Frank Marsiglio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7584549/publications.pdf

Version: 2024-02-01

205 papers 5,087 citations

38 h-index 62 g-index

216 all docs

216 docs citations

216 times ranked

2920 citing authors

#	Article	IF	CITATIONS
1	Clear evidence against superconductivity in hydrides under high pressure. Matter and Radiation at Extremes, 2022, 7, .	3.9	14
2	The relation between the effective band mass in a solid and the free electron mass. European Journal of Physics, 2021, 42, 025408.	0.6	0
3	The bound-state solutions of the one-dimensional hydrogen atom. American Journal of Physics, 2021, 89, 418-425.	0.7	3
4	Nonstandard superconductivity or no superconductivity in hydrides under high pressure. Physical Review B, 2021, 103, .	3.2	53
5	Vortex-line topology in iron-based superconductors with and without second-order topology. Physical Review B, 2021, 103, .	3.2	25
6	Absence of magnetic evidence for superconductivity in hydrides under high pressure. Physica C: Superconductivity and Its Applications, 2021, 584, 1353866.	1.2	33
7	Scattering problems via real-time wave packet scattering. American Journal of Physics, 2021, 89, 693-701.	0.7	5
8	Functional-integral approach to Gaussian fluctuations in Eliashberg theory. Physical Review B, 2021, 104, .	3.2	8
9	Meissner effect in nonstandard superconductors. Physica C: Superconductivity and Its Applications, 2021, 587, 1353896.	1.2	23
10	Unusual width of the superconducting transition in a hydride. Nature, 2021, 596, E9-E10.	27.8	37
11	Flux trapping in superconducting hydrides under high pressure. Physica C: Superconductivity and Its Applications, 2021, 589, 1353916.	1.2	15
12	Mixed temperature-dependent order parameters in the extended Hubbard model. Journal of Physics Condensed Matter, 2021, 33, 065603.	1.8	2
13	Landau levels, edge states, and gauge choice in 2D quantum dots. American Journal of Physics, 2020, 88, 986-1005.	0.7	8
14	Numerical and analytical study of the bound states of the $\hat{a}^*\hat{l}\pm$	0.7	2
15	Edge localized Schrödinger cat states in finite lattices via periodic driving. Physical Review B, 2020, 102, .	3.2	0
16	First- and Second-Order Topological Superconductivity and Temperature-Driven Topological Phase Transitions in the Extended Hubbard Model with Spin-Orbit Coupling. Physical Review Letters, 2020, 125, 017001.	7.8	50
17	Majorana corner flat bands in two-dimensional second-order topological superconductors. Physical Review B, 2020, 101, .	3.2	25
18	Eliashberg theory: A short review. Annals of Physics, 2020, 417, 168102.	2.8	71

#	Article	IF	Citations
19	Eliashberg theory in the weak-coupling limit: Results on the real frequency axis. Physical Review B, 2020, 101, .	3.2	6
20	Thermodynamics of Eliashberg theory in the weak-coupling limit. Physical Review B, 2020, 102, .	3.2	2
21	Hole superconductivity in infinite-layer nickelates. Physica C: Superconductivity and Its Applications, 2019, 566, 1353534.	1.2	34
22	Understanding electron-doped cuprate superconductors as hole superconductors. Physica C: Superconductivity and Its Applications, 2019, 564, 29-37.	1.2	12
23	The effect of strong electron-rattling phonon coupling on some superconducting properties. Canadian Journal of Physics, 2019, 97, 472-476.	1.1	1
24	Double well potentials with a quantum moat barrier or a quantum wall barrier give rise to similar entangled wave functions. American Journal of Physics, 2018, 86, 180-185.	0.7	5
25	Reappraising the Luminescence Lifetime Distributions in Silicon Nanocrystals. Nanoscale Research Letters, 2018, 13, 383.	5.7	14
26	Enhancement of superconducting <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>T</mml:mi><mml:mi></mml:mi>due to the spin-orbit interaction. Physical Review B, 2018, 97, .</mml:msub></mml:math>	- <td>ub8</td>	ub 8
27	Eliashberg theory in the weak-coupling limit. Physical Review B, 2018, 98, .	3.2	16
28	The Coulomb potential in quantum mechanics revisited. American Journal of Physics, 2017, 85, 346-351.	0.7	5
29	Two and three particles interacting in a one-dimensional trap. American Journal of Physics, 2017, 85, 769-782.	0.7	6
30	The possible role of van Hove singularities in the high Tc of superconducting H3S. International Journal of Modern Physics B, 2017, 31, 1745003.	2.0	8
31	Fractional Josephson effect in nonuniformly strained graphene. Physical Review B, 2017, 95, .	3.2	9
32	The tight-binding formulation of the Kronig-Penney model. Scientific Reports, 2017, 7, 17041.	3.3	5
33	Microscopic origin of the Drude-Smith model. Physical Review B, 2017, 96, .	3.2	140
34	Calculation of 2D electronic band structure using matrix mechanics. American Journal of Physics, 2016, 84, 924-935.	0.7	13
35	Systematic study of the superconducting critical temperature in two- and three-dimensional tight-binding models: A possible scenario for superconducting H3S. Physical Review B, 2016, 94, .	3.2	10
36	The Effect of Next-Nearest Neighbour Hopping in the One, Two, and Three Dimensional Holstein Model. Scientific Reports, 2016, 6, 32591.	3.3	5

