
Meenhard Herlyn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7582703/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting SOX10-deficient cells to reduce the dormant-invasive phenotype state in melanoma. Nature Communications, 2022, 13, 1381.	12.8	31
2	NUMB as a Therapeutic Target for Melanoma. Journal of Investigative Dermatology, 2022, 142, 1882-1892.e5.	0.7	5
3	PDXNet portal: patient-derived Xenograft model, data, workflow and tool discovery. NAR Cancer, 2022, 4, zcac014.	3.1	7
4	Persister state-directed transitioning and vulnerability in melanoma. Nature Communications, 2022, 13,	12.8	20
5	Stromal changes in the aged lung induce an emergence from melanoma dormancy. Nature, 2022, 606, 396-405.	27.8	67
6	HRS phosphorylation drives immunosuppressive exosome secretion and restricts CD8+ T-cell infiltration into tumors. Nature Communications, 2022, 13, .	12.8	23
7	ARID2 Deficiency Correlates with the Response to Immune Checkpoint Blockade in Melanoma. Journal of Investigative Dermatology, 2021, 141, 1564-1572.e4.	0.7	20
8	Tumor-infiltrating mast cells are associated with resistance to anti-PD-1 therapy. Nature Communications, 2021, 12, 346.	12.8	107
9	Conservation of copy number profiles during engraftment and passaging of patient-derived cancer xenografts. Nature Genetics, 2021, 53, 86-99.	21.4	118
10	Inhibition of endothelin-B receptor signaling synergizes with MAPK pathway inhibitors in BRAF mutated melanoma. Oncogene, 2021, 40, 1659-1673.	5.9	8
11	The State of Melanoma: Emergent Challenges and Opportunities. Clinical Cancer Research, 2021, 27, 2678-2697.	7.0	53
12	Exploiting Allosteric Properties of RAF and MEK Inhibitors to Target Therapy-Resistant Tumors Driven by Oncogenic BRAF Signaling. Cancer Discovery, 2021, 11, 1716-1735.	9.4	30
13	Melanoma models for the next generation of therapies. Cancer Cell, 2021, 39, 610-631.	16.8	90
14	Evolution of delayed resistance to immunotherapy in a melanoma responder. Nature Medicine, 2021, 27, 985-992.	30.7	67
15	Targeting mTOR signaling overcomes acquired resistance to combined BRAF and MEK inhibition in BRAF-mutant melanoma. Oncogene, 2021, 40, 5590-5599.	5.9	33
16	Neural Crest-Like Stem Cell Transcriptome Analysis Identifies LPAR1 in Melanoma Progression and Therapy Resistance. Cancer Research, 2021, 81, 5230-5241.	0.9	9
17	Comprehensive characterization of 536 patient-derived xenograft models prioritizes candidates for targeted treatment. Nature Communications, 2021, 12, 5086.	12.8	58
18	A Modified Nucleoside 6-Thio-2′-Deoxyguanosine Exhibits Antitumor Activity in Gliomas. Clinical Cancer Research, 2021, 27, 6800-6814.	7.0	10

#	Article	IF	CITATIONS
19	Production of Humanized Mouse via Thymic Renal Capsule Grafting, CD34 ⁺ Cells Injection, and Cytokine Delivery. Journal of Visualized Experiments, 2021, , .	0.3	0
20	TRIM15 and CYLD regulate ERK activation via lysine-63-linked polyubiquitination. Nature Cell Biology, 2021, 23, 978-991.	10.3	29
21	Pathway signatures derived from on-treatment tumor specimens predict response to anti-PD1 blockade in metastatic melanoma. Nature Communications, 2021, 12, 6023.	12.8	21
22	Costimulation of γÎTCR and TLR7/8 promotes VÎ′2 T-cell antitumor activity by modulating mTOR pathway and APC function. , 2021, 9, e003339.		14
23	Paradoxical Role for Wild-Type p53 in Driving Therapy Resistance in Melanoma. Molecular Cell, 2020, 77, 633-644.e5.	9.7	45
24	Nongenetic Mechanisms of Drug Resistance in Melanoma. Annual Review of Cancer Biology, 2020, 4, 315-330.	4.5	18
