
Tony R Merriman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7585528/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, The, 2012, 380, 2095-2128.	13.7	11,038
2	A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, The, 2012, 380, 2224-2260.	13.7	9,397
3	Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, The, 2014, 384, 766-781.	13.7	9,122
4	Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, The, 2012, 380, 2197-2223.	13.7	7,061
5	Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, The, 2012, 380, 2163-2196.	13.7	6,376
6	Gout. Lancet, The, 2016, 388, 2039-2052.	13.7	774
7	Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20. Nature Genetics, 2009, 41, 824-828.	21.4	501
8	Hyperuricemia, Acute and Chronic Kidney Disease, Hypertension, and Cardiovascular Disease: Report of a Scientific Workshop Organized by the National Kidney Foundation. American Journal of Kidney Diseases, 2018, 71, 851-865.	1.9	362
9	The global burden of gout: estimates from the Global Burden of Disease 2010 study. Annals of the Rheumatic Diseases, 2014, 73, 1470-1476.	0.9	206
10	The genetically isolated populations of Finland and Sardinia may not be a panacea for linkage disequilibrium mapping of common disease genes. Nature Genetics, 2000, 25, 320-323.	21.4	186
11	An update on the genetics of hyperuricaemia and gout. Nature Reviews Rheumatology, 2018, 14, 341-353.	8.0	186
12	Meta-Analysis of Genome-Wide Association Studies for Abdominal Aortic Aneurysm Identifies Four New Disease-Specific Risk Loci. Circulation Research, 2017, 120, 341-353.	4.5	166
13	The genetic basis of hyperuricaemia and gout. Joint Bone Spine, 2011, 78, 35-40.	1.6	143
14	Confirmation of association of IRGM and NCF4 with ileal Crohn's disease in a population-based cohort. Genes and Immunity, 2008, 9, 561-565.	4.1	142
15	Evidence for an influence of chemokine ligand 3-like 1 (CCL3L1) gene copy number on susceptibility to rheumatoid arthritis. Annals of the Rheumatic Diseases, 2007, 67, 409-413.	0.9	139
16	Evaluation of the diet wide contribution to serum urate levels: meta-analysis of population based cohorts. BMJ: British Medical Journal, 2018, 363, k3951.	2.3	139
17	Association analysis of the interleukin 17A gene in Caucasian rheumatoid arthritis patients from Norway and New Zealand. Rheumatology, 2009, 48, 367-370.	1.9	133
18	Relationship between serum urate concentration and clinically evident incident gout: an individual participant data analysis. Annals of the Rheumatic Diseases, 2018, 77, 1048-1052.	0.9	131

#	Article	IF	CITATIONS
19	An update on the genetic architecture of hyperuricemia and gout. Arthritis Research and Therapy, 2015, 17, 98.	3.5	123
20	Hypodontia: An Update on Its Etiology, Classification, and Clinical Management. BioMed Research International, 2017, 2017, 1-9.	1.9	121
21	Twenty-eight loci that influence serum urate levels: analysis of association with gout. Annals of the Rheumatic Diseases, 2016, 75, 124-130.	0.9	116
22	GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes. Annals of the Rheumatic Diseases, 2017, 76, 869-877.	0.9	114
23	IL23R R381Q and ATG16L1 T300A Are Strongly Associated With Crohn's Disease in a Study of New Zealand Caucasians With Inflammatory Bowel Disease. American Journal of Gastroenterology, 2007, 102, 2754-2761.	0.4	109
24	A strong role for the ABCG2 gene in susceptibility to gout in New Zealand Pacific Island and Caucasian, but not MÄori, case and control sample sets. Human Molecular Genetics, 2010, 19, 4813-4819.	2.9	100
25	Mouse models for human hyperuricaemia: a critical review. Nature Reviews Rheumatology, 2019, 15, 413-426.	8.0	99
26	Role of the urate transporter <i>SLC2A9</i> gene in susceptibility to gout in New Zealand MÄori, Pacific Island, and Caucasian case–control sample sets. Arthritis and Rheumatism, 2009, 60, 3485-3492.	6.7	98
27	No causal effects of serum urate levels on the risk of chronic kidney disease: A Mendelian randomization study. PLoS Medicine, 2019, 16, e1002725.	8.4	97
28	Risk factors for cryptorchidism. Nature Reviews Urology, 2017, 14, 534-548.	3.8	93
29	Evidence of interaction of CARD8 rs2043211 with NALP3 rs35829419 in Crohn's disease. Genes and Immunity, 2010, 11, 351-356.	4.1	92
30	Association of CDH1 haplotypes with susceptibility to sporadic diffuse gastric cancer. Oncogene, 2002, 21, 8192-8195.	5.9	91
31	A sequence variant associated with sortilin-1 (SORT1) on 1p13.3 is independently associated with abdominal aortic aneurysm. Human Molecular Genetics, 2013, 22, 2941-2947.	2.9	88
32	Prevalence of airway and parenchymal abnormalities in newly diagnosed rheumatoid arthritis. Respiratory Medicine, 2012, 106, 1441-1446.	2.9	87
33	The molecular basis of the Kidd blood group polymorphism and its lack of association with type 1 diabetes susceptibility. Human Molecular Genetics, 1997, 6, 1017-1020.	2.9	85
34	Associations of autozygosity with a broad range of human phenotypes. Nature Communications, 2019, 10, 4957.	12.8	84
35	Analysis of the Fc Receptor-Like-3 (FCRL3) Locus in Caucasians with Autoimmune Disorders Suggests a Complex Pattern of Disease Association. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 1106-1111.	3.6	83
36	Association of Higher DEFB4 Genomic Copy Number With Crohn's Disease. American Journal of Gastroenterology, 2010, 105, 354-359.	0.4	83