#	Article	IF	CITATIONS
37	Superconducting materials classes: Introduction and overview. Physica C: Superconductivity and Its Applications, 2015, 514, 1-8.	1.2	54
38	The importance of basis states: an example using the hydrogen basis. Canadian Journal of Physics, 2015, 93, 1009-1014.	1.1	5
39	On the number of bound states in some three-parameter s -wave central potentials. European Journal of Physics, 2015, 36, 025015.	0.6	O
40	Pairing effects in the normal phase of a two-dimensional Fermi gas. Physical Review B, 2015, 91, .	3.2	39
41	Hole superconductivity in <mml:math altimg="sil1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow> and other sulfides under high pressure. Physica C: Superconductivity and Its Applications, 2015, 511,</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	/> k@nml: m	n #2
42	45-49. Refractometric sensitivity and thermal stabilization of fluorescent core microcapillary sensors: theory and experiment. Applied Optics, 2015, 54, 1331.	1.8	9
43	Superconductivity in the elements, alloys and simple compounds. Physica C: Superconductivity and Its Applications, 2015, 514, 17-27.	1.2	68
44	Asymmetric wave functions from tiny perturbations. American Journal of Physics, 2015, 83, 861-866.	0.7	9
45	The Kronig-Penney model extended to arbitrary potentials via numerical matrix mechanics. American Journal of Physics, 2015, 83, 773-781.	0.7	18
46	BLF-SSH polarons coupled to acoustic phonons in the adiabatic limit. Physical Review B, 2014, 90, .	3.2	4
47	Extended versus standard Holstein model: Results in two and three dimensions. Physical Review B, 2014, 90, .	3.2	6
48	Capillary-Type Microfluidic Sensors Based on Optical Whispering Gallery Mode Resonances. Reviews in Nanoscience and Nanotechnology, 2014, 3, 193-209.	0.4	12
49	Solving for three-dimensional central potentials using numerical matrix methods. American Journal of Physics, 2013, 81, 343-350.	0.7	16
50	Vanishing of interband light absorption in a persistent spin helix state. Scientific Reports, 2013, 3, 2828.	3.3	25
51	The spectral decomposition of the helium atom two-electron configuration in terms of hydrogenic orbitals. European Journal of Physics, 2013, 34, 111-128.	0.6	15
52	Why is the ground-state electron configuration for lithium 1s ² 2s?. Europhysics Letters, 2012, 100, 43002.	2.0	2
53	The superconducting (BCS) pairing instability in the thermodynamic limit. Canadian Journal of Physics, 2012, 90, 889-893.	1.1	O
54	The double-well potential in quantum mechanics: a simple, numerically exact formulation. European Journal of Physics, 2012, 33, 1651-1666.	0.6	64