25	Inhibiting insulin and mTOR signaling by afatinib and crizotinib combination fosters broad cytotoxic effects in cutaneous malignant melanoma. Cell Death and Disease, 2020, 11, 882.	6.3	10
26	Targeting Extracellular Matrix Remodeling Restores BRAF Inhibitor Sensitivity in BRAFi-resistant Melanoma. Clinical Cancer Research, 2020, 26, 6039-6050.	7.0	24
27	Large-Scale Characterization of Drug Responses of Clinically Relevant Proteins in Cancer Cell Lines. Cancer Cell, 2020, 38, 829-843.e4.	16.8	40
28	SPANX Control of Lamin A/C Modulates Nuclear Architecture and Promotes Melanoma Growth. Molecular Cancer Research, 2020, 18, 1560-1573.	3.4	13
29	Changes in Aged Fibroblast Lipid Metabolism Induce Age-Dependent Melanoma Cell Resistance to Targeted Therapy via the Fatty Acid Transporter FATP2. Cancer Discovery, 2020, 10, 1282-1295.	9.4	75
30	Pre-clinical modeling of cutaneous melanoma. Nature Communications, 2020, 11, 2858.	12.8	133
31	Targeting the cyclin-dependent kinase 5 in metastatic melanoma. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8001-8012.	7.1	21
32	Brain Metastasis Cell Lines Panel: A Public Resource of Organotropic Cell Lines. Cancer Research, 2020, 80, 4314-4323.	0.9	51
33	Polyunsaturated Fatty Acids from Astrocytes Activate PPARÎ ³ Signaling in Cancer Cells to Promote Brain Metastasis. Cancer Discovery, 2019, 9, 1720-1735.	9.4	97
34	B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma. Nature Communications, 2019, 10, 4186.	12.8	236
35	A Melanoma Patient-Derived Xenograft Model. Journal of Visualized Experiments, 2019, , .	0.3	11
36	BRAF Targeting Sensitizes Resistant Melanoma to Cytotoxic T Cells. Clinical Cancer Research, 2019, 25, 2783-2794.	7.0	25

#	Article	IF	CITATIONS
37	Remodeling of the Collagen Matrix in Aging Skin Promotes Melanoma Metastasis and Affects Immune Cell Motility. Cancer Discovery, 2019, 9, 64-81.	9.4	260
38	Coâ€ŧargeting <scp>BET</scp> and <scp>MEK</scp> as salvage therapy for <scp>MAPK</scp> and checkpoint inhibitorâ€resistant melanoma. EMBO Molecular Medicine, 2018, 10, .	6.9	79
39	Induction of Telomere Dysfunction Prolongs Disease Control of Therapy-Resistant Melanoma. Clinical Cancer Research, 2018, 24, 4771-4784.	7.0	29
40	MSX1-Induced Neural Crest-Like Reprogramming Promotes MelanomaÂProgression. Journal of Investigative Dermatology, 2018, 138, 141-149.	0.7	29
41	<i>Ex Vivo</i> Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids. Cancer Discovery, 2018, 8, 196-215.	9.4	392
42	Frontiers in pigment cell and melanoma research. Pigment Cell and Melanoma Research, 2018, 31, 728-735.	3.3	10
43	A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade. Cell, 2018, 175, 984-997.e24.	28.9	892
44	Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma. Nature Medicine, 2018, 24, 1545-1549.	30.7	473
45	Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature, 2018, 560, 382-386.	27.8	1,836
46	Recent Advances in Melanoma and Melanocyte Biology. Journal of Investigative Dermatology, 2017, 137, 557-560.	0.7	12
47	Oncogenic RAS Regulates Long Noncoding RNA <i>Orilnc1</i> in Human Cancer. Cancer Research, 2017, 77, 3745-3757.	0.9	34
48	Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature, 2017, 546, 431-435.	27.8	938
49	PAK signalling drives acquired drug resistance to MAPK inhibitors in BRAF-mutant melanomas. Nature, 2017, 550, 133-136.	27.8	146
50	Tumor-associated B-cells induce tumor heterogeneity and therapy resistance. Nature Communications, 2017, 8, 607.	12.8	109
