE, 2011, 6, e16711.	2.5	19
123	T-Cell Immune Responses Against Env from CRF12_BF and Subtype B HIV-1 Show High Clade-Specificity that Can Be Overridden by Multiclade Immunizations. PLoS ONE, 2011, 6, e17185.	2.5	3
124	Dendritic Cells Exposed to MVA-Based HIV-1 Vaccine Induce Highly Functional HIV-1-Specific CD8+ T Cell Responses in HIV-1-Infected Individuals. PLoS ONE, 2011, 6, e19644.	2.5	32
125	The Chemotherapeutic Drug 5-Fluorouracil Promotes PKR-Mediated Apoptosis in a p53- Independent Manner in Colon and Breast Cancer Cells. PLoS ONE, 2011, 6, e23887.	2.5	47
126	A Candidate HIV/AIDS Vaccine (MVA-B) Lacking Vaccinia Virus Gene C6L Enhances Memory HIV-1-Specific T-Cell Responses. PLoS ONE, 2011, 6, e24244.	2.5	67

#	Article	IF	CITATIONS
127	Poxvirus vector-based HIV vaccines. Current Opinion in HIV and AIDS, 2010, 5, 391-396.	3.8	68
128	Human cytomegalovirus final envelopment on membranes containing both <i>trans</i> -Golgi network and endosomal markers. Cellular Microbiology, 2010, 12, 386-404.	2.1	91
129	Selective Induction of Host Genes by MVA-B, a Candidate Vaccine against HIV/AIDS. Journal of Virology, 2010, 84, 8141-8152.	3.4	31
130	Robust Vaccine-Elicited Cellular Immune Responses in Breast Milk following Systemic Simian Immunodeficiency Virus DNA Prime and Live Virus Vector Boost Vaccination of Lactating Rhesus Monkeys. Journal of Immunology, 2010, 185, 7097-7106.	0.8	29
131	Identification of Cellular Genes Induced in Human Cells After Activation of the OAS/RNaseL Pathway by Vaccinia Virus Recombinants Expressing These Antiviral Enzymes. Journal of Interferon and Cytokine Research, 2010, 30, 171-188.	1.2	16
132	A poxvirus Bcl-2-like gene family involved in regulation of host immune response: sequence similarity and evolutionary history. Virology Journal, 2010, 7, 59.	3.4	62
133	Insertion of Vaccinia Virus C7L Host Range Gene into NYVAC-B Genome Potentiates Immune Responses against HIV-1 Antigens. PLoS ONE, 2010, 5, e11406.	2.5	59
134	Immunogenic Profiling in Mice of a HIV/AIDS Vaccine Candidate (MVA-B) Expressing Four HIV-1 Antigens and Potentiation by Specific Gene Deletions. PLoS ONE, 2010, 5, e12395.	2.5	74
135	F11-Mediated Inhibition of RhoA Signalling Enhances the Spread of Vaccinia Virus In Vitro and In Vivo in an Intranasal Mouse Model of Infection. PLoS ONE, 2009, 4, e8506.	2.5	53
136	Preclinical Evaluation of the Immunogenicity of C-Type HIV-1-Based DNA and NYVAC Vaccines in the Balb/C Mouse Model. Viral Immunology, 2009, 22, 309-319.	1.3	24
137	Attenuated poxvirus vectors MVA and NYVAC as promising vaccine cadidates against HIV/AIDS. Hum Vaccin, 2009, 5, 867-871.	2.4	49
138	Innate Immune Sensing of Modified Vaccinia Virus Ankara (MVA) Is Mediated by TLR2-TLR6, MDA-5 and the NALP3 Inflammasome. PLoS Pathogens, 2009, 5, e1000480.	4.7	285
139	Multimeric soluble CD40 ligand (sCD40L) efficiently enhances HIV specific cellular immune responses during DNA prime and boost with attenuated poxvirus vectors MVA and NYVAC expressing HIV antigens. Vaccine, 2009, 27, 3165-3174.	3.8	39
140	Characterization of DNA and MVA vectors expressing Nef from HIV-1 CRF12_BF revealed high immune specificity with low cross-reactivity against subtype B. Virus Research, 2009, 146, 1-12.	2.2	12
141	Cryo-X-ray tomography of vaccinia virus membranes and inner compartments. Journal of Structural Biology, 2009, 168, 234-239.	2.8	81
142	Membrane remodelling during vaccinia virus morphogenesis. Biology of the Cell, 2009, 101, 401-414.	2.0	21
143	P17-07. Insertion of a vaccinia virus host range (hr) gene into NYVAC-B genome potentiates immune responses against HIV-1 antigens. Retrovirology, 2009, 6, .	2.0	0
144	P02-04. Multimeric soluble CD40 ligand efficiently enhances HIV specific cellular immune responses during DNA prime and boost with attenuated poxvirus strains. Retrovirology, 2009, 6, .	2.0	0

#	Article	IF	CITATIONS
145	The Interferon System and Vaccinia Virus Evasion Mechanisms. Journal of Interferon and Cytokine Research, 2009, 29, 581-598.	1.2	141
146	Hepatitis C and Evasion of the Interferon System: A PKR Paradigm. Cell Host and Microbe, 2009, 6, 495-497.	11.0	1
147	Activation of NF-kB Pathway by Virus Infection Requires Rb Expression. PLoS ONE, 2009, 4, e6422.	2.5	32
148	Intradermal NKT cell activation during DNA priming in heterologous primeâ€boost vaccination enhances T cell responses and protection against <i>Leishmania</i> . European Journal of Immunology, 2008, 38, 706-719.	2.9	39
149	Subcellular forms and biochemical events triggered in human cells by HCV polyprotein expression from a viral vector. Virology Journal, 2008, 5, 102.	3.4	14
