Stefania Merighi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7583000/publications.pdf

Version: 2024-02-01

47006 60623 7,899 123 47 81 citations h-index g-index papers 127 127 127 6237 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Pharmacology of Adenosine Receptors: The State of the Art. Physiological Reviews, 2018, 98, 1591-1625.	28.8	495
2	A glance at adenosine receptors: novel target for antitumor therapy., 2003, 100, 31-48.		440
3	A ₃ Adenosine Receptors in Human Neutrophils and Promyelocytic HL60 Cells: A Pharmacological and Biochemical Study. Molecular Pharmacology, 2002, 61, 415-424.	2.3	375
4	Design, Synthesis, and Biological Evaluation of New 8-Heterocyclic Xanthine Derivatives as Highly Potent and Selective Human A2BAdenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2004, 47, 1434-1447.	6.4	359
5	Pyrazolotriazolopyrimidine derivatives sensitize melanoma cells to the chemotherapic drugs: taxol and vindesine. Biochemical Pharmacology, 2003, 66, 739-748.	4.4	281
6	Adenosine as a Multi-Signalling Guardian Angel in Human Diseases: When, Where and How Does it Exert its Protective Effects?. Trends in Pharmacological Sciences, 2016, 37, 419-434.	8.7	238
7	The A ₃ Adenosine Receptor: History and Perspectives. Pharmacological Reviews, 2015, 67, 74-102.	16.0	204
8	The A3 adenosine receptor: An enigmatic player in cell biology. , 2008, 117, 123-140.		197
9	Adenosine receptors and cancer. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1400-1412.	2.6	186
10	Caffeine Inhibits Adenosine-Induced Accumulation of Hypoxia-Inducible Factor-1α, Vascular Endothelial Growth Factor, and Interleukin-8 Expression in Hypoxic Human Colon Cancer Cells. Molecular Pharmacology, 2007, 72, 395-406.	2.3	149
11	A2A adenosine receptors in human peripheral blood cells. British Journal of Pharmacology, 2000, 129, 2-11.	5.4	145
12	Adenosine Receptors as Mediators of Both Cell Proliferation and Cell Death of Cultured Human Melanoma Cells. Journal of Investigative Dermatology, 2002, 119, 923-933.	0.7	134
13	A3 Adenosine Receptor Ligands: History and Perspectives. , 2000, 20, 103-128.		130
14	Effect of low frequency electromagnetic fields on A2A adenosine receptors in human neutrophils. British Journal of Pharmacology, 2002, 136, 57-66.	5.4	119
15	A ₃ Adenosine Receptors as Modulators of Inflammation: From Medicinal Chemistry to Therapy. Medicinal Research Reviews, 2018, 38, 1031-1072.	10.5	111
16	Adenosine modulates vascular endothelial growth factor expression via hypoxia-inducible factor-1 in human glioblastoma cells. Biochemical Pharmacology, 2006, 72, 19-31.	4.4	110
17	Characterization of adenosine receptors in bovine chondrocytes and fibroblast-like synoviocytes exposed to low frequency low energy pulsed electromagnetic fields. Osteoarthritis and Cartilage, 2008, 16, 292-304.	1.3	110
18	Pharmacological and biochemical characterization of adenosine receptors in the human malignant melanoma A375 cell line. British Journal of Pharmacology, 2001, 134, 1215-1226.	5.4	107

#	Article	IF	CITATIONS
19	Adenosine receptors in colon carcinoma tissues and colon tumoral cell lines: Focus on the A3 adenosine subtype. Journal of Cellular Physiology, 2007, 211, 826-836.	4.1	107
20	A3 Adenosine Receptor Activation Inhibits Cell Proliferation via Phosphatidylinositol 3-Kinase/Akt-dependent Inhibition of the Extracellular Signal-regulated Kinase 1/2 Phosphorylation in A375 Human Melanoma Cells. Journal of Biological Chemistry, 2005, 280, 19516-19526.	3.4	106