#	Article	IF	CITATIONS
37	ABCG2 loss-of-function polymorphism predicts poor response to allopurinol in patients with gout. Pharmacogenomics Journal, 2017, 17, 201-203.	2.0	82
38	Evidence by allelic association-dependent methods for a type 1 diabetes polygene (IDDM6) on chromosome 18q21. Human Molecular Genetics, 1997, 6, 1003-1010.	2.9	81
39	Mendelian randomization analysis associates increased serum urate, due to genetic variation in uric acid transporters, with improved renal function. Kidney International, 2014, 85, 344-351.	5.2	78
40	Sugar-sweetened beverage consumption: a risk factor for prevalent gout with <i>SLC2A9</i> genotype-specific effects on serum urate and risk of gout. Annals of the Rheumatic Diseases, 2014, 73, 2101-2106.	0.9	77
41	Association of thePTPN22 locus with rheumatoid arthritis in a New Zealand Caucasian cohort. Arthritis and Rheumatism, 2005, 52, 2222-2225.	6.7	75
42	Differential association of two PTPN22 coding variants with Crohn's disease and ulcerative colitis. Inflammatory Bowel Diseases, 2011, 17, 2287-2294.	1.9	73
43	Gout, Hyperuricemia, and Crystalâ€Associated Disease Network Consensus Statement Regarding Labels and Definitions for Disease Elements in Gout. Arthritis Care and Research, 2019, 71, 427-434.	3.4	73
44	Genome-wide association study revealed novel loci which aggravate asymptomatic hyperuricaemia into gout. Annals of the Rheumatic Diseases, 2019, 78, 1430-1437.	0.9	73
45	Gout, Hyperuricaemia and Crystal-Associated Disease Network (G-CAN) consensus statement regarding labels and definitions of disease states of gout. Annals of the Rheumatic Diseases, 2019, 78, 1592-1600.	0.9	72
46	Genomic DNA pooling for whole-genome association scans in complex disease: empirical demonstration of efficacy in rheumatoid arthritis. Genes and Immunity, 2007, 8, 57-68.	4.1	71
47	<i>TLR2</i> , <i>TLR4</i> and <i>TLR9</i> polymorphisms and Crohn's disease in a New Zealand Caucasian cohort. Journal of Gastroenterology and Hepatology (Australia), 2007, 22, 1760-1766.	2.8	71
48	The ABCG2 Q141K hyperuricemia and gout associated variant illuminates the physiology of human urate excretion. Nature Communications, 2020, 11, 2767.	12.8	71
49	Genetic progress towards the molecular basis of autoimmunity. Trends in Molecular Medicine, 2006, 12, 90-98.	6.7	69
50	Hospital admissions associated with gout and their comorbidities in New Zealand and England 1999-2009. Rheumatology, 2013, 52, 118-126.	1.9	66
51	The <i>PTPN22</i> R263Q polymorphism is a risk factor for rheumatoid arthritis in Caucasian case–control samples. Arthritis and Rheumatism, 2011, 63, 365-372.	6.7	64
52	Modulation of Genetic Associations with Serum Urate Levels by Body-Mass-Index in Humans. PLoS ONE, 2015, 10, e0119752.	2.5	64
53	Novel germlineCDH1mutations in hereditary diffuse gastric cancer families. Human Mutation, 2002, 19, 518-525.	2.5	63
54	Association of variation in Fc receptor 3B gene copy number with rheumatoid arthritis in Caucasian samples. Annals of the Rheumatic Diseases, 2010, 69, 1711-1716.	0.9	63

#	Article	IF	CITATIONS
55	ABCG2 polymorphisms in gout: insights into disease susceptibility and treatment approaches. Pharmacogenomics and Personalized Medicine, 2017, Volume 10, 129-142.	0.7	63
56	A genome-wide association study of rheumatoid arthritis without antibodies against citrullinated peptides. Annals of the Rheumatic Diseases, 2015, 74, e15-e15.	0.9	62
57	Functional non-synonymous variants of ABCG2 and gout risk. Rheumatology, 2017, 56, 1982-1992.	1.9	62
58	Population-specific influence of <i>SLC2A9</i> genotype on the acute hyperuricaemic response to a fructose load. Annals of the Rheumatic Diseases, 2013, 72, 1868-1873.	0.9	61
59	Discordant association of the CREBRF rs373863828 A allele with increased BMI and protection from type 2 diabetes in MÄori and Pacific (Polynesian) people living in Aotearoa/New Zealand. Diabetologia, 2018, 61, 1603-1613.	6.3	61
60	Construction and use of a self-cloning promoter probe vector for Gram-negative bacteria. Gene, 1993, 126, 17-23.	2.2	60
61	Are Liquid Sugars Different from Solid Sugar in Their Ability to Cause Metabolic Syndrome?. Obesity, 2019, 27, 879-887.	3.0	60
62	KCNN4 Gene Variant Is Associated With Ileal Crohn's Disease in the Australian and New Zealand Population. American Journal of Gastroenterology, 2010, 105, 2209-2217.	0.4	59
63	Myeloidâ€Related Proteins 8 and 14 Contribute to Monosodium Urate Monohydrate Crystal–Induced Inflammation in Gout. Arthritis and Rheumatology, 2014, 66, 1327-1339.	5.6	58
64	Mutations in the Zinc Finger Protein Gene, <i>ZNF469</i> , Contribute to the Pathogenesis of Keratoconus. , 2014, 55, 5629.		57
65	Fine Mapping of the Diabetes-Susceptibility Locus, IDDM4, on Chromosome 11q13. American Journal of Human Genetics, 1998, 63, 547-556.	6.2	56
66	Multiplicative interaction of functional inflammasome genetic variants in determining the risk of gout. Arthritis Research and Therapy, 2015, 17, 288.	3.5	54
67	Evidence for a type 1 diabetes susceptibility locus (IDDM10) on human chromosome 10p11-q11. Human Molecular Genetics, 1997, 6, 1011-1016.	2.9	53
68	The renal urate transporter SLC17A1 locus: confirmation of association with gout. Arthritis Research and Therapy, 2012, 14, R92.	3.5	53
69	A Genetic Association Study of Serum Acute-Phase C-Reactive Protein Levels in Rheumatoid Arthritis: Implications for Clinical Interpretation. PLoS Medicine, 2010, 7, e1000341.	8.4	52
70	Interaction of the inflammasome genes CARD8 and NLRP3 in abdominal aortic aneurysms. Atherosclerosis, 2011, 218, 123-126.	0.8	52
71	A bioinformatics workflow for detecting signatures of selection in genomic data. Frontiers in Genetics, 2014, 5, 293.	2.3	51
72	Gout Is a Chronic Inflammatory Disease in Which High Levels of Interleukinâ€8 (CXCL8), Myeloidâ€Related Protein 8/Myeloidâ€Related Protein 14 Complex, and an Altered Proteome Are Associated With Diabetes Mellitus and Cardiovascular Disease. Arthritis and Rheumatology, 2015, 67, 3303-3313.	5.6	51