150	EV01: A phase I trial in healthy HIV negative volunteers to evaluate a clade C HIV vaccine, NYVAC-C undertaken by the EuroVacc Consortium. Vaccine, 2008, 26, 3153-3161.	3.8	54
151	Differential CD4 ⁺ versus CD8 ⁺ T-Cell Responses Elicited by Different Poxvirus-Based Human Immunodeficiency Virus Type 1 Vaccine Candidates Provide Comparable Efficacies in Primates. Journal of Virology, 2008, 82, 2975-2988.	3.4	71
152	Aerosol immunization with NYVAC and MVA vectored vaccines is safe, simple, and immunogenic. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2046-2051.	7.1	54
153	Expression of the E3L Gene of Vaccinia Virus in Transgenic Mice Decreases Host Resistance to Vaccinia Virus and <i>Leishmania major</i> Infections. Journal of Virology, 2008, 82, 254-267.	3.4	10
154	Vaccinia Virus E3 Protein Prevents the Antiviral Action of ISG15. PLoS Pathogens, 2008, 4, e1000096.	4.7	123
155	An HIV-1 clade C DNA prime, NYVAC boost vaccine regimen induces reliable, polyfunctional, and long-lasting T cell responses. Journal of Experimental Medicine, 2008, 205, 63-77.	8.5	273
156	The Poxvirus Vectors MVA and NYVAC as Gene Delivery Systems for Vaccination Against Infectious Diseases and Cancer. Current Gene Therapy, 2008, 8, 97-120.	2.0	127
157	Virus distribution of the attenuated MVA and NYVAC poxvirus strains in mice. Journal of General Virology, 2007, 88, 2473-2478.	2.9	47
158	Distinct Gene Expression Profiling after Infection of Immature Human Monocyte-Derived Dendritic Cells by the Attenuated Poxvirus Vectors MVA and NYVAC. Journal of Virology, 2007, 81, 8707-8721.	3.4	88
159	Control of virus infection by tumour suppressors. Carcinogenesis, 2007, 28, 1140-1144.	2.8	9
160	Novel and unexpected role for the tumor suppressor ARF in viral infection surveillance. Future Virology, 2007, 2, 625-629.	1.8	1
161	Head-to-head comparison on the immunogenicity of two HIV/AIDS vaccine candidates based on the attenuated poxvirus strains MVA and NYVAC co-expressing in a single locus the HIV-1BX08 gp120 and HIV-1IIIB Gag-Pol-Nef proteins of clade B. Vaccine, 2007, 25, 2863-2885.	3.8	84
162	Generation and immunogenicity of novel HIV/AIDS vaccine candidates targeting HIV-1 Env/Gag-Pol-Nef antigens of clade C. Vaccine, 2007, 25, 1969-1992.	3.8	73

#	Article	IF	CITATIONS
163	The dsRNA protein kinase PKR: Virus and cell control. Biochimie, 2007, 89, 799-811.	2.6	552
164	The ESCRT machinery is not required for human cytomegalovirus envelopment. Cellular Microbiology, 2007, 9, 2955-2967.	2.1	65
165	Membrane cell fusion activity of the vaccinia virus A17?A27 protein complex. Cellular Microbiology, 2007, 10, 070816180854001-???.	2.1	34
166	Improving recombinant MVA immune responses: Potentiation of the immune responses to HIV-1 with MVA and DNA vectors expressing Env and the cytokines IL-12 and IFN-gamma. Virus Research, 2006, 116, 11-20.	2.2	45
167	A vaccinia virus lacking A10L: viral core proteins accumulate on structures derived from the endoplasmic reticulum. Cellular Microbiology, 2006, 8, 427-437.	2.1	17
168	Antiviral action of the tumor suppressor ARF. EMBO Journal, 2006, 25, 4284-4292.	7.8	43
169	Role of mitochondria in apoptosis induced by the 2â€5A system and mechanisms involved. Apoptosis: an International Journal on Programmed Cell Death, 2006, 11, 725-738.	4.9	44
170	MVA-LACK as a safe and efficient vector for vaccination against leishmaniasis. Microbes and Infection, 2006, 8, 810-822.	1.9	52
171	Host Response to the Attenuated Poxvirus Vector NYVAC: Upregulation of Apoptotic Genes and NF-κB-Responsive Genes in Infected HeLa Cells. Journal of Virology, 2006, 80, 985-998.	3.4	33
172	Impact of Protein Kinase PKR in Cell Biology: from Antiviral to Antiproliferative Action. Microbiology and Molecular Biology Reviews, 2006, 70, 1032-1060.	6.6	656
173	Human Gene Profiling in Response to the Active Protein Kinase, Interferon-induced Serine/threonine Protein Kinase (PKR), in Infected Cells. Journal of Biological Chemistry, 2006, 281, 18734-18745.	3.4	30
174	Cellular and Biochemical Differences between Two Attenuated Poxvirus Vaccine Candidates (MVA and) Tj ETQqC) 0 0 rgBT 3.4gBT	/Overlock 10
175	Translational resistance of late alphavirus mRNA to eIF2Â phosphorylation: a strategy to overcome the antiviral effect of protein kinase PKR. Genes and Development, 2006, 20, 87-100.	5.9	176
176	Resistance to viral infection of super p53 mice. Oncogene, 2005, 24, 3059-3062.	5.9	66
177	Cryo-electron tomography of vaccinia virus. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2772-2777.	7.1	179
178	Heterologous Prime-Boost Vaccination with the LACK Antigen Protects against Murine Visceral Leishmaniasis. Infection and Immunity, 2005, 73, 5286-5289.	2.2	70