21	Pulsed Electromagnetic Fields Increased the Anti-Inflammatory Effect of A2A and A3 Adenosine Receptors in Human T/C-28a2 Chondrocytes and hFOB 1.19 Osteoblasts. PLoS ONE, 2013, 8, e65561.	2.5	106
22	Dose and Time Effects of Caffeine Intake on Human Platelet Adenosine A _{2A} Receptors. Circulation, 2000, 102, 285-289.	1.6	104
23	Caffeine Alters A _{2A} Adenosine Receptors and Their Function in Human Platelets. Circulation, 1999, 99, 2499-2502.	1.6	102
24	Pharmacological and biochemical characterization of A3 adenosine receptors in Jurkat T cells. British Journal of Pharmacology, 2001, 134, 116-126.	5.4	100
25	Medicinal Chemistry, Pharmacology, and Clinical Implications of TRPV1 Receptor Antagonists. Medicinal Research Reviews, 2017, 37, 936-983.	10.5	99
26	Morphine mediates a proinflammatory phenotype via μ-opioid receptor–PKCÉ>–Akt–ERK1/2 signaling pathway in activated microglial cells. Biochemical Pharmacology, 2013, 86, 487-496.	4.4	98
27	Pathological overproduction: the bad side of adenosine. British Journal of Pharmacology, 2017, 174, 1945-1960.	5.4	94
28	Pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine Derivatives as Highly Potent and Selective Human A3Adenosine Receptor Antagonists: A Influence of the Chain at the N8Pyrazole Nitrogen. Journal of Medicinal Chemistry, 2000, 43, 4768-4780.	6.4	89
29	Expression of A3Adenosine Receptors in Human Lymphocytes: Up-Regulation in T Cell Activation. Molecular Pharmacology, 2004, 65, 711-719.	2.3	86
30	Pyrazolo [4,3-e]-1,2,4-triazolo [1,5-c] pyrimidine Derivatives as Highly Potent and Selective Human A3Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 1999, 42, 4473-4478.	6.4	80
31	Temporal Mapping of Transcripts in Herpesvirus 6 Variants. Journal of Virology, 1998, 72, 3837-3844.	3.4	80
32	A3 Adenosine Receptors Modulate Hypoxia-inducible Factor-1a Expression in Human A375 Melanoma Cells. Neoplasia, 2005, 7, 894-903.	5.3	77
33	Hypoxia Inhibits Paclitaxel-Induced Apoptosis through Adenosine-Mediated Phosphorylation of Bad in Glioblastoma Cells. Molecular Pharmacology, 2007, 72, 162-172.	2.3	74
34	Adenosine receptor targeting in health and disease. Expert Opinion on Investigational Drugs, 2011, 20, 1591-1609.	4.1	74
35	The activation of μâ€opioid receptor potentiates LPSâ€induced NFâ€kB promoting an inflammatory phenotype in microglia. FEBS Letters, 2016, 590, 2813-2826.	2.8	74
36	Adenosine and lymphocyte regulation. Purinergic Signalling, 2007, 3, 109-116.	2.2	71

3

#	Article	IF	CITATIONS
37	Adenosine Modulates HIF-1α, VEGF, IL-8, and Foam Cell Formation in a Human Model of Hypoxic Foam Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 90-97.	2.4	71
38	Design, Synthesis, and Biological Evaluation of C9- and C2-Substituted Pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines as New A2Aand A3Adenosine Receptors Antagonists. Journal of Medicinal Chemistry, 2003, 46, 1229-1241.	6.4	70
39	Adenosine Receptors in Health and Disease. Advances in Pharmacology, 2011, 61, 41-75.	2.0	70
40	Cannabinoid CB ₂ receptor attenuates morphineâ€induced inflammatory responses in activated microglial cells. British Journal of Pharmacology, 2012, 166, 2371-2385.	5.4	69
41	The Role of Adenosine Receptors in Psychostimulant Addiction. Frontiers in Pharmacology, 2017, 8, 985.	3.5	68
