
Nina E Fatouros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7583819/publications.pdf Version: 2024-02-01

NINA E FATOUROS

#	Article	IF	CITATIONS
1	Plant Responses to Insect Egg Deposition. Annual Review of Entomology, 2015, 60, 493-515.	11.8	265
2	Bacterial Symbionts in Lepidoptera: Their Diversity, Transmission, and Impact on the Host. Frontiers in Microbiology, 2018, 9, 556.	3.5	243
3	Foraging behavior of egg parasitoids exploiting chemical information. Behavioral Ecology, 2008, 19, 677-689.	2.2	237
4	Plant Volatiles Induced by Herbivore Egg Deposition Affect Insects of Different Trophic Levels. PLoS ONE, 2012, 7, e43607.	2.5	152
5	Male-derived butterfly anti-aphrodisiac mediates induced indirect plant defense. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10033-10038.	7.1	109
6	Ovipositionâ€induced plant cues: do they arrest Trichogramma wasps during host location?. Entomologia Experimentalis Et Applicata, 2005, 115, 207-215.	1.4	108
7	Butterfly anti-aphrodisiac lures parasitic wasps. Nature, 2005, 433, 704-704.	27.8	93
8	Herbivore-Induced Plant Volatiles Mediate In-Flight Host Discrimination by Parasitoids. Journal of Chemical Ecology, 2005, 31, 2033-2047.	1.8	88
9	Resisting the onset of herbivore attack: plants perceive and respond to insect eggs. Current Opinion in Plant Biology, 2016, 32, 9-16.	7.1	83
10	Nextâ€generation biological control: the need for integrating genetics and genomics. Biological Reviews, 2020, 95, 1838-1854.	10.4	67
11	Phenotypic plasticity of plant response to herbivore eggs: effects on resistance to caterpillars and plant development. Ecology, 2013, 94, 702-713.	3.2	66
12	Hitch-hiking parasitic wasp learns to exploit butterfly antiaphrodisiac. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 820-825.	7.1	56
13	Chemical espionage on species-specific butterfly anti-aphrodisiacs by hitchhiking Trichogramma wasps. Behavioral Ecology, 2010, 21, 470-478.	2.2	55
14	Symbiotic polydnavirus and venom reveal parasitoid to its hyperparasitoids. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5205-5210.	7.1	54
15	Insect Egg Deposition Induces Indirect Defense and Epicuticular Wax Changes in Arabidopsis thaliana. Journal of Chemical Ecology, 2012, 38, 882-892.	1.8	52
16	Synergistic effects of direct and indirect defences on herbivore egg survival in a wild crucifer. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141254.	2.6	52
17	Volatile-mediated foraging behaviour of three parasitoid species under conditions of dual insect herbivore attack. Animal Behaviour, 2016, 111, 197-206.	1.9	50
18	Anti-aphrodisiac Compounds of Male Butterflies Increase the Risk of Egg Parasitoid Attack by Inducing Plant Synomone Production. Journal of Chemical Ecology, 2009, 35, 1373-1381.	1.8	48

