
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7584063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mutations in ACTN4, encoding α-actinin-4, cause familial focal segmental glomerulosclerosis. Nature Genetics, 2000, 24, 251-256.	9.4	1,124
2	ACTN3 Genotype Is Associated with Human Elite Athletic Performance. American Journal of Human Genetics, 2003, 73, 627-631.	2.6	708
3	Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Science Translational Medicine, 2017, 9, .	5.8	516
4	The nature and frequency of cognitive deficits in children with neurofibromatosis type 1. Neurology, 2005, 65, 1037-1044.	1.5	510
5	Distinctive patterns of microRNA expression in primary muscular disorders. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17016-17021.	3.3	458
6	Neurofibromatosis type 1. Journal of the American Academy of Dermatology, 2009, 61, 1-14.	0.6	443
7	A brief history of human disease genetics. Nature, 2020, 577, 179-189.	13.7	441
8	Mutations in the skeletal muscle α-actin gene in patients with actin myopathy and nemaline myopathy. Nature Genetics, 1999, 23, 208-212.	9.4	389
9	Refining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain, 2007, 130, 2725-2735.	3.7	385
10	A common nonsense mutation results in $\hat{I}\pm$ -actinin-3 deficiency in the general population. Nature Genetics, 1999, 21, 353-354.	9.4	378
11	Ataluren treatment of patients with nonsense mutation dystrophinopathy. Muscle and Nerve, 2014, 50, 477-487.	1.0	357
12	Differential expression of the actin-binding proteins, alpha-actinin-2 and -3, in different species: implications for the evolution of functional redundancy. Human Molecular Genetics, 2001, 10, 1335-1346.	1.4	299
13	Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans. Nature Genetics, 2007, 39, 1261-1265.	9.4	278
14	Diagnostic approach to the congenital muscular dystrophies. Neuromuscular Disorders, 2014, 24, 289-311.	0.3	275
15	Cognitive function and academic performance in neurofibrornatosis 1. Neurology, 1997, 48, 1121-1127.	1.5	270
16	An Actn3 knockout mouse provides mechanistic insights into the association between Â-actinin-3 deficiency and human athletic performance. Human Molecular Genetics, 2008, 17, 1076-1086.	1.4	266
17	Integrating Genomics into Healthcare: A Global Responsibility. American Journal of Human Genetics, 2019, 104, 13-20.	2.6	264
18	MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes. Journal of Cell Biology, 2009, 185, 1259-1273.	2.3	243

#	Article	IF	CITATIONS
19	Approach to the diagnosis of congenital myopathies. Neuromuscular Disorders, 2014, 24, 97-116.	0.3	239
20	Nemaline myopathy: A clinical study of 143 cases. Annals of Neurology, 2001, 50, 312-320.	2.8	236
21	Mutations in SIL1 cause Marinesco-SjĶgren syndrome, a cerebellar ataxia with cataract and myopathy. Nature Genetics, 2005, 37, 1312-1314.	9.4	232
22	Neurofibromatosis type 1 and optic pathway gliomas Follow-up of 54 patients. Ophthalmology, 2004, 111, 568-577.	2.5	205
23	Learning disabilities in children with neurofibromatosis type 1: subtypes, cognitive profile, and attention-deficit–hyperactivity disorder. Developmental Medicine and Child Neurology, 2006, 48, 973.	1.1	203
24	A gene for speed? The evolution and function of ?-actinin-3. BioEssays, 2004, 26, 786-795.	1.2	197
25	Mutations in GDP-Mannose Pyrophosphorylase B Cause Congenital and Limb-Girdle Muscular Dystrophies Associated with Hypoglycosylation of α-Dystroglycan. American Journal of Human Genetics, 2013, 93, 29-41.	2.6	197
26	Microwave radiation can alter protein conformation without bulk heating. FEBS Letters, 2003, 543, 93-97.	1.3	191
27	Mutations in KLHL40 Are a Frequent Cause of Severe Autosomal-Recessive Nemaline Myopathy. American Journal of Human Genetics, 2013, 93, 6-18.	2.6	186
28	Neurofibromatosis Type 1. American Journal of Medical Genetics Part A, 2000, 97, 119-127.	2.4	182
29	Specific learning disability in children with neurofibromatosis type 1. Neurology, 1994, 44, 878-878.	1.5	182
30	Cerebrovascular complications in Ehlers-Danlos syndrome type IV. Annals of Neurology, 1995, 38, 960-964.	2.8	176
31	A federated ecosystem for sharing genomic, clinical data. Science, 2016, 352, 1278-1280.	6.0	175
32	Brain involvement in muscular dystrophies with defective dystroglycan glycosylation. Annals of Neurology, 2008, 64, 573-582.	2.8	172
33	Genes and human elite athletic performance. Human Genetics, 2005, 116, 331-339.	1.8	171
34	SEPN1: Associated with congenital fiber-type disproportion and insulin resistance. Annals of Neurology, 2006, 59, 546-552.	2.8	165
35	Association analysis of the ACTN3 R577X polymorphism and complex quantitative body composition and performance phenotypes in adolescent Greeks. European Journal of Human Genetics, 2007, 15, 88-93.	1.4	165
36	Use of Whole-Exome Sequencing for Diagnosis of Limb-Girdle Muscular Dystrophy. JAMA Neurology, 2015, 72, 1424.	4.5	164

KATHRYN N NORTH

#	Article	IF	CITATIONS
37	Nemaline myopathy: current concepts. The ENMC International Consortium and Nemaline Myopathy Journal of Medical Genetics, 1997, 34, 705-713.	1.5	158
38	Genes for Elite Power and Sprint Performance: ACTN3 Leads the Way. Sports Medicine, 2013, 43, 803-817.	3.1	158
39	Dominant collagen VI mutations are a common cause of Ullrich congenital muscular dystrophy. Human Molecular Genetics, 2004, 14, 279-293.	1.4	156
40	Mutations in BICD2 Cause Dominant Congenital Spinal Muscular Atrophy and Hereditary Spastic Paraplegia. American Journal of Human Genetics, 2013, 92, 965-973.	2.6	156
41	Recessive mutations in RYR1 are a common cause of congenital fiber type disproportion. Human Mutation, 2010, 31, E1544-E1550.	1.1	153
42	Leiomodin-3 dysfunction results in thin filament disorganization and nemaline myopathy. Journal of Clinical Investigation, 2014, 124, 4693-4708.	3.9	153
43	Mutations in <i>TPM3</i> are a common cause of congenital fiber type disproportion. Annals of Neurology, 2008, 63, 329-337.	2.8	152
44	The expanding phenotype of laminin alpha2 chain (merosin) abnormalities: case series and review. Journal of Medical Genetics, 2001, 38, 649-657.	1.5	150
45	Actin mutations are one cause of congenital fibre type disproportion. Annals of Neurology, 2004, 56, 689-694.	2.8	149
46	Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness. Nature Communications, 2017, 8, 16015.	5.8	149
47	BRCA Challenge: BRCA Exchange as a global resource for variants in BRCA1 and BRCA2. PLoS Genetics, 2018, 14, e1007752.	1.5	148
48	Consensus Statement on Standard of Care for Congenital Myopathies. Journal of Child Neurology, 2012, 27, 363-382.	0.7	147
49	Identification of KLHL41 Mutations Implicates BTB-Kelch-Mediated Ubiquitination as an Alternate Pathway to Myofibrillar Disruption in Nemaline Myopathy. American Journal of Human Genetics, 2013, 93, 1108-1117.	2.6	147
50	Nemaline Myopathy Caused by Mutations in the Muscle α-Skeletal-Actin Gene. American Journal of Human Genetics, 2001, 68, 1333-1343.	2.6	144
51	Dominant Mutations in KBTBD13, a Member of the BTB/Kelch Family, Cause Nemaline Myopathy with Cores. American Journal of Human Genetics, 2010, 87, 842-847.	2.6	143
52	Gliomas presenting after age 10 in individuals with neurofibromatosis type 1 (NF1). Neurology, 2002, 59, 759-761.	1.5	139
53	Social skills of children with neurofibromatosis type 1. Developmental Medicine and Child Neurology, 2004, 46, 553-63.	1.1	137
54	Assessment of executive function and attention in children with neurofibromatosis type 1: Relationships between cognitive measures and real-world behavior. Child Neuropsychology, 2011, 17, 313-329.	0.8	131