51	ATG5 Mediates a Positive Feedback Loop between Wnt Signaling and Autophagy in Melanoma. Cancer Research, 2017, 77, 5873-5885.	0.9	26
52	Enhancing CD8+ T Cell Fatty Acid Catabolism withinÂa Metabolically Challenging Tumor Microenvironment Increases the Efficacy of Melanoma Immunotherapy. Cancer Cell, 2017, 32, 377-391.e9.	16.8	419
53	Genetic and Genomic Characterization of 462 Melanoma Patient-Derived Xenografts, Tumor Biopsies, and Cell Lines. Cell Reports, 2017, 21, 1936-1952.	6.4	72
54	A Comprehensive Patient-Derived Xenograft Collection Representing the Heterogeneity of Melanoma. Cell Reports, 2017, 21, 1953-1967.	6.4	117

#	Article	IF	CITATIONS
55	Context-dependent miR-204 and miR-211 affect the biological properties of amelanotic and melanotic melanotic melanoma cells. Oncotarget, 2017, 8, 25395-25417.	1.8	64
56	Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors. Journal of Clinical Investigation, 2016, 126, 1834-1856.	8.2	219
57	Enhancing the evaluation of <scp>PI</scp> 3K inhibitors through 3DÂmelanoma models. Pigment Cell and Melanoma Research, 2016, 29, 317-328.	3.3	12
58	The role of Orai–STIM calcium channels in melanocytes and melanoma. Journal of Physiology, 2016, 594, 2825-2835.	2.9	29
59	Randy Lomax, 1947-2016. Pigment Cell and Melanoma Research, 2016, 29, 605-606.	3.3	0
60	JARID1B Enables Transit between Distinct States of the Stem-like Cell Population in Oral Cancers. Cancer Research, 2016, 76, 5538-5549.	0.9	46
61	Crosstalk in skin: melanocytes, keratinocytes, stem cells, and melanoma. Journal of Cell Communication and Signaling, 2016, 10, 191-196.	3.4	49
62	Heterogeneity in Melanoma. Cancer Treatment and Research, 2016, 167, 1-15.	0.5	59
63	Personalized Preclinical Trials in BRAF Inhibitor–Resistant Patient-Derived Xenograft Models Identify Second-Line Combination Therapies. Clinical Cancer Research, 2016, 22, 1592-1602.	7.0	108
64	Mitochondrial oxidative stress as a novel therapeutic target to overcome intrinsic drug resistance in melanoma cell subpopulations. Experimental Dermatology, 2015, 24, 155-157.	2.9	41
65	Establishing Human Skin Grafts in Mice as Model for Melanoma Progression. Methods in Molecular Biology, 2015, , 1.	0.9	1
66	BRAF Inhibition Stimulates Melanoma-Associated Macrophages to Drive Tumor Growth. Clinical Cancer Research, 2015, 21, 1652-1664.	7.0	106
67	UV-Induced Wnt7a in the Human Skin Microenvironment Specifies the Fate of Neural Crest–Like Cells via Suppression of Notch. Journal of Investigative Dermatology, 2015, 135, 1521-1532.	0.7	18
68	Melanoma. Nature Reviews Disease Primers, 2015, 1, 15003.	30.5	417
69	Nivolumab in combination with ipilimumab for the treatment of melanoma. Expert Review of Anticancer Therapy, 2015, 15, 1135-1141.	2.4	22
70	<scp>W</scp> nt5 <scp>A</scp> promotes an adaptive, senescentâ€like stress response, while continuing to drive invasion in melanoma cells. Pigment Cell and Melanoma Research, 2015, 28, 184-195.	3.3	77
71	Developmental pathways activated in melanocytes and melanoma. Archives of Biochemistry and Biophysics, 2014, 563, 13-21.	3.0	84
72	EGFR Inhibition Promotes an Aggressive Invasion Pattern Mediated by Mesenchymal-like Tumor Cells within Squamous Cell Carcinomas. Molecular Cancer Therapeutics, 2013, 12, 2176-2186.	4.1	23

#	Article	IF	CITATIONS
73	The Novel SMAC Mimetic Birinapant Exhibits Potent Activity against Human Melanoma Cells. Clinical Cancer Research, 2013, 19, 1784-1794.	7.0	98