42	A2B and A3 Adenosine Receptors Modulate Vascular Endothelial Growth Factor and Interleukin-8 Expression in Human Melanoma Cells Treated with Etoposide and Doxorubicin. Neoplasia, 2009, 11, 1064-1073.	5.3	66
43	Modulation of metalloproteinase-9 in U87MG glioblastoma cells by A3 adenosine receptors. Biochemical Pharmacology, 2010, 79, 1483-1495.	4.4	63
44	Adenosine Receptors as a Biological Pathway for the Anti-Inflammatory and Beneficial Effects of Low Frequency Low Energy Pulsed Electromagnetic Fields. Mediators of Inflammation, 2017, 2017, 1-11.	3.0	63
45	TRR469, a potent A1 adenosine receptor allosteric modulator, exhibits anti-nociceptive properties in acute and neuropathic pain models in mice. Neuropharmacology, 2014, 81, 6-14.	4.1	59
46	Expression, Pharmacological Profile, and Functional Coupling of A2B Receptors in a Recombinant System and in Peripheral Blood Cells Using a Novel Selective Antagonist Radioligand, [3H]MRE 2029-F20. Molecular Pharmacology, 2005, 67, 2137-2147.	2.3	58
47	A 2B adenosine receptors stimulate IL-6 production in primary murine microglia through p38 MAPK kinase pathway. Pharmacological Research, 2017, 117, 9-19.	7.1	57
48	Antinociceptive effects of the selective CB2 agonist MT178 in inflammatory and chronic rodent pain models. Pain, 2013, 154, 864-873.	4.2	56
49	Pulsed Electromagnetic Field Exposure Reduces Hypoxia and Inflammation Damage in Neuronâ€Like and Microglial Cells. Journal of Cellular Physiology, 2017, 232, 1200-1208.	4.1	55
50	Pharmacological characterization of novel adenosine ligands in recombinant and native human A2B receptors. Biochemical Pharmacology, 2005, 70, 1601-1612.	4.4	53
51	Synthesis and Biological Effects of Novel 2-Amino-3-naphthoylthiophenes as Allosteric Enhancers of the A1Adenosine Receptor. Journal of Medicinal Chemistry, 2003, 46, 794-809.	6.4	48
52	Inhibition of A2A Adenosine Receptor Signaling in Cancer Cells Proliferation by the Novel Antagonist TP455. Frontiers in Pharmacology, 2017, 8, 888.	3.5	48
53	Role and Function of A2A and A3 Adenosine Receptors in Patients with Ankylosing Spondylitis, Psoriatic Arthritis and Rheumatoid Arthritis. International Journal of Molecular Sciences, 2017, 18, 697.	4.1	46
54	New Pyrrolo[2,1-f]purine-2,4-dione and Imidazo[2,1-f]purine-2,4-dione Derivatives as Potent and Selective Human A3Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2005, 48, 4697-4701.	6.4	45

#	Article	IF	Citations
55	Multiple sclerosis lymphocytes upregulate <scp>A</scp> _{2A} adenosine receptors that are antiinflammatory when stimulated. European Journal of Immunology, 2013, 43, 2206-2216.	2.9	45
56	A1 and A3 adenosine receptors inhibit LPS-induced hypoxia-inducible factor-1 accumulation in murine astrocytes. Pharmacological Research, 2013, 76, 157-170.	7.1	44
57	A2A Adenosine Receptors Are Differentially Modulated by Pharmacological Treatments in Rheumatoid Arthritis Patients and Their Stimulation Ameliorates Adjuvant-Induced Arthritis in Rats. PLoS ONE, 2013, 8, e54195.	2.5	43
58	Allosteric Enhancers of A1 Adenosine Receptors: State of the Art and New Horizons for Drug Development. Current Medicinal Chemistry, 2010, 17, 3488-3502.	2.4	41
59	Biochemical and Pharmacological Role of A1 Adenosine Receptors and Their Modulation as Novel Therapeutic Strategy. Advances in Experimental Medicine and Biology, 2017, 1051, 193-232.	1.6	40