Nina E Fatouros

#	Article	IF	CITATIONS
19	Early herbivore alert matters: plantâ€mediated effects of egg deposition on higher trophic levels benefit plant fitness. Ecology Letters, 2015, 18, 927-936.	6.4	45
20	Attraction of egg-killing parasitoids toward induced plant volatiles in a multi-herbivore context. Oecologia, 2015, 179, 163-174.	2.0	45
21	Reward Value Determines Memory Consolidation in Parasitic Wasps. PLoS ONE, 2012, 7, e39615.	2.5	44
22	Prospects of herbivore eggâ€killing plant defenses for sustainable crop protection. Ecology and Evolution, 2016, 6, 6906-6918.	1.9	38
23	Plantâ€mediated effects of butterfly egg deposition on subsequent caterpillar and pupal development, across different species of wild Brassicaceae. Ecological Entomology, 2015, 40, 444-450.	2.2	36
24	The Response Specificity of Trichogramma Egg Parasitoids towards Infochemicals during Host Location. Journal of Insect Behavior, 2007, 20, 53-65.	0.7	35
25	Plant volatiles induced by herbivore eggs prime defences and mediate shifts in the reproductive strategy of receiving plants. Ecology Letters, 2020, 23, 1097-1106.	6.4	34
26	Phoresy in the field: natural occurrence of Trichogramma egg parasitoids on butterflies and moths. BioControl, 2012, 57, 493-502.	2.0	31
27	The use of ovipositionâ€induced plant cues by <i>Trichogramma</i> egg parasitoids. Ecological Entomology, 2010, 35, 748-753.	2.2	30
28	Plant response to butterfly eggs: inducibility, severity and success of egg-killing leaf necrosis depends on plant genotype and egg clustering. Scientific Reports, 2017, 7, 7316.	3.3	30
29	The importance of specialist natural enemies for Chrysomela lapponica in pioneering a new host plant. Ecological Entomology, 2004, 29, 584-593.	2.2	29
30	To be in time: egg deposition enhances plant-mediated detection of young caterpillars by parasitoids. Oecologia, 2015, 177, 477-486.	2.0	29
31	The significance of bottom-up effects for host plant specialization inChrysomelaleaf beetles. Oikos, 2004, 105, 368-376.	2.7	27
32	Insect eggâ€killing: a new front on the evolutionary armsâ€race between brassicaceous plants and pierid butterflies. New Phytologist, 2021, 230, 341-353.	7.3	27
33	Plant responses to butterfly oviposition partly explain preference–performance relationships on different brassicaceous species. Oecologia, 2020, 192, 463-475.	2.0	23
34	Role of Large Cabbage White butterfly male-derived compounds in elicitation of direct and indirect egg-killing defenses in the black mustard. Frontiers in Plant Science, 2015, 6, 794.	3.6	20
35	Priming by Timing: Arabidopsis thaliana Adjusts Its Priming Response to Lepidoptera Eggs to the Time of Larval Hatching. Frontiers in Plant Science, 2020, 11, 619589.	3.6	20
36	Plant responses to insect eggs are not induced by eggâ€associated microbes, but by a secretion attached to the eggs. Plant, Cell and Environment, 2020, 43, 1815-1826.	5.7	20

NINA E FATOUROS

#	Article	IF	CITATIONS
37	How to escape from insect egg parasitoids: a review of potential factors explaining parasitoid absence across the Insecta. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200344.	2.6	19
38	Microbial symbionts of herbivorous species across the insect tree. Advances in Insect Physiology, 2020, , 111-159.	2.7	19
39	Legacy of a Butterfly's Parental Microbiome in Offspring Performance. Applied and Environmental Microbiology, 2020, 86, .	3.1	14
40	Reproductive isolation between populations from Northern and Central Europe of the leaf beetle Chrysomela lapponica L Chemoecology, 2006, 16, 241-251.	1.1	11
41	The effect of rearing history and aphid density on volatileâ€mediated foraging behaviour of <i>Diaeretiella rapae</i> . Ecological Entomology, 2019, 44, 255-264.	2.2	7
42	Genetic analysis reveals three novel QTLs underpinning a butterfly egg-induced hypersensitive response-like cell death in Brassica rapa. BMC Plant Biology, 2022, 22, 140.	3.6	7
43	The role of competitors for Chrysomela lapponica, a north Eurasian willow pest, in pioneering a new host plant. Journal of Pest Science, 2007, 80, 139-143.	3.7	5
44	Attraction of Trichogramma Wasps to Butterfly Oviposition-Induced Plant Volatiles Depends on Brassica Species, Wasp Strain and Leaf Necrosis. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	5
45	<i>Ooencyrtus marcelloi</i> sp. nov. (Hymenoptera: Encyrtidae), an egg parasitoid of Heliconiini (Lepidoptera: Nymphalidae: Heliconiinae) on passion vines (Malpighiales: Passifloraceae) in Central America. Journal of Natural History, 2009, 44, 81-87.	0.5	3
46	Description and biology of two new egg parasitoid species (Hymenoptera: Trichogrammatidae) reared from eggs of Heliconiini butterflies (Lepidoptera: Nymphalidae: Heliconiinae) in Panama. Journal of Natural History, 2019, 53, 639-657.	0.5	1