#	Article	IF	CITATIONS
73	Genetics of autoimmune disease. Current Opinion in Immunology, 1995, 7, 786-792.	5.5	50
74	Polymorphisms in the organic cation transporter genes SLC22A4 and SLC22A5 and Crohn's disease in a New Zealand Caucasian cohort. Immunology and Cell Biology, 2006, 84, 233-236.	2.3	50
75	Mendelian Randomization Analysis to Examine for a Causal Effect of Urate on Bone Mineral Density. Journal of Bone and Mineral Research, 2015, 30, 985-991.	2.8	50
76	Risk Factors for Acute Rheumatic Fever: Literature Review and Protocol for a Case-Control Study in New Zealand. International Journal of Environmental Research and Public Health, 2019, 16, 4515.	2.6	49
77	Serum Metabolomics Identifies Dysregulated Pathways and Potential Metabolic Biomarkers for Hyperuricemia and Gout. Arthritis and Rheumatology, 2021, 73, 1738-1748.	5.6	49
78	Assessing the Causal Relationships Between Insulin Resistance and Hyperuricemia and Gout Using Bidirectional Mendelian Randomization. Arthritis and Rheumatology, 2021, 73, 2096-2104.	5.6	49
79	Association of thymidylate synthase polymorphisms with gastric cancer susceptibility. International Journal of Cancer, 2004, 112, 1010-1014.	5.1	46
80	Predicting allopurinol response in patients with gout. British Journal of Clinical Pharmacology, 2016, 81, 277-289.	2.4	46
81	Insight into rheumatological cause and effect through the use of Mendelian randomization. Nature Reviews Rheumatology, 2016, 12, 486-496.	8.0	46
82	Brief Report: <i>IRF4</i> Newly Identified as a Common Susceptibility Locus for Systemic Sclerosis and Rheumatoid Arthritis in a Crossâ€Disease Metaâ€Analysis of Genomeâ€Wide Association Studies. Arthritis and Rheumatology, 2016, 68, 2338-2344.	5.6	46
83	Populationâ€Specific Resequencing Associates the ATPâ€Binding Cassette Subfamily C Member 4 Gene With Gout in New Zealand MÄori and Pacific Men. Arthritis and Rheumatology, 2017, 69, 1461-1469.	5.6	46
84	Multiple common and rare variants of <i>ABCG2</i> cause gout. RMD Open, 2017, 3, e000464.	3.8	46
85	Shared Genetic Risk Factors of Intracranial, Abdominal, and Thoracic Aneurysms. Journal of the American Heart Association, 2016, 5, .	3.7	45
86	mTOR inhibition by metformin impacts monosodium urate crystal–induced inflammation and cell death in gout: a prelude to a new add-on therapy?. Annals of the Rheumatic Diseases, 2019, 78, 663-671.	0.9	45
87	The genetics of gout: towards personalised medicine?. BMC Medicine, 2017, 15, 108.	5.5	44
88	Performance of gout definitions for genetic epidemiological studies: analysis of UK Biobank. Arthritis Research and Therapy, 2017, 19, 181.	3.5	44
89	Rare genetic variants in interleukin-37 link this anti-inflammatory cytokine to the pathogenesis and treatment of gout. Annals of the Rheumatic Diseases, 2020, 79, 536-544.	0.9	44
90	Meta-analysis confirms a role for deletion in FCGR3B in autoimmune phenotypes. Human Molecular Genetics, 2012, 21, 2370-2376.	2.9	43

#	Article	IF	CITATIONS
91	IL-23R rs11209026 polymorphism modulates IL-17A expression in patients with rheumatoid arthritis. Genes and Immunity, 2012, 13, 282-287.	4.1	43
92	Impaired response or insufficient dosage?—Examining the potential causes of "inadequate response―to allopurinol in the treatment of gout. Seminars in Arthritis and Rheumatism, 2014, 44, 170-174.	3.4	43
93	Transmission of haplotypes of microsatellite markers rather than single marker alleles in the mapping of a putative type 1 diabetes susceptibility gene (IDDM6). Human Molecular Genetics, 1998, 7, 517-524.	2.9	42
94	Evidence for association of an interleukin 23 receptor variant independent of the R381Q variant with rheumatoid arthritis. Annals of the Rheumatic Diseases, 2009, 68, 1340-1344.	0.9	41
95	Genomic dissection of 43 serum urate-associated loci provides multiple insights into molecular mechanisms of urate control. Human Molecular Genetics, 2020, 29, 923-943.	2.9	40
96	Hyperuricaemia in the Pacific: why the elevated serum urate levels?. Rheumatology International, 2014, 34, 743-757.	3.0	37
97	Gout, Rheumatoid Arthritis, and the Risk of Death Related to Coronavirus Disease 2019: An Analysis of the UK Biobank. ACR Open Rheumatology, 2021, 3, 333-340.	2.1	37
98	Mutation of the glucagon receptor gene and diabetes mellitus in the UK: association or founder effect?. Human Molecular Genetics, 1995, 4, 1609-1612.	2.9	36
99	The SLC2A9 nonsynonymous Arg265His variant and gout: evidence for a population-specific effect on severity. Arthritis Research and Therapy, 2011, 13, R85.	3.5	36
100	Causal or Noncausal Relationship of Uric Acid With Diabetes. Diabetes, 2015, 64, 2720-2722.	0.6	36
101	Only one independent genetic association with rheumatoid arthritis within the KIAA1109-TENR-IL2-IL21 locus in Caucasian sample sets: confirmation of association of rs6822844 with rheumatoid arthritis at a genome-wide level of significance. Arthritis Research and Therapy, 2010, 12, R116.	3.5	35
102	Association analysis of the SLC22A11 (organic anion transporter 4) and SLC22A12 (urate transporter 1) urate transporter locus with gout in New Zealand case-control sample sets reveals multiple ancestral-specific effects. Arthritis Research and Therapy, 2013, 15, R220.	3.5	35
103	The Genetic Basis of Gout. Rheumatic Disease Clinics of North America, 2014, 40, 279-290.	1.9	35
104	Pacific Populations, Metabolic Disease and â€Justâ€60 Stories': A Critique of the â€Thrifty Genotype' Hypothesis in Oceania. Annals of Human Genetics, 2015, 79, 470-480.	0.8	35
105	Advances in our understanding of gout as an auto-inflammatory disease. Seminars in Arthritis and Rheumatism, 2020, 50, 1089-1100.	3.4	35
106	Association of the lipoprotein receptor-related protein 2 gene with gout and non-additive interaction with alcohol consumption. Arthritis Research and Therapy, 2013, 15, R177.	3.5	34
107	Association between ABCG2 rs2231142 and poor response to allopurinol: replication and meta-analysis. Rheumatology, 2018, 57, 656-660.	1.9	34
108	Mendelian Randomization Provides No Evidence for a Causal Role of Serum Urate in Increasing Serum Triglyceride Levels. Circulation: Cardiovascular Genetics, 2014, 7, 830-837.	5.1	33