#	Article	IF	CITATIONS
55	Optical conductivity for a dimer in the dynamic Hubbard model. Physical Review B, 2012, 85, .	3.2	4
56	Impact of Dresselhaus versus Rashba spin-orbit coupling on the Holstein polaron. Physical Review B, 2012, 85, .	3.2	19
57	Wiodel of the Electron-Phonon interaction and Optical Conductivity of mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mn>1</mml:mn> <mml:mo>â^'</mml:mo> K <mml:mi><mml:mi></mml:mi><mml:mi>BiO</mml:mi></mml:mi> <mml:mi>BiO</mml:mi> <mml:mi></mml:mi> </td <td>>%aml:mi nn>3<td>>2@/mml:m l:mn></td></td>	> % aml:mi nn>3 <td>>2@/mml:m l:mn></td>	> 2 @/mml:m l:mn>
58	The Polaron-Like Nature of an Electron Coupled to Phonons. Journal of Superconductivity and Novel Magnetism, 2012, 25, 1313-1317.	1.8	8
59	Perturbation theory of the mass enhancement for a polaron coupled to acoustic phonons. Physical Review B, $2011, 83, .$	3.2	15
60	Impact of spin-orbit coupling on the Holstein polaron. Physical Review B, 2011, 83, .	3.2	8
61	The static electric polarizability of a particle bound by a finite potential well. American Journal of Physics, 2011, 79, 222-225.	0.7	18
62	Electron-Hole Asymmetry in the Dynamic Hubbard Model. Journal of Superconductivity and Novel Magnetism, 2011, 24, 1571-1575.	1.8	1
63	Microcavity effects in ensembles of silicon quantum dots coupled to highâ€ <i>Q</i> resonators. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 639-645.	1.8	6
64	Competition between reduced delocalization and charge transfer effects for a two-band Hubbard model. Physical Review B, $2011, 84, \ldots$	3.2	6
65	Surface effects in doping a Mott insulator. Physical Review B, 2011, 83, .	3.2	12
66	Ground-state properties of the Holstein model near the adiabatic limit. Physical Review B, 2010, 81, .	3.2	24
67	Metallic surface of a bipolaronic insulator. Physical Review B, 2010, 82, .	3.2	8
68	Modification of ensemble emission rates and luminescence spectra for inhomogeneously broadened distributions of quantum dots coupled to optical microcavities. Optics Express, 2010, 18, 10230.	3.4	37
69	Two-site dynamical mean field theory for the dynamic Hubbard model. Physical Review B, 2010, 82, .	3.2	11
70	Superconductivity in lithium under high pressure investigated with density functional and Eliashberg theory. Physical Review B, 2009, 79, .	3.2	48
71	Emerging nonequilibrium bound state in spin-current–local-spin scattering. Physical Review B, 2009, 80, .	3.2	2
72	Optical Sum Rule Anomalies in the High-T c Cuprates. Journal of Superconductivity and Novel Magnetism, 2009, 22, 269-273.	1.8	4

#	Article	IF	CITATIONS
73	The harmonic oscillator in quantum mechanics: A third way. American Journal of Physics, 2009, 77, 253-258.	0.7	31
74	Hole superconductivity in arsenic–iron compounds. Physica C: Superconductivity and Its Applications, 2008, 468, 1047-1052.	1.2	24
75	Electron-Phonon Superconductivity. , 2008, , 73-162.		31
76	Geometrical effects in the energy transfer mechanism for silicon nanocrystals and Er3+. Applied Physics Letters, 2008, 93, .	3.3	23
77	Hall Conductivity of a Spin-Triplet Superconductor. Physical Review Letters, 2008, 100, 227003.	7.8	8
78	Electron and spin transport in the presence of a complex absorbing potential. Physical Review B, 2008, 77, .	3.2	8
79	Impact of a finite cut-off for the optical sum rule in the superconducting state. Physical Review B, 2008, 77, .	3.2	11
80	Model-independent sum rule analysis based on limited-range spectral data. New Journal of Physics, 2007, 9, 229-229.	2.9	11
81	Topological Change of the Fermi Surface in Low-Density Rashba Gases: Application to Superconductivity. Physical Review Letters, 2007, 98, 167002.	7.8	110
82	Optical study of electronic structure and electron-phonon coupling inZrB12. Physical Review B, 2007, 75, .	3.2	33
83	Electron-phonon effects on spin-orbit split bands of two-dimensional systems. Physical Review B, 2007, 76, .	3.2	28
84	Quantum mechanics of spin transfer in coupled electron-spin chains. Europhysics Letters, 2007, 79, 67004.	2.0	4
85	Phenomenology of the anomaly in the conductivity sum rule below Tc. Physica C: Superconductivity and Its Applications, 2007, 460-462, 902-903.	1.2	0
86	Electron-Phonon vs. Electron-Impurity Interactions with Small Electron Bandwidths. Journal of Superconductivity and Novel Magnetism, 2007, 20, 225-232.	1.8	6
87	Spin transfer in ferromagnetic systems. Canadian Journal of Physics, 2006, 84, 507-515.	1.1	1
88	Temperature dependence of the conductivity sum rule in the normal state due to inelastic scattering. Physical Review B, 2006, 74, .	3.2	10
89	Spin-Hall Conductivity in Electron-Phonon Coupled Systems. Physical Review Letters, 2006, 97, 066601.	7.8	17
90	Hidden symmetries of electronic transport in a disordered one-dimensional lattice. Physical Review B, 2006, 73, .	3.2	6

