Brenda A Wilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7584634/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pasteurella multocida: from Zoonosis to Cellular Microbiology. Clinical Microbiology Reviews, 2013, 26, 631-655.	13.6	326
2	Gut Microbiome of Coexisting BaAka Pygmies and Bantu Reflects Gradients of Traditional Subsistence Patterns. Cell Reports, 2016, 14, 2142-2153.	6.4	231
3	Pregnancy's Stronghold on the Vaginal Microbiome. PLoS ONE, 2014, 9, e98514.	2.5	146
4	Caste-Specific Differences in Hindgut Microbial Communities of Honey Bees (Apis mellifera). PLoS ONE, 2015, 10, e0123911.	2.5	108
5	Pasteurella multocida: Genotypes and Genomics. Microbiology and Molecular Biology Reviews, 2019, 83, .	6.6	100
6	Temporal variation selects for diet–microbe co-metabolic traits in the gut of <i>Gorilla</i> spp. ISME Journal, 2016, 10, 514-526.	9.8	84
7	Plasticity in the Human Gut Microbiome Defies Evolutionary Constraints. MSphere, 2019, 4, .	2.9	40
8	Recent insights into <i>Pasteurella multocida</i> toxin and other G-protein-modulating bacterial toxins. Future Microbiology, 2010, 5, 1185-1201.	2.0	35
9	Impact of stress on the gut microbiome of free-ranging western lowland gorillas. Microbiology (United Kingdom), 2018, 164, 40-44.	1.8	29
10	Cellular and molecular action of the mitogenic proteinâ€deamidating toxin from <i>Pasteurellaâ€∫multocida</i> . FEBS Journal, 2011, 278, 4616-4632.	4.7	23
11	Recombinant botulinum neurotoxin A heavy chain-based delivery vehicles for neuronal cell targeting. Protein Engineering, Design and Selection, 2011, 24, 247-253.	2.1	22
12	Relationships Between Gastrointestinal Parasite Infections and the Fecal Microbiome in Free-Ranging Western Lowland Gorillas. Frontiers in Microbiology, 2018, 9, 1202.	3.5	21
13	Pasteurella multocida Toxin Interaction with Host Cells: Entry and Cellular Effects. Current Topics in Microbiology and Immunology, 2012, 361, 93-111.	1.1	20
14	Effect of Antibiotic Treatment on the Gastrointestinal Microbiome of Free-Ranging Western Lowland Gorillas (Gorilla g. gorilla). Microbial Ecology, 2016, 72, 943-954.	2.8	19
15	Monoclonal Antibodies that Inhibit the Proteolytic Activity of Botulinum Neurotoxin Serotype/B. Toxins, 2015, 7, 3405-3423.	3.4	18
16	CNF1-like deamidase domains: common Lego bricks among cancer-promoting immunomodulatory bacterial virulence factors. Pathogens and Disease, 2018, 76, .	2.0	15
17	Monoclonal Antibodies Targeting the Alpha-Exosite of Botulinum Neurotoxin Serotype/A Inhibit Catalytic Activity. PLoS ONE, 2015, 10, e0135306.	2.5	15
18	Comparative Genome Analysis of an Extensively Drug-Resistant Isolate of Avian Sequence Type 167 <i>Escherichia coli</i> Strain Sanji with Novel <i>In Silico</i> Serotype O89b:H9. MSystems, 2019, 4, .	3.8	12

BRENDA A WILSON

#	Article	IF	CITATIONS
19	Modular domain swapping among the bacterial cytotoxic necrotizing factor (CNF) family for efficient cargo delivery into mammalian cells. Journal of Biological Chemistry, 2018, 293, 3860-3870.	3.4	9
20	Bacterial Pathogenesis: A Molecular Approach, Fourth Edition. , 2019, , .		7
21	Cargo-Delivery Platforms for Targeted Delivery of Inhibitor Cargos Against Botulism. Current Topics in Medicinal Chemistry, 2014, 14, 2081-2093.	2.1	7
22	Determinants of pH-Dependent Modulation of Translocation in Dermonecrotic G-Protein-Deamidating Toxins. Toxins, 2013, 5, 1167-1179.	3.4	6
23	The membrane localization domains of two distinct bacterial toxins form a 4â€helixâ€bundle in solution. Protein Science, 2017, 26, 497-504.	7.6	5
24	Cytosolic Delivery of Multidomain Cargos by the N Terminus of Pasteurella multocida Toxin. Infection and Immunity, 2018, 86, .	2.2	5
25	Development of an Online Tool for Pasteurella multocida Genotyping and Genotypes of Pasteurella multocida From Different Hosts. Frontiers in Veterinary Science, 2021, 8, 771157.	2.2	3
26	Insertion-trigger residues differentially modulate endosomal escape by cytotoxic necrotizing factor toxins. Journal of Biological Chemistry, 2021, 297, 101347.	3.4	2
27	Selective Membrane Redistribution and Depletion of Gαq-Protein by Pasteurella multocida Toxin. Toxins, 2016, 8, 233.	3.4	1
28	Recovery of microbial community profile information hidden in chimeric sequence reads. Computational and Structural Biotechnology Journal, 2021, 19, 5126-5139.	4.1	1
29	Pasteurella multocida toxin (PMT) activates the ERK signaling pathway, in part, by upregulating CTGF expression. FASEB Journal, 2011, 25, .	0.5	0