#	Article	IF	CITATIONS
109	Risk-taking: behind the warrior gene story. New Zealand Medical Journal, 2007, 120, U2440.	0.5	32
110	The Toll-Like Receptor 4 (TLR4) Variant rs2149356 and Risk of Gout in European and Polynesian Sample Sets. PLoS ONE, 2016, 11, e0147939.	2.5	31
111	Hyperuricaemia: contributions of urate transporter ABCG2 and the fractional renal clearance of urate. Annals of the Rheumatic Diseases, 2016, 75, 1363-1366.	0.9	30
112	Mitochondrial genetic variation and gout in MÄori and Pacific people living in Aotearoa New Zealand. Annals of the Rheumatic Diseases, 2018, 77, 571-578.	0.9	30
113	Differential <scp>DNA</scp> Methylation of Networked Signaling, Transcriptional, Innate and Adaptive Immunity, and Osteoclastogenesis Genes and Pathways in Gout. Arthritis and Rheumatology, 2020, 72, 802-814.	5.6	30
114	Systematic genetic analysis of early-onset gout: ABCG2 is the only associated locus. Rheumatology, 2020, 59, 2544-2549.	1.9	30
115	Population Heterogeneity in the Genetic Control of Serum Urate. Seminars in Nephrology, 2011, 31, 420-425.	1.6	29
116	Evidence that deletion at FCGR3B is a risk factor for systemic sclerosis. Genes and Immunity, 2012, 13, 458-460.	4.1	29
117	Abundant local interactions in the 4p16.1 region suggest functional mechanisms underlying SLC2A9 associations with human serum uric acid. Human Molecular Genetics, 2014, 23, 5061-5068.	2.9	29
118	Interaction of the GCKR and A1CF loci with alcohol consumption to influence the risk of gout. Arthritis Research and Therapy, 2017, 19, 161.	3.5	29
119	Testing the Validity of Taxonic Schizotypy Using Genetic and Environmental Risk Variables. Schizophrenia Bulletin, 2017, 43, sbw108.	4.3	28
120	Pleiotropic effect of the ABCG2 gene in gout: involvement in serum urate levels and progression from hyperuricemia to gout. Arthritis Research and Therapy, 2020, 22, 45.	3.5	28
121	Association of Autoimmune Addison's Disease with Alleles of STAT4 and GATA3 in European Cohorts. PLoS ONE, 2014, 9, e88991.	2.5	27
122	Influence of the ABCG2 gout risk 141ÂK allele on urate metabolism during a fructose challenge. Arthritis Research and Therapy, 2014, 16, R34.	3.5	27
123	Positive association of tomato consumption with serum urate: support for tomato consumption as an an an an an an	1.9	27
124	An association of smoking with serum urate and gout: A health paradox. Seminars in Arthritis and Rheumatism, 2018, 47, 825-842.	3.4	27
125	Maternal Psychological Reaction to Newborn Genetic Screening for Type 1 Diabetes. Pediatrics, 2007, 120, e324-e335.	2.1	26
126	Type 1 diabetes, the A1 milk hypothesis and vitamin D deficiency. Diabetes Research and Clinical Practice, 2009, 83, 149-156.	2.8	26

#	Article	IF	CITATIONS
127	The population pharmacokinetics of allopurinol and oxypurinol in patients with gout. European Journal of Clinical Pharmacology, 2013, 69, 1411-1421.	1.9	26
128	A non-coding genetic variant maximally associated with serum urate levels is functionally linked to HNF4A-dependent PDZK1 expression. Human Molecular Genetics, 2018, 27, 3964-3973.	2.9	26
129	Population-specific association between ABCG2 variants and tophaceous disease in people with gout. Arthritis Research and Therapy, 2017, 19, 43.	3.5	25
130	Genetics of Type 1 Diabetes and Autoimmune Thyroid Disease. Endocrinology and Metabolism Clinics of North America, 2009, 38, 289-301.	3.2	24
131	Prevalence of HLA-B27 in the New Zealand population: effect of age and ethnicity. Arthritis Research and Therapy, 2013, 15, R158.	3.5	24
132	Body mass index modulates the relationship of sugar-sweetened beverage intake with serum urate concentrations and gout. Arthritis Research and Therapy, 2015, 17, 263.	3.5	24
133	Subtype-specific gout susceptibility loci and enrichment of selection pressure on ABCG2 and ALDH2 identified by subtype genome-wide meta-analyses of clinically defined gout patients. Annals of the Rheumatic Diseases, 2020, 79, 657-665.	0.9	24
134	The relationship between ferritin and urate levels and risk of gout. Arthritis Research and Therapy, 2018, 20, 179.	3.5	23
135	Comorbidities in gout and hyperuricemia: causality or epiphenomena?. Current Opinion in Rheumatology, 2020, 32, 126-133.	4.3	23
136	Polymorphisms of CARD15/NOD2 and CD14 genes in New Zealand Crohn's disease patients. Immunology and Cell Biology, 2005, 83, 498-503.	2.3	22
137	Colocalization of Mouse Autoimmune Diabetes Loci Idd21.1 and Idd21.2 With IDDM6 (Human) and Iddm3 (Rat). Diabetes, 2005, 54, 2820-2825.	0.6	22
138	The CNVrd2 package: measurement of copy number at complex loci using high-throughput sequencing data. Frontiers in Genetics, 2014, 5, 248.	2.3	22
139	The relationship of apolipoprotein B and very low density lipoprotein triglyceride with hyperuricemia and gout. Arthritis Research and Therapy, 2014, 16, 495.	3.5	22
140	Expert opinion on emerging urate-lowering therapies. Expert Opinion on Emerging Drugs, 2018, 23, 201-209.	2.4	22
141	Urate″owering therapy alleviates atherosclerosis inflammatory response factors and neointimal lesions in a mouse model of induced carotid atherosclerosis. FEBS Journal, 2019, 286, 1346-1359.	4.7	22
142	The distribution and impact of common copy-number variation in the genome of the domesticated apple, Malus x domestica Borkh. BMC Genomics, 2015, 16, 848.	2.8	21
143	Vitamin D receptor gene polymorphism associated with inflammatory bowel disease in New Zealand males. Alimentary Pharmacology and Therapeutics, 2011, 33, 855-856.	3.7	20
144	Genotypic variability based association identifies novel non-additive loci DHCR7 and IRF4 in sero-negative rheumatoid arthritis. Scientific Reports, 2017, 7, 5261.	3.3	20