#	Article	IF	CITATIONS
91	Doping dependence of the redistribution of optical spectral weight in Bi2Sr2CaCu2O8+ $\hat{\Gamma}$. Physical Review B, 2006, 74, .	3.2	63
92	Publisher's Note: Sum rule anomaly from suppression of inelastic scattering in the superconducting state [Phys. Rev. B73, 064507 (2006)]. Physical Review B, 2006, 73, .	3.2	0
93	Sum rule anomaly from suppression of inelastic scattering in the superconducting state. Physical Review B, 2006, 73, .	3.2	19
94	Intraband optical spectral weight in the presence of a van Hove singularity: Application toBi2Sr2CaCu2O8+l´r. Physical Review B, 2006, 74, .	3.2	12
95	Off-Fermi surface cancellation effects in spin-Hall conductivity of a two-dimensional Rashba electron gas. Physical Review B, 2006, 73, .	3.2	25
96	Impurity scattering of wave packets on a lattice. Physical Review B, 2006, 74, .	3.2	17
97	Proximity effect and Josephson current in clean strong/weak/strong superconducting trilayers. Physical Review B, 2006, 73, .	3.2	37
98	Observation of phonon structure in electron density of states of a normal metal. Europhysics Letters, 2005, 71, 776-782.	2.0	11
99	How many electrons are needed to flip a local spin?. Europhysics Letters, 2005, 69, 595-601.	2.0	13
100	Minimally self-consistent T-matrix approximation to describe the low-temperature properties of the Hubbard model in the atomic limit. Physical Review B, 2005, 71, .	3.2	7
101	Microwave conductivity of a high-purityd-wave superconductor. Physical Review B, 2004, 70, .	3.2	8
102	Optical sum increase due to electron undressing. Physical Review B, 2004, 70, .	3.2	20
103	Demonstration of a Robust Pseudogap in a Three-Dimensional Correlated Electronic System. Journal of Low Temperature Physics, 2004, 136, 191-216.	1.4	2
104	Transport in Vortex State of d-Wave Superconductors at Zero Temperature: Wiedemann?Franz Violation. Journal of Superconductivity and Novel Magnetism, 2004, 17, 725-737.	0.5	1
105	Wiedemann–Franz violation in the vortex state of a d-wave superconductor. Physica C: Superconductivity and Its Applications, 2004, 408-410, 707-708.	1.2	0
106	Spin torque and its relation to spin filtering. Physical Review B, 2004, 69, .	3.2	8
107	Title is missing!. Journal of Low Temperature Physics, 2003, 131, 975-978.	1.4	0
108	S-wave superconductivity near a surface. Physica C: Superconductivity and Its Applications, 2003, 384, 356-368.	1.2	7