179	Recombinant poxviruses as mucosal vaccine vectors. Journal of General Virology, 2005, 86, 2925-2936.	2.9	71
180	Wiskott-Aldrich Syndrome Protein Is Needed for Vaccinia Virus Pathogenesis. Journal of Virology, 2005, 79, 2133-2140.	3.4	15

#	Article	IF	CITATIONS
181	Situación actual en el desarrollo de una vacuna preventiva frente al VIH. Enfermedades Infecciosas Y MicrobiologÃa ClÃnica, 2005, 23, 5-14.	0.5	Ο
182	Current situation in the development of a preventive HIV vaccine. Enfermedades Infecciosas Y MicrobiologÃa ClÃnica, 2005, 23, 15-24.	0.5	1
183	Mucosal immunization of sheep with a Maedi-Visna virus (MVV) env DNA vaccine protects against early MVV productive infection. Vaccine, 2005, 23, 4342-4352.	3.8	30
184	Involvement of PKR and RNase L in translational control and induction of apoptosis after Hepatitis C polyprotein expression from a vaccinia virus recombinant. Virology Journal, 2005, 2, 81.	3.4	12
185	Microarray Analysis Reveals Characteristic Changes of Host Cell Gene Expression in Response to Attenuated Modified Vaccinia Virus Ankara Infection of Human HeLa Cells. Journal of Virology, 2004, 78, 5820-5834.	3.4	77
186	Vaccinia Virus Recombinants as a Model System to Analyze Interferon-Induced Pathways. Journal of Interferon and Cytokine Research, 2004, 24, 637-646.	1.2	8
187	Induction of HIV Immunity in the Genital Tract After Intranasal Delivery of a MVA Vector: Enhanced Immunogenicity After DNA Prime-Modified Vaccinia Virus Ankara Boost Immunization Schedule. Journal of Immunology, 2004, 172, 6209-6220.	0.8	73
188	TRAF Family Proteins Link PKR with NF-Î ^o B Activation. Molecular and Cellular Biology, 2004, 24, 4502-4512.	2.3	147
189	Efficient CD8+ T cell response to the HIV-env V3 loop epitope from multiple virus isolates by a DNA prime/vaccinia virus boost (rWR and rMVA strains) immunization regime and enhancement by the cytokine IFN-Î ³ . Virus Research, 2004, 105, 11-22.	2.2	20
190	Attenuated poxviruses expressing a synthetic HIV protein stimulate HLA-A2-restricted cytotoxic T-cell responses. Vaccine, 2004, 22, 3395-3403.	3.8	25
191	Tissue distribution of the Ankara strain of vaccinia virus (MVA) after mucosal or systemic administration. Archives of Virology, 2003, 148, 827-839.	2.1	54
192	The combination of DNA vectors expressing IL-12 + IL-18 elicits high protective immune response against cutaneous leishmaniasis after priming with DNA-p36/LACK and the cytokines, followed by a booster with a vaccinia virus recombinant expressing p36/LACK. Microbes and Infection, 2003, 5, 73-84.	1.9	58
193	Protection in dogs against visceral leishmaniasis caused by Leishmania infantum is achieved by immunization with a heterologous prime-boost regime using DNA and vaccinia recombinant vectors expressing LACK Vaccine, 2003, 21, 2474-2484.	3.8	118
194	Cellular Gene Expression Survey of Vaccinia Virus Infection of Human HeLa Cells. Journal of Virology, 2003, 77, 6493-6506.	3.4	107
195	Prime-Boost Immunization Schedules Based on Influenza Virus and Vaccinia Virus Vectors Potentiate Cellular Immune Responses against Human Immunodeficiency Virus Env Protein Systemically and in the Genitorectal Draining Lymph Nodes. Journal of Virology, 2003, 77, 7048-7057.	3.4	74
196	Differences in Virus-Induced Cell Morphology and in Virus Maturation between MVA and Other Strains (WR, Ankara, and NYCBH) of Vaccinia Virus in Infected Human Cells. Journal of Virology, 2003, 77, 10606-10622.	3.4	57
197	Induction of Protective Immunity against Malaria by Priming-Boosting Immunization with Recombinant Cold-Adapted Influenza and Modified Vaccinia Ankara Viruses Expressing a CD8 + -T-Cell Epitope Derived from the Circumsporozoite Protein of Plasmodium yoelii. Journal of Virology, 2003, 77, 11859-11866.	3.4	38
198	The latency protein LANA2 from Kaposi's sarcoma-associated herpesvirus inhibits apoptosis induced by dsRNA-activated protein kinase but not RNase L activation. Journal of General Virology, 2003, 84, 1463-1470.	2.9	70

#	Article	IF	CITATIONS
199	Evidence that avian reovirus σA protein is an inhibitor of the double-stranded RNA-dependent protein kinase. Journal of General Virology, 2003, 84, 1629-1639.	2.9	59
200	IL-12 and IL-18 act in synergy to clear vaccinia virus infection: involvement of innate and adaptive components of the immune system. Journal of General Virology, 2003, 84, 1961-1972.	2.9	63
201	Endoplasmic Reticulum-Golgi Intermediate Compartment Membranes and Vimentin Filaments Participate in Vaccinia Virus Assembly. Journal of Virology, 2002, 76, 1839-1855.	3.4	175
202	Caspase 9 activation by the dsRNA-dependent protein kinase, PKR: molecular mechanism and relevance. FEBS Letters, 2002, 529, 249-255.	2.8	49