#	Article	IF	CITATIONS
145	Association of CD247 Polymorphisms with Rheumatoid Arthritis: A Replication Study and a Meta-Analysis. PLoS ONE, 2013, 8, e68295.	2.5	19
146	Interactions between serum urate-associated genetic variants and sex on gout risk: analysis of the UK Biobank. Arthritis Research and Therapy, 2019, 21, 13.	3.5	19
147	The comparative effect of exposure to various risk factors on the risk of hyperuricaemia: diet has a weak causal effect. Arthritis Research and Therapy, 2021, 23, 75.	3.5	19
148	Gout and the risk of COVID-19 diagnosis and death in the UK Biobank: a population-based study. Lancet Rheumatology, The, 2022, 4, e274-e281.	3.9	19
149	Gout in MÂori. Rheumatology, 2014, 53, 773-774.	1.9	18
150	Smoking behaviour modifies <i>IL23r</i> â€associated disease risk in patients with Crohn's disease. Journal of Gastroenterology and Hepatology (Australia), 2015, 30, 299-307.	2.8	18
151	Lack of gene–diuretic interactions on the risk of incident gout: the Nurses' Health Study and Health Professionals Follow-up Study. Annals of the Rheumatic Diseases, 2015, 74, 1394-1398.	0.9	18
152	Geo-epidemiology of temporal artery biopsy-positive giant cell arteritis in Australia and New Zealand: is there a seasonal influence?. RMD Open, 2017, 3, e000531.	3.8	18
153	Functional Urate-Associated Genetic Variants Influence Expression of lincRNAs LINC01229 and MAFTRR. Frontiers in Genetics, 2018, 9, 733.	2.3	18
154	Multiplexed Nanopore Sequencing of HLA-B Locus in MÄori and Pacific Island Samples. Frontiers in Genetics, 2018, 9, 152.	2.3	17
155	Cardio-metabolic disease genetic risk factors among MÄori and Pacific Island people in Aotearoa New Zealand: current state of knowledge and future directions. Annals of Human Biology, 2018, 45, 202-214.	1.0	17
156	Nonsynonymous SNPs in LPA homologous to plasminogen deficiency mutants represent novel null apo(a) alleles. Journal of Lipid Research, 2020, 61, 432-444.	4.2	17
157	Genetic and Physiological Effects of Insulin on Human Urate Homeostasis. Frontiers in Physiology, 2021, 12, 713710.	2.8	17
158	Macrophage migration inhibitory factor gene polymorphisms in inflammatory bowel disease: An association study in New Zealand Caucasians and meta-analysis. World Journal of Gastroenterology, 2013, 19, 6656.	3.3	17
159	Association of SLC2A9 genotype with phenotypic variability of serum urate in pre-menopausal women. Frontiers in Genetics, 2015, 6, 313.	2.3	16
160	Replication of association of the apolipoprotein A1-C3-A4 gene cluster with the risk of gout. Rheumatology, 2016, 55, 1421-1430.	1.9	16
161	Genomic Influences on Hyperuricemia and Gout. Rheumatic Disease Clinics of North America, 2017, 43, 389-399.	1.9	16
162	Mediation analysis to understand genetic relationships between habitual coffee intake and gout. Arthritis Research and Therapy, 2018, 20, 135.	3.5	16

#	Article	IF	CITATIONS
163	Untangling the complex relationships between incident gout risk, serum urate, and its comorbidities. Arthritis Research and Therapy, 2018, 20, 90.	3.5	16
164	Association of FcgR2a, but not FcgR3a, with inflammatory bowel diseases across three Caucasian populationsâ€. Inflammatory Bowel Diseases, 2010, 16, 2080-2089.	1.9	15
165	The PTPN22 Locus and Rheumatoid Arthritis: No Evidence for an Effect on Risk Independent of Arg620Trp. PLoS ONE, 2010, 5, e13544.	2.5	15
166	Genetic advances in gout: potential applications in clinical practice. Current Opinion in Rheumatology, 2019, 31, 144-151.	4.3	15
167	The MÄori and Pacific specific CREBRF variant and adult height. International Journal of Obesity, 2020, 44, 748-752.	3.4	15
168	Trends in the manifestations of 9754 gout patients in a Chinese clinical center: A 10-year observational study. Joint Bone Spine, 2021, 88, 105078.	1.6	15
169	The ITGAV rs3738919 variant and susceptibility to rheumatoid arthritis in four Caucasian sample sets. Arthritis Research and Therapy, 2009, 11, R152.	3.5	14
170	The Pacific-specific CREBRF rs373863828 allele protects against gestational diabetes mellitus in MÄori and Pacific women with obesity. Diabetologia, 2020, 63, 2169-2176.	6.3	14
171	IL4, IL10, IL16, and TNF polymorphisms in New Zealand Caucasian Crohn's disease patients. International Journal of Colorectal Disease, 2008, 23, 335-337.	2.2	13
172	A novel diffuse gastric cancer susceptibility variant in E-cadherin (CDH1) intron 2: A case control study in an Italian population. BMC Cancer, 2008, 8, 138.	2.6	13
173	Replication of association of the interleukin 23 receptor rs1343151 variant with rheumatoid arthritis in Caucasian sample sets. Annals of the Rheumatic Diseases, 2012, 71, 155-157.	0.9	13
174	Association of the HLA locus and TNF with type I autoimmune hepatitis susceptibility in New Zealand Caucasians. SpringerPlus, 2013, 2, 355.	1.2	13
175	Association study involving polymorphisms in IL-6, IL-1RA, and CTLA4 genes and rheumatic heart disease in New Zealand population of MÄori and Pacific ancestry. Cytokine, 2016, 85, 201-206.	3.2	13
176	Genomic medicine must reduce, not compound, health inequities: the case for hauora-enhancing genomic resources for New Zealand. New Zealand Medical Journal, 2018, 131, 81-89.	0.5	13
177	An autoimmune diabetes locus (Idd21) on mouse Chromosome 18. Mammalian Genome, 2003, 14, 335-339.	2.2	12
178	Consolidation of Evidence for Association of the KIAA1109-TENR-IL2-IL21 rs6822844 Variant With Crohn's Disease. American Journal of Gastroenterology, 2010, 105, 1204-1205.	0.4	12
179	CNVrd, a Read-Depth Algorithm for Assigning Copy-Number at the FCGR Locus: Population-Specific Tagging of Copy Number Variation at FCGR3B. PLoS ONE, 2013, 8, e63219.	2.5	12
180	Dietary Sodium Modifies Serum Uric Acid Concentrations in Humans. American Journal of Hypertension, 2017, 30, 1196-1202.	2.0	11