#	Article	IF	Citations
109	Vortex lattice structures in tetragonal BCS superconductors due to Fermi surface anisotropy. Physica C: Superconductivity and Its Applications, 2003, 388-389, 675-676.	1.2	0
110	Dynamic Hubbard model: Effect of finite boson frequency. Physical Review B, 2003, 68, .	3.2	11
111	Inversion of angle-resolved photoemission measurements in high-Tccuprates. Physical Review B, 2003, 67, .	3.2	35
112	Low-temperature thermal conductivity of high-purityYBa2Cu3O6.99in the vortex state: Analysis with arbitrary impurity scattering strength. Physical Review B, 2003, 68, .	3.2	9
113	Self-consistent modification to the electron density of states due to electron-phonon coupling in metals. Physical Review B, 2003, 68, .	3.2	26
114	Electron-Phonon Superconductivity., 2003,, 233-345.		10
115	Spin-wave response in the dilute quasi-one-dimensional Ising-like antiferromagnetCsCo0.83Mg0.17Br3. Physical Review B, 2002, 65, .	3.2	1
116	Superconductivity in Ba2Sn3Sb6 and SrSn3Sb4. Journal of Alloys and Compounds, 2002, 338, 69-72.	5.5	16
117	Microscopic study of inhomogeneous superconductors. Journal of Physics and Chemistry of Solids, 2002, 63, 2287-2293.	4.0	3
118	Constraints on the mechanism of superconductivity for MgB2 from Tc and the total isotope effect. Journal of Physics and Chemistry of Solids, 2002, 63, 2325-2328.	4.0	2
119	Electron-phonon or hole superconductivity in MgB2. Physical Review B, 2001, 64, .	3.2	46
120	Feedback effects and the self-consistent Thouless criterion of the attractive Hubbard model. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 282, 319-324.	2.1	8
121	Constraints fromTcand the isotope effect inMgB2. Physical Review B, 2001, 64, .	3.2	18
122	Sum rule for optical scattering rates. Physical Review B, 2001, 65, .	3.2	10
123	Implications of Reflectance Measurements on the Mechanism for Superconductivity in MgB2. Physical Review Letters, 2001, 87, 247001.	7.8	23
124	New solutions of the T-matrix theory of the attractive Hubbard model. Physica C: Superconductivity and Its Applications, 2000, 341-348, 897-898.	1.2	3
125	Anisotropic penetration depth and optical sum rule violation in La2â^'xSrxCuO4. Physica C: Superconductivity and Its Applications, 2000, 341-348, 2217-2218.	1.2	0
126	Possible electronic shell structure of nanoscale superconductors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 265, 133-138.	2.1	5

#	Article	IF	CITATIONS
127	Where is 99% of the condensation energy of Tl2Ba2CuOy coming from?. Physica C: Superconductivity and Its Applications, 2000, 331, 150-156.	1.2	41
128	Anderson prescription for surfaces and impurities. Physical Review B, 2000, 62, 5345-5348.	3.2	28
129	Optical sum rule violation, superfluid weight, and condensation energy in the cuprates. Physical Review B, 2000, 62, 15131-15150.	3.2	62
130	Reliable Pad \tilde{A} analytical continuation method based on a high-accuracy symbolic computation algorithm. Physical Review B, 2000, 61, 5147-5157.	3.2	116
131	Even-odd and super-even effects in the attractive Hubbard model. Physical Review B, 1999, 60, 3508-3526.	3.2	18
132	Title is missing!. Journal of Low Temperature Physics, 1999, 117, 149-173.	1.4	2
133	Inversion of Optical Conductivity Data in Metals. Journal of Superconductivity and Novel Magnetism, 1999, 12, 163-167.	0.5	9
134	Inversion of K3C60 reflectance data. Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 245, 172-176.	2.1	84
135	Effect of suppression of the inelastic scattering rate on the penetration depth and conductivity in adx2â^'y2superconductor. Physical Review B, 1997, 56, 2738-2750.	3.2	48
136	Electron-phonon mass enhancement and lifetime at finite temperature. Physical Review B, 1997, 55, 6674-6677.	3.2	3
137	On scattering rates extracted from the optical conductivity. Canadian Journal of Physics, 1997, 75, 509-516.	1.1	3
138	Evaluation of the BCS approximation for the attractive Hubbard model in one dimension. Physical Review B, 1997, 55, 575-581.	3.2	31
139	Aspects of Optical Properties in Conventional and Oxide Superconductors. Australian Journal of Physics, 1997, 50, 975.	0.6	21
140	Quasiparticle Lifetimes and the Conductivity Scattering Rate. Australian Journal of Physics, 1997, 50, 1011.	0.6	15
141	Imaginary part of the optical conductivity ofBa1â^'xKxBiO3. Physical Review B, 1996, 53, 9433-9441.	3.2	55
142	Pairing in the Holstein model in the dilute limit. Physica C: Superconductivity and Its Applications, 1995, 244, 21-34.	1.2	112
143	Signatures of the electron-phonon interaction in the far-infrared. Physical Review B, 1995, 52, 16192-16198.	3.2	11
144	Effects of multiple scattering and wavelength-dependent attenuation on strain measurements by neutron scattering. Journal of Neutron Research, 1995, 3, 27-39.	1.1	19