203	A heterologous prime–boost regime using DNA and recombinant vaccinia virus expressing the Leishmania infantum P36/LACK antigen protects BALB/c mice from cutaneous leishmaniasis. Vaccine, 2002, 20, 1226-1231.	3.8	78
204	Molecular epidemiology of molluscum contagiosum virus and analysis of the hostâ€serum antibody response in Spanish HIVâ€negative patients. Journal of Medical Virology, 2002, 66, 151-158.	5.0	22
205	Visna/maedi virus Env protein expressed by a vaccinia virus recombinant induces cell-to-cell fusion in cells of different origins in the apparent absence of Env cleavage: role of glycosylation and of proteoglycans. Archives of Virology, 2002, 147, 2377-2392.	2.1	8
206	Anti-apoptotic and oncogenic properties of the dsRNA-binding protein of vaccinia virus, E3L. Oncogene, 2002, 21, 8379-8387.	5.9	50
207	Vaccinia virus induces apoptosis of infected macrophages. Journal of General Virology, 2002, 83, 2821-2832.	2.9	52
208	Administration to mice of a monoclonal antibody that neutralizes the intracellular mature virus form of vaccinia virus limits virus replication efficiently under prophylactic and therapeutic conditions. Journal of General Virology, 2002, 83, 1059-1067.	2.9	56
209	Enhanced CD8+ T cell immune response against a V3 loop multi-epitope polypeptide (TAB13) of HIV-1 Env after priming with purified fusion protein and booster with modified vaccinia virus Ankara (MVA-TAB) recombinant: a comparison of humoral and cellular immune responses with the vaccinia virus Western Reserve (WR) vector. Vaccine, 2001, 20, 961-971.	3.8	23
210	Recombinant proteins produced by vaccinia virus vectors can be incorporated within the virion (IMV) Tj ETQq0 0	0 <u>ге</u> ВТ /О	verlock 10 Tf
211	Protective immune response against cutaneous leishmaniasis by prime/booster immunization regimens with vaccinia virus recombinants expressing Leishmania infantum p36/LACK and IL-12 in combination with purified p36. Microbes and Infection, 2001, 3, 701-711.	1.9	29
212	A Striking Property of Recombinant Poxviruses: Efficient Inducers of in Vivo Expansion of Primed CD8+ T Cells. Virology, 2001, 280, 155-159.	2.4	71
213	The A17L Gene Product of Vaccinia Virus Is Exposed on the Surface of IMV. Virology, 2001, 290, 143-152.	2.4	37
214	The catalytic activity of dsRNA-dependent protein kinase, PKR, is required for NF-κB activation. Oncogene, 2001, 20, 385-394.	5.9	64
215	The Major Core Protein P4a (A10L Gene) of Vaccinia Virus Is Essential for Correct Assembly of Viral DNA into the Nucleoprotein Complex To Form Immature Viral Particles. Journal of Virology, 2001, 75, 5778-5795.	3.4	42
216	MC159L protein from the poxvirus molluscum contagiosum virus inhibits NF-κB activation and apoptosis induced by PKR. Journal of General Virology, 2001, 82, 3027-3034.	2.9	43

#	Article	IF	CITATIONS
217	Activation of NF-κB by the dsRNA-dependent protein kinase, PKR involves the lκB kinase complex. Oncogene, 2000, 19, 1369-1378.	5.9	125
218	The interferon-induced protein kinase (PKR), triggers apoptosis through FADD-mediated activation of caspase 8 in a manner independent of Fas and TNF-α receptors. Oncogene, 2000, 19, 3665-3674.	5.9	101
219	Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action. Apoptosis: an International Journal on Programmed Cell Death, 2000, 5, 107-114.	4.9	318
220	Biology of Attenuated Modified Vaccinia Virus Ankara Recombinant Vector in Mice: Virus Fate and Activation of B- and T-Cell Immune Responses in Comparison with the Western Reserve Strain and Advantages as a Vaccine. Journal of Virology, 2000, 74, 923-933.	3.4	204
221	Attenuated Modified Vaccinia Virus Ankara Can Be Used as an Immunizing Agent under Conditions of Preexisting Immunity to the Vector. Journal of Virology, 2000, 74, 7651-7655.	3.4	88
222	Interleukin-12 (IL-12) Enhancement of the Cellular Immune Response against Human Immunodeficiency Virus Type 1 Env Antigen in a DNA Prime/Vaccinia Virus Boost Vaccine Regimen Is Time and Dose Dependent: Suppressive Effects of IL-12 Boost Are Mediated by Nitric Oxide. Journal of Virology, 2000, 74, 6278-6286.	3.4	104
223	Acidosis Induces Necrosis and Apoptosis of Cultured Hippocampal Neurons. Experimental Neurology, 2000, 162, 1-12.	4.1	106
224	In Vivo Regulation of Protein Synthesis by Phosphorylation of the α Subunit of Wheat Eukaryotic Initiation Factor 2â€. Biochemistry, 2000, 39, 7521-7530.	2.5	12
225	Chimeras between the human immunodeficiency virus (HIV-1) Env and vaccinia virus immunogenic proteins p14 and p39 generate in mice broadly reactive antibodies and specific activation of CD8+ T cell responses to Env. Vaccine, 2000, 18, 3123-3133.	3.8	6