#	Article	IF	CITATIONS
55	C2C12 Co-culture on a fibroblast substratum enables sustained survival of contractile, highly differentiated myotubes with peripheral nuclei and adult fast myosin expression. Cytoskeleton, 2004, 58, 200-211.	4.4	129
56	Deficiency of a skeletal muscle isoform of α-actinin (α-actinin-3) in merosin-positive congenital muscular dystrophy. Neuromuscular Disorders, 1996, 6, 229-235.	0.3	127
57	Neurofibromatosis Type 1: Review of the First 200 Patients in an Australian Clinic. Journal of Child Neurology, 1993, 8, 395-402.	0.7	122
58	Clinical course correlates poorly with muscle pathology in nemaline myopathy. Neurology, 2003, 60, 665-673.	1.5	120
59	ACTN3 and ACE Genotypes in Elite Jamaican and US Sprinters. Medicine and Science in Sports and Exercise, 2010, 42, 107-112.	0.2	120
60	Ferlins: Regulators of Vesicle Fusion for Auditory Neurotransmission, Receptor Trafficking and Membrane Repair. Traffic, 2012, 13, 185-194.	1.3	119
61	Principal mutation hotspot for central core disease and related myopathies in the C-terminal transmembrane region of the RYR1 gene. Neuromuscular Disorders, 2003, 13, 151-157.	0.3	118
62	ACTN3. Exercise and Sport Sciences Reviews, 2007, 35, 30-34.	1.6	118
63	MRI findings in children with neurofibromatosis type 1: a prospective study. Pediatric Radiology, 1996, 26, 478-487.	1.1	117
64	ACTN3 genotype influences muscle performance through the regulation of calcineurin signaling. Journal of Clinical Investigation, 2013, 123, 4255-4263.	3.9	113
65	Direct-to-consumer genetic testing for predicting sports performance and talent identification: Consensus statement. British Journal of Sports Medicine, 2015, 49, 1486-1491.	3.1	113
66	COGNITIVE FUNCTION AND ACADEMIC PERFORMANCE IN CHILDREN WITH NEUROFIBROMATOSIS TYPE 1. Developmental Medicine and Child Neurology, 1995, 37, 427-436.	1.1	110
67	Genotype?phenotype correlations in nemaline myopathy caused by mutations in the genes for nebulin and skeletal muscle ?-actin. Neuromuscular Disorders, 2004, 14, 461-470.	0.3	107
68	Mutation Update: The Spectra of Nebulin Variants and Associated Myopathies. Human Mutation, 2014, 35, 1418-1426.	1.1	107
69	Mutations in <i>HSPB8</i> causing a new phenotype of distal myopathy and motor neuropathy. Neurology, 2016, 86, 391-398.	1.5	107
70	ACTN3 R577X and ACE I/D gene variants influence performance in elite sprinters: a multi-cohort study. BMC Genomics, 2016, 17, 285.	1.2	106
71	Homozygosity for a nonsense mutation in the alpha-tropomyosin slow gene TPM3 in a patient with severe infantile nemaline myopathy. Neuromuscular Disorders, 1999, 9, 573-579.	0.3	105
72	Natural history of cognitive deficits and their relationship to MRI T2-hyperintensities in NF1. Neurology, 2003, 60, 1139-1145.	1.5	105

#	Article	IF	CITATIONS
73	Outcome of noninvasive ventilation in children with neuromuscular disease. Neurology, 2007, 68, 198-201.	1.5	102
74	Review Article : Cognitive Deficits in Neurofibromatosis 1. Journal of Child Neurology, 2002, 17, 605-612.	0.7	101
75	The ACTN3 R577X Polymorphism in East and West African Athletes. Medicine and Science in Sports and Exercise, 2007, 39, 1985-1988.	0.2	100
76	Expanding the clinical, pathological and MRI phenotype of DNM2-related centronuclear myopathy. Neuromuscular Disorders, 2010, 20, 229-237.	0.3	100
77	Limb–girdle muscular dystrophy: Diagnostic evaluation, frequency and clues to pathogenesis. Neuromuscular Disorders, 2008, 18, 34-44.	0.3	99
78	Magnetic resonance imaging of muscle in nemaline myopathy. Neuromuscular Disorders, 2004, 14, 779-784.	0.3	98
79	No Evidence of a Common DNA Variant Profile Specific to World Class Endurance Athletes. PLoS ONE, 2016, 11, e0147330.	1.1	96
80	Athlome Project Consortium: a concerted effort to discover genomic and other "omic―markers of athletic performance. Physiological Genomics, 2016, 48, 183-190.	1.0	96
81	A Gene for Speed: The Emerging Role of α-Actinin-3 in Muscle Metabolism. Physiology, 2010, 25, 250-259.	1.6	95
82	Deficiency of α-actinin-3 is associated with increased susceptibility to contraction-induced damage and skeletal muscle remodeling. Human Molecular Genetics, 2011, 20, 2914-2927.	1.4	95
83	GA4GH: International policies and standards for data sharing across genomic research and healthcare. Cell Genomics, 2021, 1, 100029.	3.0	94
84	Calpains, Cleaved Mini-Dysferlin _{C72} , and L-Type Channels Underpin Calcium-Dependent Muscle Membrane Repair. Journal of Neuroscience, 2013, 33, 5085-5094.	1.7	93
85	Congenital Titinopathy: Comprehensive characterization and pathogenic insights. Annals of Neurology, 2018, 83, 1105-1124.	2.8	93
86	Congenital Fiber Type Disproportion—30 Years On. Journal of Neuropathology and Experimental Neurology, 2003, 62, 977-989.	0.9	92
87	Cognitive and Psychological Profile of Males With Becker Muscular Dystrophy. Journal of Child Neurology, 2008, 23, 155-162.	0.7	92
88	Mutation Update and Genotype-Phenotype Correlations of Novel and Previously Described Mutations in <i>TPM2</i> and <i>TPM3</i> Causing Congenital Myopathies. Human Mutation, 2014, 35, 779-790.	1.1	92
89	Brain structure and function in neurofibromatosis type 1: current concepts and future directions. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, 304-309.	0.9	90
90	Disease Burden and Symptom Structure of Autism in Neurofibromatosis Type 1. JAMA Psychiatry, 2016, 73, 1276.	6.0	90

#	Article	IF	CITATIONS
91	Evidence for a dominant-negative effect in ACTA1 nemaline myopathy caused by abnormal folding, aggregation and altered polymerization of mutant actin isoforms. Human Molecular Genetics, 2004, 13, 1727-1743.	1.4	89
92	Evidence-based guideline summary: Evaluation, diagnosis, and management of congenital muscular dystrophy. Neurology, 2015, 84, 1369-1378.	1.5	88
93	T2 hyperintensities in children with neurofibromatosis type 1 and their relationship to cognitive functioning. Journal of Neurology, Neurosurgery and Psychiatry, 2007, 78, 1088-1091.	0.9	87
94	Lethal neonatal deficiency of carnitine palmitoyltransferase II associated with dysgenesis of the brain and kidneys. Journal of Pediatrics, 1995, 127, 414-420.	0.9	86
95	Single section Western blot. Neurology, 2003, 61, 93-97.	1.5	86
96	Cardiac aquaporin expression in humans, rats, and mice. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H705-H713.	1.5	86
97	Growth in North American white children with neurofibromatosis 1 (NF1). Journal of Medical Genetics, 2000, 37, 933-938.	1.5	85
98	A mutation in alpha-tropomyosinslow affects muscle strength, maturation and hypertrophy in a mouse model for nemaline myopathy. Human Molecular Genetics, 2001, 10, 317-328.	1.4	85
99	Natural history of pulmonary function in collagen VI-related myopathies. Brain, 2013, 136, 3625-3633.	3.7	85
100	Decreased Bone Mineral Density in Neurofibromatosis Type 1. Journal of Pediatric Orthopaedics, 2007, 27, 472-475.	0.6	83
101	Diagnosis and etiology of congenital muscular dystrophy. Neurology, 2008, 71, 312-321.	1.5	83
102	Phenotypic and molecular insights into spinal muscular atrophy due to mutations in BICD2. Brain, 2015, 138, 293-310.	3.7	82
103	Association Analysis of ACE and ACTN3 in Elite Caucasian and East Asian Swimmers. Medicine and Science in Sports and Exercise, 2013, 45, 892-900.	0.2	80
104	Dysferlin, Annexin A1, and Mitsugumin 53 Are Upregulated in Muscular Dystrophy and Localize to Longitudinal Tubules of the T-System With Stretch. Journal of Neuropathology and Experimental Neurology, 2011, 70, 302-313.	0.9	77
105	Randomized placebo-controlled study of lovastatin in children with neurofibromatosis type 1. Neurology, 2016, 87, 2575-2584.	1.5	76
106	A gene for speed: contractile properties of isolated whole EDL muscle from an α-actinin-3 knockout mouse. American Journal of Physiology - Cell Physiology, 2008, 295, C897-C904.	2.1	75
107	Neurofibromatosis Type 2. Journal of Child Neurology, 2017, 32, 9-22.	0.7	75
108	Australian Genomics: A Federated Model for Integrating Genomics into Healthcare. American Journal of Human Genetics, 2019, 105, 7-14.	2.6	75