74	Concurrent MEK2 Mutation and BRAF Amplification Confer Resistance to BRAF and MEK Inhibitors in Melanoma. Cell Reports, 2013, 4, 1090-1099.	6.4	162
75	Suppression of Nucleotide Metabolism Underlies the Establishment and Maintenance of Oncogene-Induced Senescence. Cell Reports, 2013, 3, 1252-1265.	6.4	228
76	Relapse of melanoma after successful adoptive Tâ€cell therapy: escape through inflammationâ€induced phenotypic melanoma cell plasticity. Pigment Cell and Melanoma Research, 2013, 26, 2-3.	3.3	2
77	Isolation, Characterization, and Differentiation of Human Multipotent Dermal Stem Cells. Methods in Molecular Biology, 2013, 989, 235-246.	0.9	14
78	Overcoming Intrinsic Multidrug Resistance in Melanoma by Blocking the Mitochondrial Respiratory Chain of Slow-Cycling JARID1Bhigh Cells. Cancer Cell, 2013, 23, 811-825.	16.8	553
79	Therapeutic Destruction of Insulin Receptor Substrates for Cancer Treatment. Cancer Research, 2013, 73, 4383-4394.	0.9	108
80	Comparative Secretome Analysis of Epithelial and Mesenchymal Subpopulations of Head and Neck Squamous Cell Carcinoma Identifies S100A4 as a Potential Therapeutic Target. Molecular and Cellular Proteomics, 2013, 12, 3778-3792.	3.8	32
81	Combination Therapy of Immunocytokines with Ipilimumab: A Cure for Melanoma?. Journal of Investigative Dermatology, 2013, 133, 595-596.	0.7	4
82	Hypoxia Induces Phenotypic Plasticity and Therapy Resistance in Melanoma via the Tyrosine Kinase Receptors ROR1 and ROR2. Cancer Discovery, 2013, 3, 1378-1393.	9.4	197
83	There is a world beyond protein mutations: the role of nonâ€coding <scp>RNA</scp> s in melanomagenesis. Experimental Dermatology, 2013, 22, 303-306.	2.9	4
84	The Anti-Melanoma Activity of Dinaciclib, a Cyclin-Dependent Kinase Inhibitor, Is Dependent on p53 Signaling. PLoS ONE, 2013, 8, e59588.	2.5	58
85	Targeting CD20 in Melanoma Patients at High Risk of Disease Recurrence. Molecular Therapy, 2012, 20, 1056-1062.	8.2	69
86	Isolation and Cultivation of Dermal Stem Cells that Differentiate into Functional Epidermal Melanocytes. Methods in Molecular Biology, 2012, 806, 15-29.	0.9	18
87	GSK3Î ² Inhibition Blocks Melanoma Cell/Host Interactions by Downregulating N-Cadherin Expression and Decreasing FAK Phosphorylation. Journal of Investigative Dermatology, 2012, 132, 2818-2827.	0.7	37
88	Beyond ABC: Another Mechanism of Drug Resistance in Melanoma Side Population. Journal of Investigative Dermatology, 2012, 132, 2317-2319.	0.7	13
89	Fibroblasts Contribute to Melanoma Tumor Growth and Drug Resistance. Molecular Pharmaceutics, 2011, 8, 2039-2049.	4.6	109
90	Dermisâ€derived stem cells: a source of epidermal melanocytes and melanoma?. Pigment Cell and Melanoma Research, 2011, 24, 422-429.	3.3	58

#	Article	IF	CITATIONS
91	The Three-Dimensional Human Skin Reconstruct Model: a Tool to Study Normal Skin and Melanoma Progression. Journal of Visualized Experiments, 2011, , .	0.3	68
92	Direct Reprogramming of Melanocytes to Neural Crest Stem-Like Cells by One Defined Factor. Stem Cells, 2011, 29, 1752-1762.	3.2	55
93	A NOTCH3-Mediated Squamous Cell Differentiation Program Limits Expansion of EMT-Competent Cells That Express the ZEB Transcription Factors. Cancer Research, 2011, 71, 6836-6847.	0.9	99
94	Detecting and targeting mesenchymal-like subpopulations within squamous cell carcinomas. Cell Cycle, 2011, 10, 2008-2016.	2.6	51
95	Acquired Resistance to BRAF Inhibitors Mediated by a RAF Kinase Switch in Melanoma Can Be Overcome by Cotargeting MEK and IGF-1R/PI3K. Cancer Cell, 2010, 18, 683-695.	16.8	1,139