#	Article	IF	CITATIONS
145	Polaron Properties of the Holstein Model. , 1995, , 423-432.		O
146	Eliashberg treatment of the microwave conductivity of niobium. Physical Review B, 1994, 50, 7203-7206.	3.2	20
147	Superconductivity from retarded interactions in the presence of electron-hole asymmetry. Physical Review B, 1994, 49, 1366-1375.	3.2	18
148	Superconductivity from electron-phonon interactions in the absence of electron-hole symmetry. Physica B: Condensed Matter, 1994, 199-200, 338-340.	2.7	0
149	The spectral function of a one-dimensional Holstein polaron. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 180, 280-284.	2.1	65
150	Enhancement of self-energy effects of phonons with finite wave vectors due to Fermi-surface nesting. Physical Review B, 1993, 47, 5419-5427.	3.2	34
151	Influence of superconductivity on the magnetic dynamics of high-Tcsuperconductors. Physical Review B, 1993, 47, 11555-11558.	3.2	4
152	Phonon self-energy effects due to superconductivity: A real-axis formulation. Physical Review B, 1992, 45, 9865-9871.	3. 2	59
153	Dependence of Tcon normal and magnetic impurities in the hole mechanism of superconductivity. Physical Review B, 1992, 45, 956-965.	3.2	13
154	London penetration depth in hole superconductivity. Physical Review B, 1992, 45, 4807-4818.	3.2	57
155	Eliashberg theory of the critical temperature and isotope effect. Dependence on bandwidth, band-filling, and direct Coulomb repulsion. Journal of Low Temperature Physics, 1992, 87, 659-682.	1.4	40
156	Normal state properties of high-Tc oxides. Physica C: Superconductivity and Its Applications, 1992, 195, 355-366.	1.2	17
157	Coherence effects in the high Tc oxides. Physica C: Superconductivity and Its Applications, 1991, 185-189, 1675-1676.	1.2	0
158	Hole superconductivity in oxides: A two-band model. Physical Review B, 1991, 43, 424-434.	3.2	84
159	Spectral function of a single hole in a two-dimensional quantum antiferromagnet. Physical Review B, 1991, 43, 10882-10889.	3.2	110
160	Coherence effects in hole superconductivity. Physical Review B, 1991, 44, 11960-11970.	3.2	13
161	Gap function and density of states in the strong-coupling limit for an electron-boson system. Physical Review B, 1991, 43, 5355-5363.	3.2	53
162	Coherence effects in electromagnetic absorption in superconductors. Physical Review B, 1991, 44, 5373-5376.	3.2	49

#	Article	IF	CITATIONS
163	Superconductivity in oxides: From strong to weak coupling. Physica C: Superconductivity and Its Applications, 1990, 165, 71-76.	1.2	36
164	Hole superconductivity in the dilute limit. Physica C: Superconductivity and Its Applications, 1990, 171, 554-560.	1.2	37
165	Prediction for the change in lattice constants of electron-doped high-Tc superconductors under hydrostatic pressure based on the observed pressure dependence of Tc. Physica C: Superconductivity and Its Applications, 1990, 172, 265-266.	1.2	7
166	Dependence of some electromagnetic properties of superconductors on coupling strength. Physical Review B, 1990, 41, 6457-6465.	3.2	26
167	Asymptotic limit forHc2in Eliashberg theory. Physical Review B, 1990, 41, 4484-4488.	3.2	4
168	Dependence of the second upper critical field on coupling strength. Physical Review B, 1990, 41, 8765-8771.	3.2	33
169	Asymptotic limits for the penetration depth of strong-coupling superconductors. Physical Review B, 1990, 41, 11114-11119.	3.2	4
170	Pairing and charge-density-wave correlations in the Holstein model at half-filling. Physical Review B, 1990, 42, 2416-2424.	3.2	97
171	Hole superconductivity and the high-Tcoxides. Physical Review B, 1990, 41, 6435-6456.	3.2	178
172	Superconductivity in an oxygen hole metal. Physical Review B, 1990, 41, 2049-2051.	3.2	47
173	Slope of specific-heat jump atTcin a very-strong-coupling superconductor. Physical Review B, 1989, 39, 2722-2725.	3.2	8
174	Superconducting state in an oxygen hole metal. Physical Review B, 1989, 39, 11515-11525.	3.2	236
175	Asymptotic limit for the thermodynamics of a boson-exchange superconductor. Physical Review B, 1989, 39, 9595-9597.	3.2	11
176	Tunneling inversion with an excitonic contribution. Physical Review B, 1989, 39, 2726-2728.	3.2	4
177	Tunneling asymmetry: A test of superconductivity mechanisms. Physica C: Superconductivity and Its Applications, 1989, 159, 157-160.	1.2	38
178	Eliashberg theory of superconductivity with repulsive coulomb enhancement. Physica C: Superconductivity and Its Applications, 1989, 160, 305-313.	1.2	22
179	BCS theory of hole superconductivity: Quasi-two-dimensional model. Physica C: Superconductivity and Its Applications, 1989, 162-164, 1451-1452.	1.2	4
180	Monte Carlo evaluation of Migdal-Eliashberg theory in two dimensions. Physica C: Superconductivity and Its Applications, 1989, 162-164, 1453-1454.	1.2	16