KATHRYN N NORTH

#	Article	IF	CITATIONS
109	Cerebrovascular dysplasia in neurofibromatosis type 1. Journal of Neurology, Neurosurgery and Psychiatry, 2008, 79, 1165-1170.	0.9	74
110	Defining α-skeletal and α-cardiac actin expression in human heart and skeletal muscle explains the absence of cardiac involvement in ACTA1 nemaline myopathy. Neuromuscular Disorders, 2005, 15, 829-835.	0.3	73
111	α-Actinin-3 deficiency results in reduced glycogen phosphorylase activity and altered calcium handling in skeletal muscle. Human Molecular Genetics, 2010, 19, 1335-1346.	1.4	73
112	Age-related findings on MRI in neurofibromatosis type 1. Pediatric Radiology, 2006, 36, 1048-1056.	1.1	72
113	Mutations in Contactin-1, a Neural Adhesion and Neuromuscular Junction Protein, Cause a Familial Form of Lethal Congenital Myopathy. American Journal of Human Genetics, 2008, 83, 714-724.	2.6	72
114	Loss of IL-15 receptor α alters the endurance, fatigability, and metabolic characteristics of mouse fast skeletal muscles. Journal of Clinical Investigation, 2011, 121, 3120-3132.	3.9	72
115	UDP-N-Acetylglucosamine 2-Epimerase/N-Acetylmannosamine Kinase (GNE) Binds to Alpha-Actinin 1: Novel Pathways in Skeletal Muscle?. PLoS ONE, 2008, 3, e2477.	1.1	71
116	Increased connective tissue growth factor associated with cardiac fibrosis in the mdx mouse model of dystrophic cardiomyopathy. International Journal of Experimental Pathology, 2011, 92, 57-65.	0.6	70
117	Corpus Callosum Morphology and Its Relationship to Cognitive Function in Neurofibromatosis Type 1. Journal of Child Neurology, 2010, 25, 834-841.	0.7	69
118	Evidence Based Selection of Commonly Used RT-qPCR Reference Genes for the Analysis of Mouse Skeletal Muscle. PLoS ONE, 2014, 9, e88653.	1.1	69
119	Cost-effectiveness of massively parallel sequencing for diagnosis of paediatric muscle diseases. Npj Genomic Medicine, 2017, 2, .	1.7	67
120	Neonatal-onset propionic acidemia: Neurologic and developmental profiles, and implications for management. Journal of Pediatrics, 1995, 126, 916-922.	0.9	66
121	Aberrant dysferlin trafficking in cells lacking caveolin or expressing dystrophy mutants of caveolin-3. Human Molecular Genetics, 2006, 15, 129-142.	1.4	66
122	Molecular consequences of dominant Bethlem myopathy collagen VI mutations. Annals of Neurology, 2007, 62, 390-405.	2.8	66
123	Congenital myopathies. Current Opinion in Neurology, 2008, 21, 569-575.	1.8	66
124	α-Actinin-3 and Performance. Medicine and Sport Science, 2009, 54, 88-101.	1.4	65
125	Fetal akinesia: review of the genetics of the neuromuscular causes. Journal of Medical Genetics, 2011, 48, 793-801.	1.5	65
126	The Impact of ADHD on the Cognitive and Academic Functioning of Children With NF1. Developmental Neuropsychology, 2012, 37, 590-600.	1.0	65

#	Article	IF	CITATIONS
127	Current whole-body MRI applications in the neurofibromatoses. Neurology, 2016, 87, S31-9.	1.5	65
128	No association between ACTN3 R577X and ACE I/D polymorphisms and endurance running times in 698 Caucasian athletes. BMC Genomics, 2018, 19, 13.	1.2	65
129	Mutations in <i>PIGY</i> : expanding the phenotype of inherited glycosylphosphatidylinositol deficiencies. Human Molecular Genetics, 2015, 24, 6146-6159.	1.4	64
130	Expression of aquaporin 1Bin human cardiac and skeletal muscle. Journal of Molecular and Cellular Cardiology, 2004, 36, 655-662.	0.9	63
131	Mechanisms underlying intranuclear rod formation. Brain, 2007, 130, 3275-3284.	3.7	63
132	The pathogenesis ofACTA1-related congenital fiber type disproportion. Annals of Neurology, 2007, 61, 552-561.	2.8	63
133	An ?tropomyosin mutation alters dimer preference in nemaline myopathy. Annals of Neurology, 2005, 57, 42-49.	2.8	62
134	Calpain cleavage within dysferlin exon 40a releases a synaptotagmin-like module for membrane repair. Molecular Biology of the Cell, 2014, 25, 3037-3048.	0.9	62
135	Collagen VI glycine mutations: Perturbed assembly and a spectrum of clinical severity. Annals of Neurology, 2008, 64, 294-303.	2.8	61
136	Hypertrophy and dietary tyrosine ameliorate the phenotypes of a mouse model of severe nemaline myopathy. Brain, 2011, 134, 3516-3529.	3.7	59
137	Optic gliomas in neurofibromatosis type 1: Role of visual evoked potentials. Pediatric Neurology, 1994, 10, 117-123.	1.0	58
138	Dietary L-Tyrosine Supplementation in Nemaline Myopathy. Journal of Child Neurology, 2008, 23, 609-613.	0.7	58
139	Mental, Motor, and Language Development of Toddlers with Neurofibromatosis Type 1. Journal of Pediatrics, 2011, 158, 660-665.	0.9	58
140	Evidence for ACTN3 as a genetic modifier of Duchenne muscular dystrophy. Nature Communications, 2017, 8, 14143.	5.8	58
141	Diagnosis and etiology of congenital muscular dystrophy: We are halfway there. Annals of Neurology, 2016, 80, 101-111.	2.8	57
142	How does α-actinin-3 deficiency alter muscle function? Mechanistic insights into ACTN3 , the â€~gene for speed'. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 686-693.	1.9	57
143	Review Article : Neurofibromatosis 1: Clinical Review and Exceptions to the Rules. Journal of Child Neurology, 2002, 17, 613-621.	0.7	55
144	What's new in congenital myopathies?. Neuromuscular Disorders, 2008, 18, 433-442.	0.3	55

#	Article	IF	CITATIONS
145	Health-related Quality of Life in Boys With Duchenne Muscular Dystrophy: Agreement Between Parents and Their Sons. Journal of Child Neurology, 2010, 25, 1188-1194.	0.7	55
146	Expanding the phenotype of GMPPB mutations. Brain, 2015, 138, 836-844.	3.7	54
147	Is evolutionary loss our gain? The role of <i>ACTN3</i> p.Arg577Ter (R577X) genotype in athletic performance, ageing, and disease. Human Mutation, 2018, 39, 1774-1787.	1.1	50
148	Autosomal dominant nemaline myopathy with intranuclear rods due to mutation of the skeletal muscle ACTA1 gene: Clinical and pathological variability within a kindred. Neuromuscular Disorders, 2006, 16, 113-121.	0.3	49
149	Phylogenetic analysis of ferlin genes reveals ancient eukaryotic origins. BMC Evolutionary Biology, 2010, 10, 231.	3.2	49
150	Nemaline myopathy and distal arthrogryposis associated with an autosomal recessiveÂ <i>TNNT3</i> Âsplice variant. Human Mutation, 2018, 39, 383-388.	1.1	48
151	Neurofibromatosis 1 in childhood. Seminars in Pediatric Neurology, 1998, 5, 231-242.	1.0	47
152	Clinical Approach to the Diagnosis of Congenital Myopathies. Seminars in Pediatric Neurology, 2011, 18, 216-220.	1.0	47
153	The effect of α-actinin-3 deficiency on muscle aging. Experimental Gerontology, 2011, 46, 292-302.	1.2	47
154	Outcome of children with neuromuscular disease admitted to paediatric intensive care. Archives of Disease in Childhood, 2004, 89, 170-175.	1.0	46
155	Variants in <i>SLC18A3</i> , vesicular acetylcholine transporter, cause congenital myasthenic syndrome. Neurology, 2016, 87, 1442-1448.	1.5	46
156	Lack of MG53 in human heart precludes utility as a biomarker of myocardial injury or endogenous cardioprotective factor. Cardiovascular Research, 2016, 110, 178-187.	1.8	46
157	CHARGE association in a child with de novo inverted duplication (14)(q22 → q24.3). American Journal of Medical Genetics Part A, 1995, 57, 610-614.	2.4	45
158	Myocardial water handling and the role of aquaporins. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 1043-1052.	1.4	45
159	Utility of positron emission tomography for tumour surveillance in children with neurofibromatosis type 1. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37, 1309-1317.	3.3	45
160	All the World's a Stage: Facilitating Discovery Science and Improved Cancer Care through the Global Alliance for Genomics and Health. Cancer Discovery, 2015, 5, 1133-1136.	7.7	45
161	Variants in the Oxidoreductase PYROXD1 Cause Early-Onset Myopathy with Internalized Nuclei and Myofibrillar Disorganization. American Journal of Human Genetics, 2016, 99, 1086-1105.	2.6	45
162	Social Function and Autism Spectrum Disorder in Children and Adults with Neurofibromatosis Type 1: a Systematic Review and Meta-Analysis. Neuropsychology Review, 2018, 28, 317-340.	2.5	45