226	Identification by Electron Microscopy of the Maturation Steps in Vaccinia Virus Morphogenesis Inhibited by the Interferon-Induced Enzymes, Protein Kinase (PKR), 2-5A Synthetase, and Nitric Oxide Synthase (iNOS). Journal of Interferon and Cytokine Research, 2000, 20, 867-877.	1.2	8
227	In Vivo Regulation of the dsRNA-Dependent Protein Kinase PKR by the Cellular Glycoprotein P67â€. Biochemistry, 2000, 39, 16016-16025.	2.5	27
228	Identification of Functional Domains of the Interferon-Induced Enzyme PKR in Cells Lacking Endogenous PKR. Journal of Interferon and Cytokine Research, 1999, 19, 1229-1236.	1.2	5
229	Full Activation of RNaseL in Animal Cells Requires Binding of 2-5A Within Ankyrin Repeats 6 to 9 of This Interferon-Inducible Enzyme. Journal of Interferon and Cytokine Research, 1999, 19, 113-119.	1.2	10
230	The Vaccinia Virus 39-kDa Protein Forms a Stable Complex with the p4a/4a Major Core Protein Early in Morphogenesis. Virology, 1999, 265, 375-386.	2.4	35
231	Enhanced CD8+ T cell response to HIV-1 env by combined immunization with influenza and vaccinia virus recombinants. Vaccine, 1999, 17, 887-892.	3.8	45
232	Mucosal and systemic immune responses induced after oral delivery of vaccinia virus recombinants. Vaccine, 1999, 17, 1074-1083.	3.8	31
233	Identification by Two-Dimensional Gel Electrophoresis of Vaccinia Virus and Cellular Phosphoproteins Modified After Inducible Expression of the dsRNA-activated Protein Kinase. Journal of Interferon and Cytokine Research, 1999, 19, 589-599.	1.2	4
234	Induction of Apoptosis by Double-Stranded-RNA-Dependent Protein Kinase (PKR) Involves the α Subunit of Eukaryotic Translation Initiation Factor 2 and NF-̺B. Molecular and Cellular Biology, 1999, 19, 4653-4663.	2.3	186

#	Article	IF	CITATIONS
235	Identification of Functional Domains in the 14-Kilodalton Envelope Protein (A27L) of Vaccinia Virus. Journal of Virology, 1999, 73, 9098-9109.	3.4	53
236	Vaccinia Virus E3L Protein Is an Inhibitor of the Interferon (IFN)-Induced 2-5A Synthetase Enzyme. Virology, 1998, 243, 406-414.	2.4	142
237	Recombinant viruses expressing a human malaria antigen can elicit potentially protective immune CD8+ responses in mice. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 3954-3959.	7.1	81
238	The Vaccinia Virus 14-Kilodalton (A27L) Fusion Protein Forms a Triple Coiled-Coil Structure and Interacts with the 21-Kilodalton (A17L) Virus Membrane Protein through a C-Terminal α-Helix. Journal of Virology, 1998, 72, 10126-10137.	3.4	59
239	Vaccinia Virus 15-Kilodalton (A14L) Protein Is Essential for Assembly and Attachment of Viral Crescents to Virosomes. Journal of Virology, 1998, 72, 1287-1296.	3.4	81
240	Bcl-2 prevents nitric oxide-mediated apoptosis and poly(ADP-ribose) polymerase cleavage. FEBS Letters, 1997, 403, 273-278.	2.8	59
241	Growth of Escherichia coli in acetate as a sole carbon source is inhibited by ankyrin-like repeats present in the 2′,5′-linked oligoadenylate-dependent human RNase L enzyme. FEMS Microbiology Letters, 1997, 149, 107-113.	1.8	10
242	Inducible Expression of the 2-5A Synthetase/RNase L System Results in Inhibition of Vaccinia Virus Replication. Virology, 1997, 227, 220-228.	2.4	66
243	The Apoptosis Pathway Triggered by the Interferon-Induced Protein Kinase PKR Requires the Third Basic Domain, Initiates Upstream of Bcl-2, and Involves ICE-like Proteases1. Virology, 1997, 231, 81-88.	2.4	119
244	Activation of the IFN-Inducible Enzyme RNase L Causes Apoptosis of Animal Cells. Virology, 1997, 236, 354-363.	2.4	136
245	A random DNA sequencing, computer-based approach for the generation of a gene map of molluscum contagiosum virus. Virus Genes, 1997, 14, 73-80.	1.6	10
246	Vaccinia virus membrane proteins p8 and p16 are cotranslationally inserted into the rough endoplasmic reticulum and retained in the intermediate compartment. Journal of Virology, 1997, 71, 7404-7420.	3.4	70
247	Characterization of early stages in vaccinia virus membrane biogenesis: implications of the 21-kilodalton protein and a newly identified 15-kilodalton envelope protein. Journal of Virology, 1997, 71, 1821-1833.	3.4	91
248	Use of persistent infections with vaccinia virus recombinants to introduce alterations in foreign proteins: An application to HIV-1 env protein. Virus Research, 1996, 46, 45-56.	2.2	1
249	Regulated Expression of the Interferon-Induced Protein Kinase p68 (PKR) by Vaccinia Virus Recombinants Inhibits the Replication of Vesicular Stomatitis Virus but Not That of Poliovirus. Journal of Interferon and Cytokine Research, 1996, 16, 1073-1078.	1.2	41
250	Autophosphorylation Sites Participate in the Activation of the Double-Stranded-RNA-Activated Protein Kinase PKR. Molecular and Cellular Biology, 1996, 16, 6295-6302.	2.3	113