#	Article	IF	CITATIONS
181	The impact of diuretic use and <i>ABCG2</i> genotype on the predictive performance of a published allopurinol dosing tool. British Journal of Clinical Pharmacology, 2018, 84, 937-943.	2.4	11
182	Elevated serum uric acid levels are associated with endothelial dysfunction in HIV patients receiving highly-active antiretroviral therapy. Atherosclerosis, 2018, 272, 101-107.	0.8	11
183	Population-specific factors associated with fractional excretion of uric acid. Arthritis Research and Therapy, 2019, 21, 234.	3.5	11
184	Effect of body mass index on serum urate and renal uric acid handling responses to an oral inosine load: experimental intervention study in healthy volunteers. Arthritis Research and Therapy, 2020, 22, 259.	3.5	11
185	Factors associated with orthodontic pain. Journal of Oral Rehabilitation, 2021, 48, 1135-1143.	3.0	11
186	Genetic correlations between traits associated with hyperuricemia, gout, and comorbidities. European Journal of Human Genetics, 2021, 29, 1438-1445.	2.8	11
187	Sugar Sweetened Beverage Consumption among Adults with Gout or Type 2 Diabetes. PLoS ONE, 2015, 10, e0125543.	2.5	10
188	Lack of direct evidence for natural selection at the candidate thrifty gene locus, PPARGC1A. BMC Medical Genetics, 2016, 17, 80.	2.1	10
189	Association analysis of the beta-3 adrenergic receptor Trp64Arg (rs4994) polymorphism with urate and gout. Rheumatology International, 2016, 36, 255-261.	3.0	10
190	Do Serum Urate–Associated Genetic Variants Differentially Contribute to Gout Risk According to Body Mass Index? Analysis of the UK Biobank. Arthritis and Rheumatology, 2020, 72, 1184-1191.	5.6	10
191	The Shared Genetic Basis of Hyperuricemia, Gout, and Kidney Function. Seminars in Nephrology, 2020, 40, 586-599.	1.6	10
192	Polymorphisms in NFKBIA and ICAM-1 genes in New Zealand Caucasian Crohn's disease patients. Journal of Gastroenterology and Hepatology (Australia), 2007, 22, 1666-1670.	2.8	9
193	<i>PTPN22</i> R620W minor allele is a genetic risk factor for giant cell arteritis. RMD Open, 2016, 2, e000246.	3.8	9
194	Plasma oxypurinol as a measure of adherence in clinical trials. Annals of the Rheumatic Diseases, 2018, 77, 313-314.	0.9	9
195	The Oxytocin Receptor Gene (OXTR) Variant rs53576 Is Not Related to Emotional Traits or States in Young Adults. Frontiers in Psychology, 2018, 9, 2548.	2.1	9
196	Risk factors for acute rheumatic fever: A case-control study. The Lancet Regional Health - Western Pacific, 2022, 26, 100508.	2.9	9
197	The human genome and understanding of common disease: present and future technologies. Cellular and Molecular Life Sciences, 2007, 64, 961-978.	5.4	8
198	Analysis of the <i><scp>DISC1</scp></i> translocation partner (11q14.3) in genetic risk of schizophrenia. Genes, Brain and Behavior, 2012, 11, 859-863.	2.2	8