#	Article	IF	CITATIONS
163	Hand involvement in children with Charcot–Marie-Tooth disease type 1A. Neuromuscular Disorders, 2008, 18, 970-973.	0.3	44
164	Cognitive dysfunction as the major presenting feature of Becker's muscular dystrophy. Neurology, 1996, 46, 461-464.	1.5	43
165	Cap disease due to mutation of the beta-tropomyosin gene (TPM2). Neuromuscular Disorders, 2009, 19, 348-351.	0.3	43
166	Does attentionâ€deficit–hyperactivity disorder exacerbate executive dysfunction in children with neurofibromatosis type 1?. Developmental Medicine and Child Neurology, 2012, 54, 898-904.	1.1	43
167	K7del is a common TPM2 gene mutation associated with nemaline myopathy and raised myofibre calcium sensitivity. Brain, 2013, 136, 494-507.	3.7	42
168	Importance and challenge of making an early diagnosis in <i>LMNA</i> -related muscular dystrophy. Neurology, 2012, 78, 1258-1263.	1.5	41
169	Longitudinal assessment of cognition and T2â€hyperintensities in NF1: An 18â€year study. American Journal of Medical Genetics, Part A, 2014, 164, 661-665.	0.7	41
170	Idiopathic Hypothalamic Dysfunction With Dilated Unresponsive Pupils: Report of Two Cases. Journal of Child Neurology, 1994, 9, 320-325.	0.7	40
171	Mild Functional Differences of Dynamin 2 Mutations Associated to Centronuclear Myopathy and Charcot-Marie-Tooth Peripheral Neuropathy. PLoS ONE, 2011, 6, e27498.	1.1	40
172	NF1 is a critical regulator of muscle development and metabolism. Human Molecular Genetics, 2014, 23, 1250-1259.	1.4	40
173	National Neurofibromatosis Foundation International Database. American Journal of Medical Genetics Part A, 1993, 45, 88-91.	2.4	39
174	Idiopathic hypothalamic dysfunction: a paraneoplastic syndrome?. Lancet, The, 1995, 346, 1298.	6.3	39
175	Intranuclear rod myopathy: molecular pathogenesis and mechanisms of weakness. Annals of Neurology, 2007, 62, 597-608.	2.8	39
176	The self-concept of children and adolescents with neurofibromatosis type 1. Child: Care, Health and Development, 2007, 33, 401-408.	0.8	39
177	Tropomyosin 4 defines novel filaments in skeletal muscle associated with muscle remodelling/regeneration in normal and diseased muscle. Cytoskeleton, 2008, 65, 73-85.	4.4	39
178	Relationship between cognitive dysfunction, gait, and motor impairment in children and adolescents with neurofibromatosis type 1. Developmental Medicine and Child Neurology, 2014, 56, 468-474.	1.1	39
179	Altered Ca2+ Kinetics Associated with α-Actinin-3 Deficiency May Explain Positive Selection for ACTN3 Null Allele in Human Evolution. PLoS Genetics, 2015, 11, e1004862.	1.5	39
180	Muscle weakness in <i>TPM3</i> -myopathy is due to reduced Ca ²⁺ -sensitivity and impaired acto-myosin cross-bridge cycling in slow fibres. Human Molecular Genetics, 2015, 24, 6278-6292.	1.4	38

#	Article	IF	CITATIONS
181	TOR1AIP1 as a cause of cardiac failure and recessive limb-girdle muscular dystrophy. Neuromuscular Disorders, 2016, 26, 500-503.	0.3	38
182	Congenital muscular dystrophy with primary partial laminin α2 chain deficiency: Molecular study. Neurology, 2001, 57, 1319-1322.	1.5	37
183	Reduced Plasma Membrane Expression of Dysferlin Mutants Is Attributed to Accelerated Endocytosis via a Syntaxin-4-associated Pathway. Journal of Biological Chemistry, 2010, 285, 28529-28539.	1.6	37
184	\hat{l}_{\pm} -Actinin-3 deficiency is associated with reduced bone mass in human and mouse. Bone, 2011, 49, 790-798.	1.4	37
185	â€~An artefact gone awry': Identification of the first case of nemaline myopathy by Dr R.D.K. Reye. Neuromuscular Disorders, 2000, 10, 307-312.	0.3	36
186	Reliability of quantifying foot and ankle muscle strength in very young children. Muscle and Nerve, 2008, 37, 626-631.	1.0	36
187	Muscular dystrophy associated with α-dystroglycan deficiency in Sphynx and Devon Rex cats. Neuromuscular Disorders, 2008, 18, 942-952.	0.3	36
188	Patient-reported outcomes of pain and physical functioning in neurofibromatosis clinical trials. Neurology, 2016, 87, S4-S12.	1.5	36
189	TCTEX1D1 is a genetic modifier of disease progression in Duchenne muscular dystrophy. European Journal of Human Genetics, 2020, 28, 815-825.	1.4	36
190	Scaling national and international improvement in virtual gene panel curation via a collaborative approach to discordance resolution. American Journal of Human Genetics, 2021, 108, 1551-1557.	2.6	36
191	Primary Î ³ -sarcoglycanopathy (LGMD 2C): broadening of the mutational spectrum guided by the immunohistochemical profile. Neuromuscular Disorders, 2002, 12, 273-280.	0.3	35
192	A novel mutation expands the genetic and clinical spectrum of MYH7-related myopathies. Neuromuscular Disorders, 2013, 23, 432-436.	0.3	35
193	The Future of Genomic Research in Athletic Performance and Adaptation to Training. Medicine and Sport Science, 2016, 61, 55-67.	1.4	35
194	Analysis of the <i>ACTN3</i> heterozygous genotype suggests that α-actinin-3 controls sarcomeric composition and muscle function in a dose-dependent fashion. Human Molecular Genetics, 2016, 25, 866-877.	1.4	35
195	Eosinophil function in adipose tissue is regulated by Krüppel-like factor 3 (KLF3). Nature Communications, 2020, 11, 2922.	5.8	35
196	An Examination of Lexical and Sublexical Reading Skills in Children with Neurofibromatosis Type 1. Child Neuropsychology, 2008, 14, 401-418.	0.8	34
197	Serial night casting increases ankle dorsiflexion range in children and young adults with Charcot-Marie-Tooth disease: a randomised trial. Journal of Physiotherapy, 2010, 56, 113-119.	0.7	34
198	Spinal muscular atrophy. Journal of Inherited Metabolic Disease, 1999, 22, 545-554.	1.7	33

#	Article	IF	CITATIONS
199	Variable penetrance of COL6A1 null mutations: Implications for prenatal diagnosis and genetic counselling in Ullrich congenital muscular dystrophy families. Neuromuscular Disorders, 2007, 17, 547-557.	0.3	33
200	The Impact of Neurofibromatosis Type 1 on the Health and Wellbeing of Australian Adults. Journal of Genetic Counseling, 2015, 24, 931-944.	0.9	33
201	Dermoid of cavernous sinus resulting in isolated oculomotor nerve palsy. Pediatric Neurology, 1993, 9, 221-223.	1.0	32
202	Cognition, ADHD Symptoms, and Functional Impairment in Children and Adolescents With Neurofibromatosis Type 1. Journal of Attention Disorders, 2021, 25, 1177-1186.	1.5	32
203	Loss of α-actinin-3 during human evolution provides superior cold resilience and muscle heat generation. American Journal of Human Genetics, 2021, 108, 446-457.	2.6	32
204	The evolution of skeletal muscle performance: gene duplication and divergence of human sarcomeric αâ€actinins. BioEssays, 2010, 32, 17-25.	1.2	31
205	Factors Associated With Foot and Ankle Strength in Healthy Preschool-Age Children and Age-Matched Cases of Charcot-Marie-Tooth Disease Type 1A. Journal of Child Neurology, 2010, 25, 463-468.	0.7	31
206	Visual-evoked potentials in the assessment of optic gliomas. Pediatric Neurology, 2001, 24, 44-48.	1.0	30
207	The Syntrophin-Dystrobrevin Subcomplex in Human Neuromuscular Disorders. Journal of Neuropathology and Experimental Neurology, 2005, 64, 350-361.	0.9	30
208	Why is α-Actinin-3 Deficiency So Common in the General Population? The Evolution of Athletic Performance. Twin Research and Human Genetics, 2008, 11, 384-394.	0.3	30
209	Myoblast sensitivity and fibroblast insensitivity to osteogenic conversion by BMP-2 correlates with the expression of Bmpr-1a. BMC Musculoskeletal Disorders, 2009, 10, 51.	0.8	30
210	The Cognitive Profile of Preschool-Aged Children with Neurofibromatosis Type 1. Child Neuropsychology, 2010, 17, 1-16.	0.8	30
211	The genetic and neuroanatomical basis of social dysfunction: Lessons from neurofibromatosis type 1. Human Brain Mapping, 2014, 35, 2372-2382.	1.9	30
212	Results of a two-year pilot study of clinical outcome measures in collagen VI- and laminin alpha2-related congenital muscular dystrophies. Neuromuscular Disorders, 2015, 25, 43-54.	0.3	30
213	Abnormalities of dystrophin, the sarcoglycans, and laminin alpha2 in the muscular dystrophies Journal of Medical Genetics, 1998, 35, 379-386.	1.5	29
214	Muscular dystrophies. Current Opinion in Neurology, 2002, 15, 539-544.	1.8	29
215	Quantitation of long-chain acylcarnitines by HPLC/fluorescence detection: application to plasma and tissue specimens from patients with carnitine palmitoyltransferase-II deficiency. Clinica Chimica Acta, 2005, 352, 81-92.	0.5	29
216	Dystrophinopathy carrier determination and detection of protein deficiencies in muscular dystrophy using lentiviral MyoD-forced myogenesis. Neuromuscular Disorders, 2007, 17, 276-284.	0.3	29