60	Pharmacological characterization of P2X1 and P2X3 purinergic receptors in bovine chondrocytes. Osteoarthritis and Cartilage, 2008, 16, 1421-1429.	1.3	39
61	The Anti-Tumor Effect of A3 Adenosine Receptors Is Potentiated by Pulsed Electromagnetic Fields in Cultured Neural Cancer Cells. PLoS ONE, 2012, 7, e39317.	2.5	39
62	A _{2a} and a _{2b} adenosine receptors affect HIF‶α signaling in activated primary microglial cells. Glia, 2015, 63, 1933-1952.	4.9	39
63	Nociceptin receptor binding in mouse forebrain membranes: thermodynamic characteristics and structure activity relationships. British Journal of Pharmacology, 1998, 125, 1485-1490.	5.4	37
64	Adenosine receptors and diabetes: Focus on the A2B adenosine receptor subtype. Pharmacological Research, 2015, 99, 229-236.	7.1	36
65	[3H]-MRE 2029-F20, a selective antagonist radioligand for the human A2B adenosine receptors. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 3607-3610.	2.2	35
66	Pyrazolo[4,3-e]1,2,4-Triazolo[1,5-c]Pyrimidine Ligands, New Tools to Characterize A3 Adenosine Receptors in Human Tumor Cell Lines. Current Medicinal Chemistry, 2005, 12, 1319-1329.	2.4	35
67	Hydrogen sulfide modulates the release of nitric oxide and VEGF in human keratinocytes. Pharmacological Research, 2012, 66, 428-436.	7.1	35
68	Positive allosteric modulation of A1 adenosine receptors as a novel and promising therapeutic strategy for anxiety. Neuropharmacology, 2016, 111, 283-292.	4.1	33
69	Targeting A3 and A2A adenosine receptors in the fight against cancer. Expert Opinion on Therapeutic Targets, 2019, 23, 669-678.	3.4	32
70	Synthesis and activity of 3-pyridylamine ligands at central nicotinic receptors. European Journal of Medicinal Chemistry, 2000, 35, 979-988.	5 . 5	31
71	Modulation of the Akt/Ras/Raf/MEK/ERK pathway by A3 adenosine receptor. Purinergic Signalling, 2006, 2, 627-632.	2.2	30
72	Alteration of A3 adenosine receptors in human neutrophils and low frequency electromagnetic fields. Biochemical Pharmacology, 2003, 66, 1897-1906.	4.4	28

#	Article	IF	CITATIONS
73	Recent developments in the field of A3 adenosine receptor antagonists. Drug Development Research, 2003, 58, 315-329.	2.9	28
74	Glucocorticoids Pharmacology: Past, Present and Future. Current Pharmaceutical Design, 2010, 16, 3540-3553.	1.9	26
75	Cytokine Profiling in Myeloproliferative Neoplasms: Overview on Phenotype Correlation, Outcome Prediction, and Role of Genetic Variants. Cells, 2020, 9, 2136.	4.1	26
76	Binding thermodynamics at the human A3 adenosine receptor. Biochemical Pharmacology, 2002, 63, 157-161.	4.4	25
77	Pulsed electromagnetic field and relief of hypoxiaâ€induced neuronal cell death: The signaling pathway. Journal of Cellular Physiology, 2019, 234, 15089-15097.	4.1	25
78	Synthesis and preliminary biological evaluation of [3H]-MRE 3008-F20: the first high affinity radioligand antagonist for the human A3 adenosine receptors. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 209-211.	2.2	22
79	Binding thermodynamics at the human cannabinoid CB1 and CB2 receptors. Biochemical Pharmacology, 2010, 79, 471-477.	4.4	22
80	Pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine derivatives as adenosine receptor ligands: A starting point for searching A2B adenosine receptor antagonists. Drug Development Research, 2001, 53, 225-235.	2.9	21