251	Characterization ofin VivoPrimary and Secondary CD8+T Cell Responses Induced by Recombinant Influenza and Vaccinia Viruses. Cellular Immunology, 1996, 173, 96-107.	3.0	96
252	African Swine Fever Virus GeneA179L,a Viral Homologue ofbcl-2, Protects Cells from Programmed Cell Death. Virology, 1996, 225, 227-230.	2.4	110

#	Article	IF	CITATIONS
253	Detection and typing of molluscum contagiosum virus in skin lesions by using a simple lysis method and polymerase chain reaction. , 1996, 50, 342-349.		32
254	Sequence analysis of aMolluscum contagiosum virus DNA region which includes the gene encoding protein kinase 2 and other genes with unique organization. Virus Genes, 1996, 13, 19-29.	1.6	5
255	A vaccinia virus core protein, p39, is membrane associated. Journal of Virology, 1996, 70, 6909-6921.	3.4	57
256	Inducible expression of the vaccinia virus A17L gene provides a synchronized system to monitor sorting of viral proteins during morphogenesis. Journal of Virology, 1996, 70, 7641-7653.	3.4	44
257	Open reading frame 5 of porcine reproductive and respiratory syndrome virus as a cause of virus-induced apoptosis. Journal of Virology, 1996, 70, 2876-2882.	3.4	131
258	Enhanced Proteolytic Processing of the Human Immunodeficiency Virus Type 1 Envelope Protein in Murine Ltk(-) Cells. AIDS Research and Human Retroviruses, 1995, 11, 81-85.	1.1	6
259	Quantification of antigen specific CD8+ T cells using an ELISPOT assay. Journal of Immunological Methods, 1995, 181, 45-54.	1.4	348
260	Assembly of vaccinia virus: incorporation of p14 and p32 into the membrane of the intracellular mature virus. Journal of Virology, 1995, 69, 3560-3574.	3.4	62
261	Vaccinia virus A17L gene product is essential for an early step in virion morphogenesis. Journal of Virology, 1995, 69, 4640-4648.	3.4	96
262	Interferon-Î ³ Severely Inhibits DNA Synthesis of Vaccinia Virus in a Macrophage Cell Line. Virology, 1994, 198, 731-735.	2.4	46
263	The Interferon-induced Double-Stranded RNA-Activated Protein Kinase Induces Apoptosis. Virology, 1994, 199, 491-496.	2.4	333
264	Activation of the double-stranded RNA (dsRNA)-activated human protein kinase in vivo in the absence of its dsRNA binding domain Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 10551-10555.	7.1	47
265	The Interferon-Induced Double-Stranded RNA-Activated Human p68 Protein Kinase Potently Inhibits Protein Synthesis in Cultured Cells. Virology, 1993, 192, 380-385.	2.4	61
266	The Interferon-Induced Double-Stranded RNA-Activated Human p68 Protein Kinase Inhibits the Replication of Vaccinia Virus. Virology, 1993, 193, 1037-1041.	2.4	83
267	A Mutation of the Nucleoside Triphosphate Phosphohydrolase I (NPH-I) Gene Confers Sensitivity of Vaccinia Virus to Interferon. Virology, 1993, 197, 485-491.	2.4	12
268	Priming with recombinant influenza virus followed by administration of recombinant vaccinia virus induces CD8+ T-cell-mediated protective immunity against malaria Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 5214-5218.	7.1	245
269	Vaccinia virus nucleoside triphosphate phosphohydrolase I controls early and late gene expression by regulating the rate of transcription. Journal of Virology, 1993, 67, 7561-7572.	3.4	15
270	The vaccinia virus 14-kilodalton fusion protein forms a stable complex with the processed protein encoded by the vaccinia virus A17L gene. Journal of Virology, 1993, 67, 3435-3440.	3.4	88

#	Article	IF	CITATIONS
271	Insertional inactivation of the vaccinia virus 32-kilodalton gene is associated with attenuation in mice and reduction of viral gene expression in polarized epithelial cells. Journal of Virology, 1992, 66, 183-189.	3.4	27
272	Identification and characterization of vaccinia virus genes encoding proteins that are highly antigenic in animals and are immunodominant in vaccinated humans. Journal of Virology, 1992, 66, 386-398.	3.4	116
273	Interferon treatment inhibits early events in vaccinia virus gene expression in infected mice. Virology, 1991, 185, 929-933.	2.4	26
274	Structural properties of HIV-1 Env fused with the 14-kDa vaccinia virus envelope protein. Virology, 1991, 181, 742-748.	2.4	10
275	Vaccinia virus preferentially enters polarized epithelial cells through the basolateral surface. Journal of Virology, 1991, 65, 494-498.	3.4	24
276	The 32-kilodalton envelope protein of vaccinia virus synthesized in Escherichia coli binds with specificity to cell surfaces. Journal of Virology, 1991, 65, 499-504.	3.4	19
277	The purified 14-kilodalton envelope protein of vaccinia virus produced in Escherichia coli induces virus immunity in animals Journal of Virology, 1991, 65, 5631-5635.	3.4	51