#	Article	IF	CITATIONS
217	Myocardial ischemia is more important than the effects of cardiopulmonary bypass on myocardial water handling and postoperative dysfunction: A pediatric animal model. Journal of Thoracic and Cardiovascular Surgery, 2008, 136, 1265-1273.e2.	0.4	29
218	The Learning Disabilities Network (LeaDNet): Using neurofibromatosis type 1 (NF1) as a paradigm for translational research. American Journal of Medical Genetics, Part A, 2012, 158A, 2225-2232.	0.7	29
219	Social functioning in adults with neurofibromatosis type 1. Research in Developmental Disabilities, 2013, 34, 3393-3399.	1.2	29
220	ACTN3 Allele Frequency in Humans Covaries with Global Latitudinal Gradient. PLoS ONE, 2013, 8, e52282.	1.1	29
221	Altered cellular localization of aquaporin-1 in experimental hydrocephalus in mice and reduced ventriculomegaly in aquaporin-1 deficiency. Molecular and Cellular Neurosciences, 2011, 46, 318-324.	1.0	28
222	Clinical utility gene card for: Centronuclear and myotubular myopathies. European Journal of Human Genetics, 2012, 20, 1101-1101.	1.4	28
223	Genetics and sport performance: current challenges and directions to the future. Revista Brasileira De Educação FÃsica E Esporte: RBEFE, 2014, 28, 177-193.	0.1	28
224	Identical twins with Cohen syndrome. American Journal of Medical Genetics Part A, 1995, 58, 54-58.	2.4	27
225	Deficiency of the syntrophins and α-dystrobrevin in patients with inherited myopathy. Neuromuscular Disorders, 2003, 13, 456-467.	0.3	27
226	Changes in skeletal muscle expression of AQP1 and AQP4 in dystrophinopathy and dysferlinopathy patients. Acta Neuropathologica, 2008, 116, 235-246.	3.9	27
227	Disease Severity and Thin Filament Regulation in M9R <i>TPM3</i> Nemaline Myopathy. Journal of Neuropathology and Experimental Neurology, 2008, 67, 867-877.	0.9	27
228	Health status of boys with Duchenne muscular dystrophy: A parent's perspective. Journal of Paediatrics and Child Health, 2011, 47, 557-562.	0.4	27
229	Theory of mind in children with Neurofibromatosis Type 1 Neuropsychology, 2016, 30, 439-448.	1.0	27
230	Oxidative phosphorylation defect associated with primary adrenal insufficiency. Journal of Pediatrics, 1996, 128, 688-692.	0.9	26
231	A novel X-linked form of congenital fiber-type disproportion. Annals of Neurology, 2005, 58, 767-772.	2.8	26
232	Myosin storage (hyaline body) myopathy: A case report. Neuromuscular Disorders, 2006, 16, 882-886.	0.3	26
233	Interventions for increasing ankle range of motion in patients with neuromuscular disease. The Cochrane Library, 2010, , CD006973.	1.5	26
234	Properties of extensor digitorum longus muscle and skinned fibers from adult and aged male and female <i>Actn3</i> knockout mice. Muscle and Nerve, 2011, 43, 37-48.	1.0	26

KATHRYN N NORTH

#	Article	IF	CITATIONS
235	Paired associate learning in children with neurofibromatosis type 1: implications for clinical trials. Journal of Neurology, 2013, 260, 214-220.	1.8	26
236	Cognitive Features that Distinguish Preschool-Age Children with Neurofibromatosis Type 1 from Their Peers: A Matched Case-Control Study. Journal of Pediatrics, 2013, 163, 1479-1483.e1.	0.9	26
237	Young Australian adults with NF1 have poor access to health care, high complication rates, and limited disease knowledge. American Journal of Medical Genetics, Part A, 2013, 161, 659-666.	0.7	26
238	α-Actinin-3 deficiency alters muscle adaptation in response to denervation and immobilization. Human Molecular Genetics, 2014, 23, 1879-1893.	1.4	26
239	Androgen Action via the Androgen Receptor in Neurons Within the Brain Positively Regulates Muscle Mass in Male Mice. Endocrinology, 2017, 158, 3684-3695.	1.4	26
240	Hemiplegia due to posterior cerebral artery occlusion Stroke, 1993, 24, 1757-1760.	1.0	25
241	Validation of an automated computational method for skeletal muscle fibre morphometry analysis. Neuromuscular Disorders, 2010, 20, 540-547.	0.3	25
242	Congenital Muscular Dystrophy Associated With Merosin Deficiency. Journal of Child Neurology, 1996, 11, 291-295.	0.7	24
243	In Vitro Analysis of Rod Composition and Actin Dynamics in Inherited Myopathies. Journal of Neuropathology and Experimental Neurology, 2010, 69, 429-441.	0.9	24
244	Reproducibility of cognitive endpoints in clinical trials: lessons from neurofibromatosis type 1. Annals of Clinical and Translational Neurology, 2019, 6, 2555-2565.	1.7	24
245	Pseudoseizures Caused by Hyperventilation Resembling Absence Epilepsy. Journal of Child Neurology, 1990, 5, 288-294.	0.7	23
246	Evidence for a dominant negative disease mechanism in cap myopathy due to TPM3. Neuromuscular Disorders, 2010, 20, 464-466.	0.3	23
247	Recessive ACTA1 variant causes congenital muscular dystrophy with rigid spine. European Journal of Human Genetics, 2015, 23, 883-886.	1.4	23
248	Current status and recommendations for biomarkers and biobanking in neurofibromatosis. Neurology, 2016, 87, S40-8.	1.5	23
249	Branched fibers from old fast-twitch dystrophic muscles are the sites of terminal damage in muscular dystrophy. American Journal of Physiology - Cell Physiology, 2018, 314, C662-C674.	2.1	23
250	Brain-Stem Encephalitis Caused by Epstein-Barr Virus. Journal of Child Neurology, 1993, 8, 40-42.	0.7	22
251	Dysfunction induced by ischemia versus edema: Does edema matter?. Journal of Thoracic and Cardiovascular Surgery, 2009, 138, 141-147.e1.	0.4	22
252	Are biological sensors modulated by their structural scaffolds? The role of the structural muscle proteins l±â€actininâ€2 and l±â€actininâ€3 as modulators of biological sensors. FEBS Letters, 2010, 584, 2974-2	980.	22