96	Human dermal stem cells differentiate into functional epidermal melanocytes. Journal of Cell Science, 2010, 123, 853-860.	2.0	153
97	A Temporarily Distinct Subpopulation of Slow-Cycling Melanoma Cells Is Required for Continuous Tumor Growth. Cell, 2010, 141, 583-594.	28.9	1,052
98	Boris Bastian. Pigment Cell and Melanoma Research, 2010, 23, 834-834.	3.3	0
99	PLX4032, a potent inhibitor of the Bâ€Raf V600E oncogene, selectively inhibits V600Eâ€positive melanomas. Pigment Cell and Melanoma Research, 2010, 23, 820-827.	3.3	142
100	Active Notch1 Confers a Transformed Phenotype to Primary Human Melanocytes. Cancer Research, 2009, 69, 5312-5320.	0.9	103
101	Integrating tumorâ€initiating cells into the paradigm for melanoma targeted therapy. International Journal of Cancer, 2009, 124, 1245-1250.	5.1	15
102	Driving in the melanoma landscape. Experimental Dermatology, 2009, 18, 506-508.	2.9	9
103	Embryonic Stem Cells as a Model for Studying Melanocyte Development. Methods in Molecular Biology, 2009, 584, 301-316.	0.9	3
104	Melanoma and the tumor microenvironment. Current Oncology Reports, 2008, 10, 439-446.	4.0	173
105	Matricellular Proteins Produced by Melanocytes and Melanomas: In Search for Functions. Cancer Microenvironment, 2008, 1, 93-102.	3.1	33
106	Melanoma Stem Cells: The Dark Seed of Melanoma. Journal of Clinical Oncology, 2008, 26, 2890-2894.	1.6	149
107	The Essential Role of Fibroblasts in Esophageal Squamous Cell Carcinoma–Induced Angiogenesis. Gastroenterology, 2008, 134, 1981-1993.	1.3	118
108	Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3041-3046.	7.1	1,206

#	Article	IF	CITATIONS
109	<i>In vitro</i> three-dimensional tumor microenvironment models for anticancer drug discovery. Expert Opinion on Drug Discovery, 2008, 3, 1-10.	5.0	105
110	Identification of a Novel Subgroup of Melanomas with KIT/Cyclin-Dependent Kinase-4 Overexpression. Cancer Research, 2008, 68, 5743-5752.	0.9	90
111	Role of stem cells in melanoma progression: hopes for a better treatment. Expert Review of Dermatology, 2007, 2, 191-201.	0.3	0
112	Targeting BRAF/MEK in melanoma: new hope or another false dawn?. Expert Review of Dermatology, 2007, 2, 179-190.	0.3	0
113	Farming cells to rebuild skin and melanoma. Cancer Biology and Therapy, 2007, 6, 467-471.	3.4	1
114	An Organometallic Protein Kinase Inhibitor Pharmacologically Activates p53 and Induces Apoptosis in Human Melanoma Cells. Cancer Research, 2007, 67, 209-217.	0.9	224
115	Microenvironmental influences in melanoma progression. Journal of Cellular Biochemistry, 2007, 101, 862-872.	2.6	77
116	Old disease, new culprit: Tumor stem cells in cancer. Journal of Cellular Physiology, 2007, 213, 603-609.	4.1	37
117	The many faces of Notch signaling in skin-derived cells. Pigment Cell & Melanoma Research, 2007, 20, 458-465.	3.6	64
118	Rewired ERK-JNK Signaling Pathways in Melanoma. Cancer Cell, 2007, 11, 447-460.	16.8	260
119	Roadmap for New Opportunities in Melanoma Research. Seminars in Oncology, 2007, 34, 566-576.	2.2	3
120	Isolation of a Novel Population of Multipotent Adult Stem Cells from Human Hair Follicles. American Journal of Pathology, 2006, 168, 1879-1888.	3.8	336
121	LIFE ISN'T FLAT: TAKING CANCER BIOLOGY TO THE NEXT DIMENSION. In Vitro Cellular and Developmental Biology - Animal, 2006, 42, 242.	1.5	258
122	Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell & Melanoma Research, 2006, 19, 290-302.	3.6	483