81	Upregulation of Cortical A2A Adenosine Receptors Is Reflected in Platelets of Patients with Alzheimer's Disease. Journal of Alzheimer's Disease, 2021, 80, 1105-1117.	2.6	21
82	Therapeutic Potential of Allicin and Aged Garlic Extract in Alzheimer's Disease. International Journal of Molecular Sciences, 2022, 23, 6950.	4.1	21
83	Receptor Binding Thermodynamics at the Neuronal Nicotinic Receptor. Current Topics in Medicinal Chemistry, 2004, 4, 361-368.	2.1	20
84	Adenosine Receptors in Neuropsychiatric Disorders: Fine Regulators of Neurotransmission and Potential Therapeutic Targets. International Journal of Molecular Sciences, 2022, 23, 1219.	4.1	20
85	A _{2A} Adenosine Receptor Antagonists in Neurodegenerative Diseases. Current Medicinal Chemistry, 2022, 29, 4138-4151.	2.4	18
86	Thermodynamics of A2B adenosine receptor binding discriminates agonistic from antagonistic behaviour. Biochemical Pharmacology, 2008, 75, 562-569.	4.4	17
87	PKCÎμ as a novel promoter of skeletal muscle differentiation and regeneration. Experimental Cell Research, 2015, 339, 10-19.	2.6	17
88	Pathophysiological Role and Medicinal Chemistry of A2A Adenosine Receptor Antagonists in Alzheimer's Disease. Molecules, 2022, 27, 2680.	3.8	17
89	Effects of two-carbon bridge region methoxylation of benztropine: discovery of novel chiral ligands for the dopamine transporter. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 823-827.	2.2	15
90	Synthesis, molecular modeling and SAR study of novel pyrazolo[5,1-f][1,6]naphthyridines as CB 2 receptor antagonists/inverse agonists. Bioorganic and Medicinal Chemistry, 2016, 24, 5291-5301.	3.0	15

#	Article	IF	Citations
91	An Open Question: Is the A2A Adenosine Receptor a Novel Target for Alzheimer's Disease Treatment?. Frontiers in Pharmacology, 2021, 12, 652455.	3.5	15
92	Alzheimer and Purinergic Signaling: Just a Matter of Inflammation?. Cells, 2021, 10, 1267.	4.1	15
93	A2A Adenosine Receptor as a Potential Biomarker and a Possible Therapeutic Target in Alzheimer's Disease. Cells, 2021, 10, 2344.	4.1	15
94	Deregulation of Adenosine Receptors in Psoriatic Epidermis: An Option for Therapeutic Treatment. Journal of Investigative Dermatology, 2017, 137, 11-13.	0.7	12
95	The Detrimental Action of Adenosine on Glutamate-Induced Cytotoxicity in PC12 Cells Can Be Shifted towards a Neuroprotective Role through A1AR Positive Allosteric Modulation. Cells, 2020, 9, 1242.	4.1	12
96	Water-Soluble Pyrazolo $[4,3-\langle i\rangle e < i\rangle][1,2,4]$ triazolo $[1,5-\langle i\rangle c < i\rangle]$ pyrimidines as Human A $<$ sub $>3<$ sub >4 sub Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2012, 55, 5380-5390.	6.4	11
97	Adenosine Receptors: Structure, Distribution, and Signal Transduction., 2018,, 33-57.		11
98	Pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine derivatives: A new pharmacological tool for the characterization of the human A3 adenosine receptor. Drug Development Research, 2001, 52, 406-415.	2.9	10
99	Adenosine receptors and human melanoma. Drug Development Research, 2003, 58, 377-385.	2.9	10
100	Synthesis and Pharmacology of 6-Substituted Benztropines:Â Discovery of Novel Dopamine Uptake Inhibitors Possessing Low Binding Affinity to the Dopamine Transporter. Journal of Medicinal Chemistry, 2005, 48, 3337-3343.	6.4	10
101	Signaling pathways involved in anti-inflammatory effects of Pulsed Electromagnetic Field in microglial cells. Cytokine, 2020, 125, 154777.	3.2	10