15

#	Article	IF	CITATIONS
253	Building a learning community of Australian clinical genomics: a social network study of the Australian Genomic Health Alliance. BMC Medicine, 2019, 17, 44.	2.3	22
254	Autosomal dominant congenital spinal muscular atrophy: a true form of spinal muscular atrophy caused by early loss of anterior horn cells. Brain, 2012, 135, 1714-1723.	3.7	21
255	Mutations in TPM2 and congenital fibre type disproportion. Neuromuscular Disorders, 2012, 22, 955-958.	0.3	21
256	Muscle weakness in children with neurofibromatosis type 1. Developmental Medicine and Child Neurology, 2015, 57, 733-736.	1.1	21
257	A transformative translational change programme to introduce genomics into healthcare: a complexity and implementation science study protocol. BMJ Open, 2019, 9, e024681.	0.8	21
258	Attenuated platelet sensitivity to collagen in patients with neurofibromatosis type 1. British Journal of Haematology, 1995, 89, 582-588.	1.2	20
259	Therapeutics for Childhood Neurofibromatosis Type 1 and Type 2. Current Treatment Options in Neurology, 2011, 13, 529-543.	0.7	20
260	Rodent models for resolving extremes of exercise and health. Physiological Genomics, 2016, 48, 82-92.	1.0	20
261	Sniff nasal inspiratory pressure and sleep disordered breathing in childhood neuromuscular disorders. Neuromuscular Disorders, 2012, 22, 528-533.	0.3	19
262	Inherited neuromuscular disorders: Pathway to diagnosis. Journal of Paediatrics and Child Health, 2012, 48, 458-465.	0.4	19
263	Collagen VI Microfibril Formation Is Abolished by an α2(VI) von Willebrand Factor Type A Domain Mutation in a Patient with Ullrich Congenital Muscular Dystrophy. Journal of Biological Chemistry, 2010, 285, 33567-33576.	1.6	18
264	Developmental Trajectories of Young Children with Neurofibromatosis Type 1: A Longitudinal Study from 21 to 40ÂMonths of Age. Journal of Pediatrics, 2015, 166, 1006-1012.e1.	0.9	18
265	Targeted Re-Sequencing Emulsion PCR Panel for Myopathies: Results in 94 Cases. Journal of Neuromuscular Diseases, 2016, 3, 209-225.	1.1	18
266	Learning disabilities in children with neurofibromatosis type 1: subtypes, cognitive profile, and attentionâ€deficit―hyperactivity disorder. Developmental Medicine and Child Neurology, 2006, 48, 973-977.	1.1	17
267	The Effect of ACTN3 Gene Doping on Skeletal Muscle Performance. American Journal of Human Genetics, 2018, 102, 845-857.	2.6	17
268	A Novel Syndrome of Episodic Muscle Weakness Maps to Xp22.3. American Journal of Human Genetics, 1999, 65, 1104-1113.	2.6	16
269	Nemaline Myopathy with Exclusively Intranuclear Rods and a Novel Mutation in ACTA1 (Q139H). Neuropediatrics, 2007, 38, 282-286.	0.3	16
270	Relationship between foot strength and motor function in preschool-age children. Neuromuscular Disorders, 2009, 19, 104-107.	0.3	16

#	Article	IF	CITATIONS
271	Mosaic caveolin-3 expression in acquired rippling muscle disease without evidence of myasthenia gravis or acetylcholine receptor autoantibodies. Neuromuscular Disorders, 2011, 21, 194-203.	0.3	16
272	Epidermolysis bullosa with lateâ€onset muscular dystrophy and plectin deficiency. Muscle and Nerve, 2011, 44, 135-141.	1.0	16
273	Neurocognitive outcomes in neurofibromatosis clinical trials. Neurology, 2016, 87, S21-30.	1.5	16
274	Skeletal Muscle Alpha-Actin Diseases. Advances in Experimental Medicine and Biology, 2008, 642, 15-27.	0.8	16
275	Clinical aspects of neurofibromatosis 1. European Journal of Paediatric Neurology, 1998, 2, 223-231.	0.7	15
276	Phylogenetic Analysis of Gene Structure and Alternative Splicing in Â-Actinins. Molecular Biology and Evolution, 2010, 27, 773-780.	3.5	15
277	Sleep and pulmonary outcomes for clinical trials of airway plexiform neurofibromas in NF1. Neurology, 2016, 87, S13-20.	1.5	15
278	Preliteracy impairments in children with neurofibromatosis type 1. Developmental Medicine and Child Neurology, 2018, 60, 703-710.	1.1	15
279	The Effect of Heterozygosity for the ACTN3 Null Allele on Human Muscle Performance. Medicine and Science in Sports and Exercise, 2016, 48, 509-520.	0.2	14
280	The neural basis of deficient response inhibition in children with neurofibromatosis type 1: Evidence from a functional MRI study. Cortex, 2017, 93, 1-11.	1.1	14
281	Feasibility of a Computerized Method to Measure Quality of "Everyday―Life in Children with Neuromuscular Disorders. Physical and Occupational Therapy in Pediatrics, 2010, 30, 43-53.	0.8	13
282	A study of FHL1, BAG3, MATR3, PTRF and TCAP in Australian muscular dystrophy patients. Neuromuscular Disorders, 2011, 21, 776-781.	0.3	13
283	The kids are OK: it is discrimination not sameâ€sex parents that harms children. Medical Journal of Australia, 2017, 207, 374-375.	0.8	13
284	A "human knockout―model to investigate the influence of the α-actinin-3 protein on exercise-induced mitochondrial adaptations. Scientific Reports, 2019, 9, 12688.	1.6	13
285	Social skills and autism spectrum disorder symptoms in children with neurofibromatosis type 1: evidence for clinical trial outcomes. Developmental Medicine and Child Neurology, 2020, 62, 813-819.	1.1	13
286	Facial emotion recognition, face scan paths, and face perception in children with neurofibromatosis type 1 Neuropsychology, 2017, 31, 361-370.	1.0	13
287	Postexercise headache in menopausal women. Lancet, The, 1993, 341, 972.	6.3	12
288	Optic gliomas in neurofibromatosis type 1: role of visual evoked potentials. Pediatric Neurology, 1995, 12, 89-90.	1.0	12

#	Article	IF	CITATIONS
289	External ophthalmoplegia in neuromuscular disorders: Case report and review of the literature. Neuromuscular Disorders, 1997, 7, 143-151.	0.3	12
290	G.P.41 The identification of LGMD2G (TCAP) in Australia. Neuromuscular Disorders, 2012, 22, 831-832.	0.3	12
291	Sequence analysis of the equine ACTN3 gene in Australian horse breeds. Gene, 2014, 538, 88-93.	1.0	12
292	Impaired engagement of the ventral attention system in neurofibromatosis type 1. Brain Imaging and Behavior, 2018, 12, 499-508.	1.1	12
293	Effects of methylphenidate on cognition and behaviour in children with neurofibromatosis type 1: a study protocol for a randomised placebo-controlled crossover trial. BMJ Open, 2018, 8, e021800.	0.8	12
294	The relationship between deficit in digit span and genotype in nonsense mutation Duchenne muscular dystrophy. Neurology, 2018, 91, e1215-e1219.	1.5	12
295	Neurotomes and birth defects: A neuroanatomic method of interpretation of multiple congenital malformations. American Journal of Medical Genetics Part A, 1987, 28, 29-42.	2.4	11
296	Sarcomeric α-actinins and their role in human muscle disease. Future Neurology, 2009, 4, 731-743.	0.9	11
297	Attention to faces in social context in children with neurofibromatosis type 1. Developmental Medicine and Child Neurology, 2019, 61, 174-180.	1.1	11
298	Understanding autism spectrum disorder and social functioning in children with neurofibromatosis type 1: protocol for a cross-sectional multimodal study. BMJ Open, 2019, 9, e030601.	0.8	11
299	Dystrophin-negative slow-twitch soleus muscles are not susceptible to eccentric contraction induced injury over the lifespan of the mdx mouse. American Journal of Physiology - Cell Physiology, 2021, 321, C704-C720.	2.1	11
300	LMOD3: the "missing link―in nemaline myopathy?. Oncotarget, 2015, 6, 26548-26549.	0.8	11
301	Job analysis applied to the special needs of the disabled. Ergonomics, 1981, 24, 889-898.	1.1	10
302	Phonics Training Improves Reading in Children with Neurofibromatosis Type 1: A Prospective Intervention Trial. Journal of Pediatrics, 2016, 177, 219-226.e2.	0.9	10
303	Recent advances in diagnosis of the childhood muscular dystrophies. Journal of Paediatrics and Child Health, 1997, 33, 195-201.	0.4	9
304	Evaluation of primary haemostasis in people with neurofibromatosis type 1. International Journal of Laboratory Hematology, 2004, 26, 341-345.	0.2	9
305	Myocardial membrane injury in pediatric cardiac surgery: An animal model. Journal of Thoracic and Cardiovascular Surgery, 2009, 137, 1154-1162.	0.4	9
306	Exploring the relationship between α-actinin-3 deficiency and obesity in mice and humans. International Journal of Obesity, 2017, 41, 1154-1157.	1.6	9