#	Article	IF	CITATIONS
199	Frequency of CYP2C9 polymorphisms in polynesian people and potential relevance to management of gout with benzbromarone. Joint Bone Spine, 2014, 81, 160-163.	1.6	8
200	Copy number variants implicate cardiac function and development pathways in earthquake-induced stress cardiomyopathy. Scientific Reports, 2018, 8, 7548.	3.3	8
201	Aotearoa New Zealand MÄori and Pacific Population-amplified Gout Risk Variants: <i>CLNK</i> Is a Separate Risk Gene at the <i>SLC2A9</i> Locus. Journal of Rheumatology, 2021, 48, 1736-1744.	2.0	8
202	Assessing the Relationship Between Serum Urate and Urolithiasis Using Mendelian Randomization: An Analysis of the UK Biobank. American Journal of Kidney Diseases, 2021, 78, 210-218.	1.9	8
203	The genetic basis of urate control and gout: Insights into molecular pathogenesis from follow-up study of genome-wide association study loci. Best Practice and Research in Clinical Rheumatology, 2021, 35, 101721.	3.3	8
204	No evidence for association of the systemic lupus erythematosus-associated ITGAM variant, R77H, with rheumatoid arthritis in the Caucasian population. Rheumatology, 2009, 48, 1614-1615.	1.9	7
205	Population-specific effects of <i>SLC17A1</i> genotype on serum urate concentrations and renal excretion of uric acid during a fructose load. Annals of the Rheumatic Diseases, 2014, 73, 313-314.	0.9	7
206	A human leukocyte antigen locus haplotype confers risk for allopurinol-related adverse effects in Caucasian patients with gout. Pharmacogenetics and Genomics, 2015, 25, 412-415.	1.5	7
207	SRBreak: A Read-Depth and Split-Read Framework to Identify Breakpoints of Different Events Inside Simple Copy-Number Variable Regions. Frontiers in Genetics, 2016, 7, 160.	2.3	7
208	ABCG2 rs2231142 (Q141K) and oxypurinol concentrations in people with gout receiving allopurinol. Drug Metabolism and Pharmacokinetics, 2018, 33, 241-242.	2.2	7
209	Pharmaceutical interventions for weight-loss maintenance: no effect from cabergoline. International Journal of Obesity, 2018, 42, 1871-1879.	3.4	7
210	Potential <scp><i>PINK1</i></scp> Founder Effect in Polynesia Causing Earlyâ€Onset Parkinson's Disease. Movement Disorders, 2021, 36, 2199-2200.	3.9	7
211	The CREBRF diabetes-protective rs373863828-A allele is associated with enhanced early insulin release in men of MÄori and Pacific ancestry. Diabetologia, 2021, 64, 2779-2789.	6.3	7
212	No association between <i>ATP-binding cassette transporter G2</i> rs2231142 (Q141K) and urate-lowering response to febuxostat. Rheumatology, 2019, 58, 547-548.	1.9	6
213	Relationships Between Allopurinol Dose, Oxypurinol Concentration and Urateâ€Lowering Response—In Search of a Minimum Effective Oxypurinol Concentration. Clinical and Translational Science, 2020, 13, 110-115.	3.1	6
214	The efficacy and safety of citrate mixture <i>vs</i> sodium bicarbonate on urine alkalization in Chinese primary gout patients with benzbromarone: a prospective, randomized controlled study. Rheumatology, 2021, 60, 2661-2671.	1.9	6
215	Urate in fingernail represents the deposition of urate burden in gout patients. Scientific Reports, 2020, 10, 15575.	3.3	6
216	Trans-ancestral dissection of urate- and gout-associated major loci SLC2A9 and ABCG2 reveals primate-specific regulatory effects. Journal of Human Genetics, 2021, 66, 161-169.	2.3	6

#	Article	IF	CITATIONS
217	Variable expression quantitative trait loci analysis of breast cancer risk variants. Scientific Reports, 2021, 11, 7192.	3.3	6
218	Effect of Clinical Typing on Serum Urate Targets of Benzbromarone in Chinese Gout Patients: A Prospective Cohort Study. Frontiers in Medicine, 2021, 8, 806710.	2.6	6
219	Clinical and genetic features of diuretic-associated gout: a case-control study. Rheumatology, 2016, 55, 1172-1176.	1.9	5
220	Re: "Widespread prevalence of a CREBRF variant among MÄori and Pacific children is associated with weight and height in early childhood― International Journal of Obesity, 2018, 42, 1389-1391.	3.4	5
221	Common variants of <i>EDA</i> are associated with nonâ€syndromic hypodontia. Orthodontics and Craniofacial Research, 2021, 24, 155-163.	2.8	5
222	Elevated Urate Levels Do Not Alter Bone Turnover Markers: Randomized Controlled Trial of Inosine Supplementation in Postmenopausal Women. Arthritis and Rheumatology, 2021, 73, 1758-1764.	5.6	5
223	Mid-pass whole genome sequencing enables biomedical genetic studies of diverse populations. BMC Genomics, 2021, 22, 666.	2.8	5
224	Peroxisome proliferator-activated receptor-γ gene polymorphisms and Crohn's disease. International Journal of Colorectal Disease, 2007, 22, 453-454.	2.2	4
225	<i>Smad2:</i> A Candidate Gene for the Murine Autoimmune Diabetes Locus <i>Idd21.1</i> . Journal of Clinical Endocrinology and Metabolism, 2011, 96, E2072-E2077.	3.6	4
226	Ecological momentary assessment of pain in adolescents undergoing orthodontic treatment using a smartphone app. Seminars in Orthodontics, 2018, 24, 209-216.	1.4	4
227	Application of Genetic Epidemiology to CETP (Cholesteryl Ester Transfer Protein) Concentration and Risk of Cardiovascular Disease. Circulation Genomic and Precision Medicine, 2018, 11, e002138.	3.6	4
228	What predicts regression from pre-diabetes to normal glucose regulation following a primary care nurse-delivered dietary intervention? A study protocol for a prospective cohort study. BMJ Open, 2019, 9, e033358.	1.9	4
229	Genetic Polymorphisms on OPRM1, DRD2, DRD4, and COMT in Young Adults: Lack of Association With Alcohol Consumption. Frontiers in Psychiatry, 2020, 11, 549429.	2.6	4
230	Association of Crohn's disease-related chromosome 1q32 with ankylosing spondylitis is independent of bowel symptoms and faecal calprotectin. PeerJ, 2018, 6, e5088.	2.0	4
231	Debunking the myths to provide 21st Century management of gout. New Zealand Medical Journal, 2008, 121, 79-85.	0.5	4
232	A machine learning-assisted model for renal urate underexcretion with genetic and clinical variables among Chinese men with gout. Arthritis Research and Therapy, 2022, 24, 67.	3.5	4
233	Racial Differences in XO (Xanthine Oxidase) and Mitochondrial DNA Damage-Associated Molecular Patterns in Resistant Hypertension. Hypertension, 2022, 79, 775-784.	2.7	4
234	Colony-stimulating factor-1 receptor gene polymorphisms and Crohn's disease. International Journal of Colorectal Disease, 2007, 22, 995-996.	2.2	3