278	Mechanism of selective translation of vaccinia virus mRNAs: differential role of poly(A) and initiation factors in the translation of viral and cellular mRNAs. Journal of Virology, 1991, 65, 4449-4460.	3.4	35
279	Identification of the point mutations in two vaccinia virus nucleoside triphosphate phosphohydrolase I temperature-sensitive mutants and role of this DNA-dependent ATPase enzyme in virus gene expression. Virology, 1990, 174, 459-471.	2.4	19
280	Vaccinia virus induces cell fusion at acid ph and this activity is mediated by the N-terminus of the 14-kDa virus envelope protein. Virology, 1990, 178, 81-91.	2.4	109
281	Regulated expression of nuclear genes by T3 RNA polymerase and lac repressor, using recombinant vaccinia virus vectors. Journal of Virology, 1990, 64, 4851-4857.	3.4	28
282	Humoral immune response elicited by highly attenuated variants of vaccinia virus and by an attenuated recombinant expressing HIV-1 envelope protein. Virology, 1989, 173, 323-329.	2.4	18
283	Highly attenuated vaccinia virus mutants for the generation of safe recombinant viruses Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 1287-1291.	7.1	58
284	A single point mutation of Ala-25 to Asp in the 14,000-Mr envelope protein of vaccinia virus induces a size change that leads to the small plaque size phenotype of the virus. Journal of Virology, 1989, 63, 4507-4514.	3.4	30
285	Plaque size phenotype as a selectable marker to generate vaccinia virus recombinants. Journal of Virology, 1989, 63, 997-1001.	3.4	34
286	Antiviral activity of a synthetic analog of prostaglandin A in mice infected with influenza A virus. Archives of Virology, 1988, 99, 89-100.	2.1	49
287	Stability of vaccinia virus DNA during persistent infections: Accumulation of left-end deletions and of tandem repeats at both ends of the viral genome and prevention by interferon. Virology, 1988, 163, 145-154.	2.4	17
288	Reovirus type 3 synthesizes proteins in interferon-treated Hela cells without reversing the antiviral state. Virology, 1988, 164, 420-426.	2.4	12

#	Article	IF	CITATIONS
289	Expression of the fusion (F) protein of human respiratory syncytial virus using an attenuated strain of vaccinia virus. Virus Research, 1988, 11, 18.	2.2	4
290	Expression of the firefly luciferase gene in vaccinia virus: a highly sensitive gene marker to follow virus dissemination in tissues of infected animals Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 1667-1671.	7.1	127
291	Selective inhibition of protein synthesis by synthetic and vaccinia virus-core synthesized poly(riboadenylic acids). Virology, 1987, 161, 366-373.	2.4	19
292	Isolation and characterization of attenuated mutants of vaccinia virus. Virology, 1987, 159, 408-422.	2.4	62
293	A 14K envelope protein of vaccinia virus with an important role in virus-host cell interactions is altered during virus persistence and determines the plaque size phenotype of the virus. Virology, 1987, 159, 423-432.	2.4	64
294	Studies on the mechanism of entry of vaccinia virus in animal cells. Archives of Virology, 1987, 92, 135-150.	2.1	46
295	Mapping and nucleotide sequence of the vaccinia virus gene that encodes a 14-kilodalton fusion protein. Journal of Virology, 1987, 61, 3550-3554.	3.4	95
296	Structural and functional studies of a 39,000-Mr immunodominant protein of vaccinia virus. Journal of Virology, 1987, 61, 3910-3919.	3.4	41
297	A 14,000-Mr envelope protein of vaccinia virus is involved in cell fusion and forms covalently linked trimers. Journal of Virology, 1987, 61, 395-404.	3.4	147
298	Virus attenuation and identification of structural proteins of vaccinia virus that are selectively modified during virus persistence. Journal of Virology, 1987, 61, 2642-2647.	3.4	30
299	Molecular cloning, encoding sequence, and expression of vaccinia virus nucleic acid-dependent nucleoside triphosphatase gene Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 9566-9570.	7.1	60
300	Generation of a dominant 8-MDa deletion at the left terminus of vaccinia virus DNA Proceedings of the United States of America, 1985, 82, 3365-3369.	7.1	41
301	Interferon Inhibits Marker Rescue of Vaccinia Virus. Journal of Interferon Research, 1985, 5, 247-256.	1.2	8
302	Biochemical and electron microscopic studies of the transcription of vaccinia dna by rna polymerase from escherichia coli: Localization and characterization of transcriptional complexes. Journal of Virological Methods, 1985, 12, 111-133.	2.1	0
303	Interferon prevents the generation of spontaneous deletions at the left terminus of vaccinia virus DNA. Journal of Virology, 1985, 56, 75-84.	3.4	19
304	Isolation and characterization of neutralizing monoclonal antibodies to vaccinia virus. Journal of Virology, 1985, 56, 482-488.	3.4	187