KATHRYN N NORTH

#	Article	IF	CITATIONS
307	Visual spatial learning outcomes for clinical trials in neurofibromatosis type 1. Annals of Clinical and Translational Neurology, 2020, 7, 245-249.	1.7	9
308	Lifespan Analysis of Dystrophic mdx Fast-Twitch Muscle Morphology and Its Impact on Contractile Function. Frontiers in Physiology, 2021, 12, 771499.	1.3	9
309	Neurofibromatosis of the small intestine mesentery in a child with neurofibromatosis type 1. Journal of Pediatric Surgery, 1997, 32, 1783-1785.	0.8	8
310	Cockayne syndrome associated with low CSF 5-hydroxyindole acetic acid levels. Journal of Medical Genetics, 2000, 37, 553-557.	1.5	8
311	Can in-the-moment diary methods measure health-related quality of life in Duchenne muscular dystrophy?. Quality of Life Research, 2017, 26, 1145-1152.	1.5	8
312	Delineating the autistic phenotype in children with neurofibromatosis type 1. Molecular Autism, 2022, 13, 3.	2.6	8
313	Parent-of-origin in individuals with familial neurofibromatosis type 1 and optic pathway gliomas. Familial Cancer, 2012, 11, 653-656.	0.9	7
314	Social Competence in Children with Neurofibromatosis Type 1: Relationships with Psychopathology and Cognitive Ability. Journal of Childhood & Developmental Disorders, 2016, 02, .	0.3	7
315	<i>ACTN3</i> genotype influences skeletal muscle mass regulation and response to dexamethasone. Science Advances, 2021, 7, .	4.7	7
316	The Cognitive Profile of NF1 Children: Therapeutic Implications. , 2012, , 55-69.		7
317	Profiling the Word Reading Abilities of School-Age Children with Neurofibromatosis Type 1. Journal of the International Neuropsychological Society, 2021, 27, 484-496.	1.2	7
318	17q inversion involving the neurofibromatosis type one locus in a family with neurofibromatosis type one. American Journal of Medical Genetics Part A, 1995, 60, 312-316.	2.4	6
319	Complex I deficiency in association with structural abnormalities of the diaphragm and brain. Journal of Inherited Metabolic Disease, 1998, 21, 72-73.	1.7	6
320	Uptake of health monitoring and disease selfâ€management in Australian adults with neurofibromatosis type 1: strategies to improve care. Clinical Genetics, 2016, 89, 385-391.	1.0	6
321	Bilateral Infantile Cataractogenesis in a Patient With Deficiency of Complex I, A Mitochondrial Electron Transport Chain Enzyme. Journal of Pediatric Ophthalmology and Strabismus, 1995, 32, 378-382.	0.3	6
322	Exclusion of biglycan mutations in a cohort of patients with neuromuscular disorders. Neuromuscular Disorders, 2008, 18, 606-609.	0.3	5
323	Monitoring of optic nerve function in Neurofibromatosis 2 children with optic nerve sheath meningiomas using multifocal visual evoked potentials. Journal of Clinical Neuroscience, 2018, 50, 262-267.	0.8	5
324	Rippling muscle disease. Journal of Clinical Neuroscience, 2006, 13, 576-578.	0.8	4

#	Article	IF	CITATIONS
325	Social skills of children with neurofibromatosis type 1. Developmental Medicine and Child Neurology, 2004, 46, 553-563.	1.1	4
326	Treatment for plexiform neurofibromas in patients with NF1. Lancet Oncology, The, 2012, 13, 1175-1176.	5.1	4
327	Autism in neurofibromatosis type 1: misuse of covariance to dismiss autistic trait burden. Developmental Medicine and Child Neurology, 2021, 63, 233-234.	1.1	4
328	Congenital muscular dystrophy. Brain and Development, 1983, 5, 429.	0.6	3
329	Using complementary DNA from MyoDâ€transduced fibroblasts to sequence large muscle genes. Muscle and Nerve, 2011, 44, 280-282.	1.0	3
330	Activating internal ribosome entry to treat Duchenne muscular dystrophy. Nature Medicine, 2014, 20, 987-988.	15.2	3
331	Congenital and Other Structural Myopathies. , 2015, , 499-537.		3
332	Evidence-based guideline summary: Evaluation, diagnosis, and management of congenital muscular dystrophy: Report of the Guideline Development Subcommittee of the American Academy of Neurology and the Practice Issues Review Panel of the American Association of Neuromuscular & Electrodiagnostic Medicine. Neurology, 2015, 85, 1432-1433.	1.5	3
333	Atypical Local Interference Affects Global Processing in Children with Neurofibromatosis Type 1. Journal of the International Neuropsychological Society, 2017, 23, 446-450.	1.2	3
334	Generating an iPSC line (with isogenic control) from the PBMCs of an ACTA1 (p.Gly148Asp) nemaline myopathy patient. Stem Cell Research, 2021, 54, 102429.	0.3	3
335	Neurofibromatosis Type 1. , 2000, 97, 119.		3
336	Auditory Dysfunction Among Individuals With Neurofibromatosis Type 1. JAMA Network Open, 2021, 4, e2136842.	2.8	3
337	Absence of the Z-disc protein α-actinin-3 impairs the mechanical stability of Actn3KO mouse fast-twitch muscle fibres without altering their contractile properties or twitch kinetics. Skeletal Muscle, 2022, 12, .	1.9	3
338	Ergonomics methodology—an obstacle or promoter for the implementation of ergonomics in industrial practice?. Ergonomics, 1980, 23, 781-795.	1.1	2
339	FEVER AND SPASTIC QUADRIPARESIS CAUSED BY MYCOPLASMA PNEUMONIAE. Pediatric Infectious Disease Journal, 1992, 11, 129.	1.1	2
340	T.P.1.10 Reliability and validity of measuring foot and ankle muscle strength in very young children. Neuromuscular Disorders, 2008, 18, 741-742.	0.3	2
341	P3.32 The molecular genetics of monogenic neuromuscular disorders characterised by reduced foetal movement. Neuromuscular Disorders, 2011, 21, 691.	0.3	2
342	Prominent scapulae mimicking an inherited myopathy expands the phenotype of CHD7-related disease. European Journal of Human Genetics, 2016, 24, 1216-1219.	1.4	2

#	Article	IF	CITATIONS
343	The mediating role of ADHD symptoms between executive function and social skills in children with neurofibromatosis type 1. Child Neuropsychology, 2022, 28, 318-336.	0.8	2
344	Loss of α-actinin-3 confers protection from eccentric contraction damage in fast-twitch EDL muscles from aged <i>mdx</i> dystrophic mice by reducing pathological fibre branching. Human Molecular Genetics, 2022, 31, 1417-1429.	1.4	2
345	Sex- and age-related differences in autistic behaviours in children with neurofibromatosis type 1. Journal of Autism and Developmental Disorders, 2023, 53, 2835-2850.	1.7	2
346	Response to Mörseburg etÂal American Journal of Human Genetics, 2022, 109, 973.	2.6	2
347	The MMAAS Project: An Observational Human Study Investigating the Effect of Anabolic Androgenic Steroid Use on Gene Expression and the Molecular Mechanism of Muscle Memory. Clinical Journal of Sport Medicine, 2023, 33, e115-e122.	0.9	2
348	P.O.1 Molecular genetic analysis of 6 glycosyltransferases in a large population of dystroglycanopathy patients significantly widens the spectrum of phenotypes resulting from POMT1, POMGnT1 and Fukutin mutations. Neuromuscular Disorders, 2006, 16, 683.	0.3	1
349	C.P.1.04 Defining diagnostic boundaries for congenital fibre type disproportion. Neuromuscular Disorders, 2007, 17, 835.	0.3	1
350	C.P.3.06 Spectrum of brain changes and genotype-phenotype correlations in secondary dystroglycanopathies. Neuromuscular Disorders, 2007, 17, 871.	0.3	1
351	Correction for Eisenberg et al., Distinctive patterns of microRNA expression in primary muscular disorders. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 399-399.	3.3	1
352	Bone Mineral Density in Children With Neurofibromatosis Type 1. Journal of Pediatric Orthopaedics, 2008, 28, 791-792.	0.6	1
353	C.O.4 α-Actinin-3 regulates muscle glycogen phosphorylase: A potential mechanism for the metabolic consequences of the common human null allele of ACTN3. Neuromuscular Disorders, 2009, 19, 545-546.	0.3	1
354	C.P.1.05 RYR1 is a common cause of congenital fibre type disproportion with ptosis, ophthalmoplegia, scoliosis and pronounced axial muscle weakness. Neuromuscular Disorders, 2009, 19, 557.	0.3	1
355	S.P.55 Transition and outcomes for young men with Duchenne muscular dystrophy in New South Wales. Neuromuscular Disorders, 2012, 22, 885-886.	0.3	1
356	G.O.2. Neuromuscular Disorders, 2014, 24, 792-793.	0.3	1
357	G.P.35. Neuromuscular Disorders, 2014, 24, 805.	0.3	1
358	Reply: The p.Ser107Leu inBICD2is a mutation †hot spot' causing distal spinal muscular atrophy. Brain, 2015, 138, e392-e392.	3.7	1
359	Do titin developmental isoforms contribute to the pathogenesis of congenital titinopathy?. Neuromuscular Disorders, 2017, 27, S237-S238.	0.3	1
360	Generation of four iPSC lines from Neurofibromatosis Type 1 patients. Stem Cell Research, 2020, 49, 102013.	0.3	1