102	Antioxidant and Antiinflammatory Effects of Epilobium parviflorum, Melilotus officinalis and Cardiospermum halicacabum Plant Extracts in Macrophage and Microglial Cells. Cells, 2021, 10, 2691.	4.1	10
103	Binding thermodynamic characterization of human P2X1 and P2X3 purinergic receptors. Biochemical Pharmacology, 2008, 75, 1198-1208.	4.4	9
104	Downregulation of A1 and A2B adenosine receptors in human trisomy 21 mesenchymal cells from first-trimester chorionic villi. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1660-1670.	3.8	9
105	A2A Adenosine Receptor: A Possible Therapeutic Target for Alzheimer's Disease by Regulating NLRP3 Inflammasome Activity?. International Journal of Molecular Sciences, 2022, 23, 5056.	4.1	9
106	Targeting adenosine receptors to prevent inflammatory skin diseases. Experimental Dermatology, 2014, 23, 553-554.	2.9	8
107	A1 Adenosine Receptor Partial Agonists and Allosteric Modulators: Advancing Toward the Clinic?. Frontiers in Pharmacology, 2020, 11, 625134.	3.5	8
108	Adenosine Receptors and Current Opportunities to Treat Cancer., 2018, , 543-555.		7

#	Article	IF	CITATIONS
109	Adenosinergic System Involvement in Ischemic Stroke Patients' Lymphocytes. Cells, 2020, 9, 1072.	4.1	7
110	Novel selective antagonist radioligands for the pharmacological study of A2B adenosine receptors. Purinergic Signalling, 2006, 2, 583-588.	2.2	6
111	Synthesis and Biological Evaluation of Pyrazolo [3,4- <i>b</i>] pyridin-4-ones as a New Class of Topoisomerase II Inhibitors. Medicinal Chemistry, 2015, 11, 342-353.	1.5	6
112	Adenosine A2A receptors of human circulating blood elements. Drug Development Research, 1998, 45, 253-260.	2.9	5
113	Regulation of Second Messenger Systems and Intracellular Pathways. , 2010, , 61-73.		5
114	Synthesis and Biological Evaluation of Allosteric A1-Adenosine Receptor Modulators Structurally Related to (2-Amino-4,5,6,7-Tetrahydro-Benzo[B]Thiophen-3-YL)-(4-Chloro-Phenyl)-Methanone, a Potent Compound Useful to Reduce Neuropathic Pain. Medicinal Chemistry Research, 2005, 14, 125-142.	2.4	4
115	Synthesis and biological activity of a novel class nicotinic acetylcholine receptors (nAChRs) ligands structurally related to anatoxin-a. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5423-5427.	2.2	4
116	Agonists and Antagonists: Molecular Mechanisms and Therapeutic Applications. , 2010, , 301-317.		3
117	Adenosine Receptors: The Status of the Art. , 2018, , 1-11.		2
118	Synthesis, Pharmacological Evaluation, and Docking Studies of Novel Pyridazinoneâ€Based Cannabinoid Receptor Typeâ€2 Ligands. ChemMedChem, 2018, 13, 1102-1114.	3.2	1
119	Synthesis, biological evaluation and docking studies of a novel class of sulfur-bridged diazabicyclo[3.3.1]nonanes. Bioorganic Chemistry, 2020, 102, 104072.	4.1	1
120	Biological Effects on $\hat{l}^{1}\!\!/\!\!4$ -Receptors Affinity and Selectivity of Arylpropenyl Chain Structural Modification on Diazatricyclodecane Derivatives. Molecules, 2021, 26, 5448.	3.8	1
121	Synthesis and Binding of 3-Aminopyridine Derivatives at Central Nicotinic Receptors. Arzneimittelforschung, 2000, 50, 507-511.	0.4	0
122	Thermodynamic Analysis in Drug–Receptor Binding: The A3 Adenosine Receptor. , 2010, , 29-48.		0
123	Potentiating Cancer Immune Therapy via Nanomaterials and Purinergic Signaling. Frontiers in Cell and Developmental Biology, 2022, 10, .	3.7	0