#	Article	IF	CITATIONS
235	Evidence that glioma-associated oncogene homolog 1 is not a universal risk gene for inflammatory bowel disease in Caucasians. Genes and Immunity, 2010, 11, 509-514.	4.1	3
236	No evidence for association of Chr 9p21 variant rs1333049 with gout in New Zealand case-control sample sets. Rheumatology, 2012, 51, 1129-1130.	1.9	3
237	<i>PPARGC1B</i> : insight into the expression of the gouty inflammation phenotype. Rheumatology, 2017, 56, kew453.	1.9	3
238	Influence of genetic variants on renal uric acid handling in response to frusemide: an acute intervention study. RMD Open, 2017, 3, e000424.	3.8	3
239	Greater insulin response to acute fructose ingestion among MÄori and Pacific people compared to European people living in Aotearoa New Zealand. Internal Medicine Journal, 2019, 49, 196-202.	0.8	3
240	Genetic testing in Polynesian long QT syndrome probands reveals a lower diagnostic yield and an increased prevalence of rare variants. Heart Rhythm, 2020, 17, 1304-1311.	0.7	3
241	Correspondence on â€`Variants in urate transporters, <i>ADH1B</i> , <i>GCKR</i> and <i>MEPE</i> genes associated with transition from asymptomatic hyperuricaemia to gout: results of the first gout versus asymptomatic hyperuricaemia GWAS in Caucasians using data from the UK Biobank'. Annals of the Rheumatic Diseases. 2023. 82. e174-e174.	0.9	3
242	Higher Serum Urate Levels Are Associated With an Increased Risk for Sudden Cardiac Death. Journal of Rheumatology, 2021, 48, 1745-1753.	2.0	3
243	Association of low-level environmental exposure to cadmium and lead with gout flare using a cohort study design. Chemosphere, 2021, 280, 130648.	8.2	3
244	A Polynesian-specific copy number variant encompassing the MICA gene associates with gout. Human Molecular Genetics, 2022, 31, 3757-3768.	2.9	3
245	The deleted in colorectal carcinoma (DCC) gene 201 R → G polymorphism: no evidence for genetic association with autoimmune disease. European Journal of Human Genetics, 2003, 11, 840-844.	2.8	2
246	PPAR-γ and Crohn's Disease in New Zealand. Gastroenterology, 2006, 130, 2249-2250.	1.3	2
247	Letters to the Editors: High frequency of <i>MCM6</i> lactose intolerance genotype in Polynesian People. Alimentary Pharmacology and Therapeutics, 2010, 32, 828-829.	3.7	2
248	Genetic and Environmental Risk Factors in Hyperuricaemia and Common Gout. Current Rheumatology Reviews, 2011, 7, 114-122.	0.8	2
249	Analysis of association of DNASE2 promoter variation with rheumatoid arthritis in European Caucasians. Annals of the Rheumatic Diseases, 2011, 70, 1512-1514.	0.9	2
250	Does midlife obesity really lower dementia risk?. Lancet Diabetes and Endocrinology,the, 2015, 3, 501.	11.4	2
251	Randomised cross-over trial of vildagliptin and pioglitazone as add-on therapy in patients with type 2 diabetes: predicting Which One is Right Here (WORTH) study protocol. BMJ Open, 2020, 10, e036518.	1.9	2
252	Effects of fenofibrate therapy on renal function in primary gout patients. Rheumatology, 2021, 60, 5020-5027.	1.9	2

#	Article	lF	CITATIONS
253	Do Serum Urate–associated Genetic Variants Influence Gout Risk in People Taking Diuretics? Analysis of the UK Biobank. Journal of Rheumatology, 2020, 47, 1704-1711.	2.0	2
254	Genetic association studies of the progression from hyperuricaemia to gout. Rheumatology, 2022, , .	1.9	2
255	<i>CREBRF</i> missense variant rs373863828 has both direct and indirect effects on type 2 diabetes and fasting glucose in Polynesian peoples living in Samoa and Aotearoa New Zealand. BMJ Open Diabetes Research and Care, 2022, 10, e002275.	2.8	2
256	Genetic progress towards the molecular basis of common autoimmunity. Discovery Medicine, 2006, 6, 40-5.	0.5	2
257	The minor allele of the CREBRF rs373863828 p.R457Q coding variant is associated with reduced levels of myostatin in males: Implications for body composition. Molecular Metabolism, 2022, 59, 101464.	6.5	2
258	Association of the Quantity, Duration, and Type of Alcohol Consumption on the Development of Gouty Tophi. Arthritis Care and Research, 2023, 75, 1079-1087.	3.4	2
259	Change in serum urate level with urate-lowering therapy initiation associates in the immediate term with patient-reported outcomes in people with gout. Seminars in Arthritis and Rheumatism, 2022, 56, 152057.	3.4	2
260	Editorial [Hot Topic: Gout (Guest Editor: Tony R. Merriman)]. Current Rheumatology Reviews, 2011, 7, 94-96.	0.8	1
261	Independent Replication of an Association of CNVR7113.6 with Crohn's Disease in Caucasians. Inflammatory Bowel Diseases, 2012, 18, 305-311.	1.9	1
262	Author reply. Internal Medicine Journal, 2013, 43, 466-466.	0.8	1
263	Testicular Cancer in New Zealand (TCNZ) study: protocol for a national case–control study. BMJ Open, 2018, 8, e025212.	1.9	1
264	Mapping pleiotropic loci using a fast-sequential testing algorithm. European Journal of Human Genetics, 2021, 29, 1762-1773.	2.8	1
265	Is Rheumatoid Arthritis a Causal Factor in Cardiovascular Disease?. Arthritis and Rheumatology, 2022, 74, 1612-1614.	5.6	1
266	Evidence by allelic association-dependent methods for a type 1 diabetes polygene (IDDM6) on chromosome 18q21. Human Molecular Genetics, 2007, 16, 3197-3197.	2.9	0
267	Evidence for a type 1 diabetes susceptibility locus (IDDM10) on human chromosome 10p11-q11. Human Molecular Genetics, 2007, 16, 3198-3198.	2.9	Ο
268	Association of the protein-tyrosine phosphatase nonreceptor type substrate 1 (PTPNS1) gene with inflammatory bowel disease. Inflammatory Bowel Diseases, 2011, 17, E19-E21.	1.9	0
269	Genetics of Hyperuricemia and Gout. , 2019, , 9-27.		0
270	Response to: †The reference levels of serum urate for clinically evident incident gout' by Chen and Ding. Annals of the Rheumatic Diseases, 2019, 78, e42-e42.	0.9	0

#	Article	IF	CITATIONS
271	Manifestations de la goutte chez 9Â754Âpatients d'un centre clinique chinoisÂ: étude observationnelle sur 10Âans. Revue Du Rhumatisme (Edition Francaise), 2021, 89, 65-65.	0.0	0
272	Longitudinal development of incident gout from low-normal baseline serum urate concentrations: individual participant data analysis. BMC Rheumatology, 2021, 5, 33.	1.6	0
273	ls repeat serum urate testing superior to a single test to predict incident gout over time?. PLoS ONE, 2022, 17, e0263175.	2.5	Ο