#	Article	IF	CITATIONS
361	ACTN3 Genotypes and Obesity-, Power- and Endurance-Related Phenotypes in Adolescent Greeks. Medicine and Science in Sports and Exercise, 2006, 38, S48-S49.	0.2	1
362	Actn3 Genotype Is Not Associated With Elite Endurance Athlete Status In Ethiopians And Kenyans. Medicine and Science in Sports and Exercise, 2005, 37, S472.	0.2	1
363	Psychological aspects of von Recklinghausen neurofibromatosis (NF1). Journal of Medical Genetics, 1996, 33, 806-806.	1.5	0
364	Genetics of neurocutaneous disorders. , 2004, , 6-23.		0
365	C.O.2 A clinical and pathological study of congenital fibre type disproportion. Neuromuscular Disorders, 2006, 16, 646.	0.3	Ο
366	P.I.5 Mutations in SIL1 cause Marinesco–Sjögren syndrome, a cerebellar ataxia with cataract and myopathy. Neuromuscular Disorders, 2006, 16, 683.	0.3	0
367	P.P.6 04 The clinical and molecular characterisation of calpain deficiency in patients with neuromuscular disorders. Neuromuscular Disorders, 2006, 16, 695.	0.3	Ο
368	C.I.3 Overview of congenital myopathies. Neuromuscular Disorders, 2007, 17, 832.	0.3	0
369	C.P.1.03 TPM3 is a recurrent cause of congenital fibre type disproportion and is associated with a consistent phenotype. Neuromuscular Disorders, 2007, 17, 834-835.	0.3	Ο
370	Developmental delay, expressive aphasia, hypotonia and dysmorphism in two brothers: an Xâ€ l inked mental retardation syndrome?. Clinical Genetics, 1998, 54, 443-445.	1.0	0
371	C.O.3 Mutations in contactin-1, a neuronal cell adhesion molecule expressed at the neuromuscular junction, cause a novel form of congenital lethal myopathy. Neuromuscular Disorders, 2008, 18, 726.	0.3	Ο
372	T.P.1.14 Interventions for increasing ankle flexibility in patients with neuromuscular disease: A Cochrane systematic review. Neuromuscular Disorders, 2008, 18, 743.	0.3	0
373	G.P.13.03 Mechanisms of rod formation in disease. Neuromuscular Disorders, 2008, 18, 807-808.	0.3	Ο
374	C.P.9.08 Insights into the pathological basis of autosomal dominant distal spinal muscular atrophy from a large Australian family. Neuromuscular Disorders, 2009, 19, 596-597.	0.3	0
375	P1.23 Muscle membrane repair proteins are upregulated in muscular dystrophy and localise to t-tubule membranes following mechanical stretch. Neuromuscular Disorders, 2010, 20, 607.	0.3	Ο
376	P1.41 Recurrent mutations in TPM3 likely arise from gene conversion events linked to multiple Tm5NM1 pseudogenes in the genome. Neuromuscular Disorders, 2010, 20, 613.	0.3	0
377	O.12 A new member of the BTB/Kelch family of proteins is mutated in nemaline myopathy type 6 (NEM6). Neuromuscular Disorders, 2010, 20, 638.	0.3	0
378	P5.63. RNAlater® simplifies the transport of muscle sections for mRNA analysis over long distances. Neuromuscular Disorders, 2011, 21, 743.	0.3	0

#	Article	IF	CITATIONS
379	P2.5 The identification of a viable outcome measure in the collagen VI myopathies promotes progress toward clinical trials. Neuromuscular Disorders, 2011, 21, 662.	0.3	Ο
380	P3.27 Childhood mitochondrial neuropathies: Clinical, electrophysiological and histopathological characteristics. Neuromuscular Disorders, 2011, 21, 690.	0.3	0
381	P3.37 New histopathlogical features in Centronuclear Myopathy caused by DNM2 mutations – clues to disease pathogenesis. Neuromuscular Disorders, 2011, 21, 693.	0.3	0
382	P3.51 A new form of autosomal recessive myopathy associated with male hypogonadism links to chromosome 11q. Neuromuscular Disorders, 2011, 21, 697-698.	0.3	0
383	Dominant Mutations in KBTBD13, a Member of the BTB/Kelch Family, Cause Nemaline Myopathy with Cores. American Journal of Human Genetics, 2011, 88, 122.	2.6	0
384	A procedure for the computerized analysis of cleft palate speech transcription. Clinical Linguistics and Phonetics, 2012, 26, 18-38.	0.5	0
385	G.P.46 Screening for deletion and duplication mutations in genes implicated in LGMD. Neuromuscular Disorders, 2012, 22, 833.	0.3	0
386	C.I.1 Gene Wars: Episode V. The clinician strikes back. Neuromuscular Disorders, 2012, 22, 838.	0.3	0
387	C.P.15 K7del is a recurrent TPM2 nemaline myopathy mutation associated with joint contractures and increased calcium sensitivity. Neuromuscular Disorders, 2012, 22, 845.	0.3	0
388	S.P.53 Interventions for increasing ankle flexibility in patients with neuromuscular disease: A Cochrane Systematic Review. Neuromuscular Disorders, 2012, 22, 885.	0.3	0
389	S.P.21 Clinical outcome measures in Collagen 6 (COL6) and Laminin α2(LAMA2) related congenital muscular dystrophy. Neuromuscular Disorders, 2012, 22, 893.	0.3	0
390	RARE MYOPATHIES AND EXPERIMENTAL APPROACHES - POSTER PRESENTATIONS G.P.125 ACTN3 genotype influences skeletal muscle performance through alterations in calcineurin signaling. Neuromuscular Disorders, 2012, 22, 904.	0.3	0
391	Corrigendum to "The Learning Disabilities Network (LeaDNet): Using Neurofibromatosis Type 1 [NF1] as a Paradigm for Translational Researchâ€: , 2013, 161, 236-236.		0
392	P.1.2 Natural history of pulmonary function in collagen VI-related myopathies: An international study. Neuromuscular Disorders, 2013, 23, 741-742.	0.3	0
393	P.10.21 Next-generation sequencing meets genetic diagnostics: Development of a comprehensive workflow for neuromuscular disorders. Neuromuscular Disorders, 2013, 23, 795.	0.3	0
394	O.10 Mutations in a new dynein/dynactin adaptor gene cause Dominant Congenital Spinal Muscular Atrophy (DCSMA) and Hereditary Spastic Paraplegia (HSP). Neuromuscular Disorders, 2013, 23, 798.	0.3	0
395	O.18 Systematic identification of causal mutations in Mendelian disorders using exome sequence data. Neuromuscular Disorders, 2013, 23, 850.	0.3	0
396	P.9.4. Neuromuscular Disorders, 2013, 23, 784.	0.3	0

#	Article	IF	CITATIONS
397	G.P.219. Neuromuscular Disorders, 2014, 24, 882-883.	0.3	Ο
398	G.P.271. Neuromuscular Disorders, 2014, 24, 898.	0.3	0
399	TREAT-NMD (translational research in Europe, assessment and treatment for neuromuscular) Tj ETQq1 1 0.78431	.4 rgBT	/Overlock 10 Tf
400	Associate Professor Nigel Clarke PhD, MBChB, FRACP (1966–2015). Neuromuscular Disorders, 2015, 25, 977-978.	0.3	0
401	A gene for speed: The influence of ACTN3 on muscle performance in health and disease. Neuromuscular Disorders, 2015, 25, S185.	0.3	Ο
402	Mutated HSPB8 causes both neurogenic and myopathic disease with muscle proteinopathy. Neuromuscular Disorders, 2015, 25, S256.	0.3	0
403	Analysis of a large international cohort confirms that recessively inherited loss-of-function TTN mutations cause prenatal or infant-onset muscle disease, often complicated by early cardiorespiratory involvement. Neuromuscular Disorders, 2016, 26, S89.	0.3	Ο
404	Clinical characterisation of a large international congenital titinopathy cohort. Neuromuscular Disorders, 2017, 27, S37.	0.3	0
405	LATE BREAKING NEWS E-POSTER PRESENTATION. Neuromuscular Disorders, 2020, 30, S170.	0.3	ο
406	Isolated Extensor Digitorum Longus Muscles from Old mdx Dystrophic Mice Show Little Force Recovery 120 Minutes after Eccentric Damage. Biophysical Journal, 2020, 118, 121a.	0.2	0
407	Spinal Muscular Atrophy. , 2003, , 553-557.		Ο
408	An α-actinin-3 Knockout Mouse Suffers Increased Sarcomeric Damage from Eccentric Exercise. Medicine and Science in Sports and Exercise, 2006, 38, S123-S124.	0.2	0
409	Children with Neurofi bromatosis Type 1: Positron Emission Tomography. Pediatric Cancer, 2012, , 99-105.	0.0	О
410	Muscle diseases. , 1984, , 194-204.		0
411	αâ€actininâ€3 deficiency is associated with increased exercise performance and trainingâ€induced changes in mitochondrial respiration in humans. FASEB Journal, 2015, 29, 677.27.	0.2	ο
412	A randomized controlled trial of remote microphone listening devices to treat auditory deficits in children with neurofibromatosis type 1. Neurological Sciences, 0, , .	0.9	0