#	Article	IF	CITATIONS
181	Some results for asymptotic limits in Eliashberg theory. Physica C: Superconductivity and Its Applications, 1989, 162-164, 1493-1494.	1.2	1
182	Hole superconductivity: Review and some new results. Physica C: Superconductivity and Its Applications, 1989, 162-164, 591-598.	1.2	62
183	On the dependence of superconducting Tc on carrier concentration. Physics Letters, Section A: General, Atomic and Solid State Physics, 1989, 140, 122-126.	2.1	41
184	Ginzburg-Landau parameter in the very strong coupling regime Tc/i‰ln â^⅓ 1. Solid State Communications, 1988, 65, 1175-1178.	1.9	2
185	Combined phonon-exciton mechanism for La1.85Sr0.15CuO4. Physica C: Superconductivity and Its Applications, 1988, 153-155, 227-228.	1.2	3
186	Eliashberg theory in the very strong coupling regime. Physica C: Superconductivity and Its Applications, 1988, 153-155, 223-224.	1.2	4
187	Optimum spectra for superconducting properties. Physica C: Superconductivity and Its Applications, 1988, 153-155, 225-226.	1.2	1
188	Iterative analytic continuation of the electron self-energy to the real axis. Physical Review B, 1988, 37, 4965-4969.	3.2	229
189	Penetration of a magnetic field in a very strong coupling superconductor. Physical Review B, 1988, 38, 179-184.	3.2	23
190	Upper bound on strong-coupling corrections to the second upper critical field. Physical Review B, 1988, 37, 9318-9324.	3.2	5
191	Dependence of the upper critical field on the spectral density for arbitrary impurity concentrations. Physical Review B, 1987, 35, 3226-3237.	3.2	19
192	Thermodynamic and other properties of La 1.85 Sr 0.15 Cu O 4. Physical Review B, 1987, 36, 3627-3632.	3. 2	19
193	Upper critical field for a high-Tcelectron-phonon superconductor: Regime ofTcω1nâ^1⁄41. Physical Review B, 1987, 36, 3633-3637.	3.2	27
194	Thermodynamic and other properties of a high-Tcexcitonic superconductor. Physical Review B, 1987, 36, 3937-3940.	3.2	25
195	Toxen relation for the energy gap. Physical Review B, 1987, 35, 3219-3225.	3.2	9
196	Thermodynamics in very strong coupling: A possible model for the high-Tcoxides. Physical Review B, 1987, 36, 5245-5250.	3.2	55
197	Combined phonon-exciton mechanism in La2â^'xSrxCuO4. Solid State Communications, 1987, 64, 905-910.	1.9	24
198	Eliashberg theory and the high Tc oxides. Solid State Communications, 1987, 63, 419-423.	1.9	18

#	Article	IF	CITATIONS
199	On spinodals and catastrophes. Physics Letters, Section A: General, Atomic and Solid State Physics, 1987, 123, 79-81.	2.1	1
200	Specific heat difference functional derivative within strong coupling theory. Journal of Low Temperature Physics, 1986, 65, 305-324.	1.4	11
201	Maximum 2Î"O/kBTcfor electron-phonon superconductors. Physical Review B, 1986, 33, 6135-6140.	3.2	61
202	Strong-coupling corrections to Bardeen-Cooper-Schrieffer ratios. Physical Review B, 1986, 33, 6141-6146.	3.2	133
203	Functional derivative of the specific-heat difference nearTcfor superconductors. Physical Review B, 1985, 31, 4192-4198.	3.2	12
204	Rippled commensurate state: A possible new type of incommensurate state. Physical Review B, 1984, 29, 4179-4181.	3.2	28
205	A quantum moat barrier, realized with a ï¬nite square well. Canadian Journal of Physics, 0, , .	1.1	0