305	Analysis of Replicating Vaccinia DNA in Interferon-Treated, Virus-Infected Cells. Journal of Interferon Research, 1984, 4, 179-192.	1.2	9
306	Resistance of vaccinia virus to interferon is related to an interference phenomenon between the virus and the interferon system. Virology, 1984, 134, 12-28.	2.4	133

#	Article	IF	CITATIONS
307	Nature and mode of action of vaccinia virus products that block activation of the interferon-mediated ppp(A2′p)nA-synthetase. Virology, 1984, 134, 29-39.	2.4	46
308	Effect of interferon on integrity of vaccinia virus and ribosomal RNA in infected cells. Virology, 1984, 134, 40-51.	2.4	37
309	Induction of an anti-viral response and 2′,5′-oligo a synthetase by interferon in several thymidine kinase-deficient cell lines. Virology, 1984, 133, 464-469.	2.4	13
310	Defective vaccinia virus particles in interferon-treated infected cells. Virology, 1984, 133, 220-227.	2.4	38
311	Indiscriminate degradation of RNAs in interferon-treated, vaccinia virus-infected mouse L cells. Journal of Virology, 1984, 51, 866-871.	3.4	15
312	Electron microscopic studies of transcriptional complexes released from vaccinia cores during RNA-synthesis in vitro: Methods for fractionation of transcriptional complexes. Journal of Virological Methods, 1983, 7, 73-92.	2.1	3
313	The relationship between the antiviral action of interferon and prostaglandins in virus-infected murine cells. Biochemical and Biophysical Research Communications, 1983, 116, 442-448.	2.1	10
314	Thymidine kinase genes and the induction of anti-rival responses by interferon. FEBS Letters, 1983, 157, 301-305.	2.8	9
315	Induction of an antiviral response by interferon requires thymidine kinase Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 26-30.	7.1	28
316	Antiviral Effect of Prostaglandins of the A Series: Inhibition of Vaccinia Virus Replication in Cultured Cells. Journal of General Virology, 1982, 63, 435-440.	2.9	50
317	Gene-transfer, stability, and biochemical properties of animal cells transformed with vaccinia DNA. Virology, 1982, 122, 363-380.	2.4	12
318	Modification of membrane permeability in vaccinia virus-infected cells. Virology, 1982, 117, 62-69.	2.4	56
319	Inhibition of protein synthesis by vaccinia virus. Virology, 1981, 112, 1-12.	2.4	32
320	Inhibition of protein synthesis by vaccinia virus. Virology, 1981, 112, 13-24.	2.4	33
321	Structure of vaccinia DNA: Analysis of the viral genorne by restriction endonucleases. Virology, 1978, 86, 88-101.	2.4	52
322	Replication of vaccinia DNA in mouse L cells IV. Protein synthesis and viral DNA replication. Virology, 1978, 86, 376-390.	2.4	15
323	Studies on the Mechanisms of Vaccinia Virus Cytopathic Effects: I. Inhibition of Protein Synthesis in Infected Cells is Associated with Virus-induced RNA Synthesis. Journal of General Virology, 1978, 39, 391-402.	2.9	49
324	DNA-binding proteins in the cytoplasm of vaccinia virus-infected mouse L-cells. Journal of Virology, 1978, 25, 263-273.	3.4	25

#	Article	IF	CITATIONS
325	Procedure for purification of intact DNA from vaccinia virus. Journal of Virology, 1978, 25, 442-445.	3.4	9
326	Replication of vaccinia DNA in mouse L cells III. Intracellular forms of viral DNA. Virology, 1977, 82, 308-322.	2.4	19
327	Topography of vaccinia virus DNA. Virology, 1977, 82, 163-181.	2.4	17
328	Replication of vaccinia DNA in mouse L cells I. In vivo DNA synthesis. Virology, 1977, 78, 57-75.	2.4	64
329	Replication of vaccinia DNA in mouse L cells II. In vitro DNA synthesis in cytoplasmic extracts. Virology, 1977, 78, 76-86.	2.4	7
330	Model for vaccinia virus DNA replication. Virology, 1977, 83, 467-473.	2.4	36
331	Rifampin and vaccinia DNA. Journal of Virology, 1977, 21, 796-801.	3.4	21
332	The Formation of Virus Polyribosomes in L Cells Infected with Vaccinia Virus. Journal of General Virology, 1975, 27, 181-195.	2.9	10
333	The Effect of Interferon on the Formation of Virus Polyribosomes in L Cells Infected with Vaccinia Virus. Journal of General Virology, 1975, 27, 197-209.	2.9	25
334	The Synthesis of Encephalomyocarditis Virus Polypeptides in Infected L-Cells and Cell-Free Systems. FEBS Journal, 1974, 45, 567-576.	0.2	35
335	The translation of vaccinia virus messenger RNA in animal cell-free systems. FEBS Letters, 1973, 30, 268-272.	2.8	27
336	Inhibition of Early Vaccinia Virus Protein Synthesis in Interferon-treated Chicken Embryo Fibroblasts. Journal of General Virology, 1973, 20, 111-115.	2.9	24
337	Early Virus Protein Synthesis in Vaccinia Virus-infected Cells. Journal of General Virology, 1973, 19, 201-216.	2.9	100
338	Interferon inhibits Viral Protein Synthesis in L Cells infected with Vaccinia Virus. Nature, 1972, 238, 385-388.	27.8	161