123	Defining the Conditions for the Generation of Melanocytes from Human Embryonic Stem Cells. Stem Cells, Stem Cells, 2006, 24, 1668-1677.	3.2	113
124	Molecular targets in melanoma: Strategies and challenges for diagnosis and therapy. International Journal of Cancer, 2006, 118, 523-526.	5.1	16
125	Inhibition of endothelial cell proliferation by Notch1 signaling is mediated by repressing MAPK and PI3K/Akt pathways and requires MAML1. FASEB Journal, 2006, 20, 1009-1011.	0.5	98
126	Notch1 Signaling Promotes Primary Melanoma Progression by Activating Mitogen-Activated Protein Kinase/Phosphatidylinositol 3-Kinase-Akt Pathways and Up-regulating N-Cadherin Expression. Cancer Research, 2006, 66, 4182-4190.	0.9	251

#	Article	IF	CITATIONS
127	CCN3 controls 3D spatial localization of melanocytes in the human skin through DDR1. Journal of Cell Biology, 2006, 175, 563-569.	5.2	94
128	Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. Molecular Cancer Therapeutics, 2006, 5, 1136-1144.	4.1	410
129	Adhesion, migration and communication in melanocytes and melanoma. Pigment Cell & Melanoma Research, 2005, 18, 150-159.	3.6	304
130	Normal Human Melanocyte Homeostasis as a Paradigm for Understanding Melanoma. Journal of Investigative Dermatology Symposium Proceedings, 2005, 10, 153-163.	0.8	177
131	Selective evolutionary pressure from the tissue microenvironment drives tumor progression. Seminars in Cancer Biology, 2005, 15, 451-459.	9.6	53
132	Introduction. Cancer and Metastasis Reviews, 2005, 24, 193-194.	5.9	6
133	Targeting the stromal fibroblasts: a novel approach to melanoma therapy. Expert Review of Anticancer Therapy, 2005, 5, 1069-1078.	2.4	20
134	A Tumorigenic Subpopulation with Stem Cell Properties in Melanomas. Cancer Research, 2005, 65, 9328-9337.	0.9	1,200
135	Functional Erythropoietin Autocrine Loop in Melanoma. American Journal of Pathology, 2005, 166, 823-830.	3.8	75
136	Up-Regulated Expression of Zonula Occludens Protein-1 in Human Melanoma Associates with N-Cadherin and Contributes to Invasion and Adhesion. American Journal of Pathology, 2005, 166, 1541-1554.	3.8	143
137	Activation of Notch1 signaling is required for Â-catenin-mediated human primary melanoma progression. Journal of Clinical Investigation, 2005, 115, 3166-3176.	8.2	293
138	The RAS/RAF/MEK/ERK and PI3K/AKT signaling pathways present molecular targets for the effective treatment of advanced melanoma. Frontiers in Bioscience - Landmark, 2005, 10, 2986.	3.0	227
139	Induction of Melanoma Phenotypes in Human Skin by Growth Factors and Ultraviolet B. Cancer Research, 2004, 64, 807-811.	0.9	82
140	Truncation of Activated Leukocyte Cell Adhesion Molecule: A Gateway to Melanoma Metastasis. Journal of Investigative Dermatology, 2004, 122, 1293-1301.	0.7	53
141	Reversal of melanocytic malignancy by keratinocytes is an E-cadherin-mediated process overriding β-catenin signaling. Experimental Cell Research, 2004, 297, 142-151.	2.6	31
142	The Role of Altered Cell–Cell Communication in Melanoma Progression. Journal of Molecular Histology, 2003, 35, 309-318.	2.2	135
143	Regulation of <i>Notch1</i> and <i>Dll4</i> by Vascular Endothelial Growth Factor in Arterial Endothelial Cells: Implications for Modulating Arteriogenesis and Angiogenesis. Molecular and Cellular Biology, 2003, 23, 14-25.	2.3	456
144	VEGFâ€A and α V β 3 integrin synergistically rescue angiogenesis via Nâ€Ras and PI3â€K signaling in human microvascular endothelial cells. FASEB Journal, 2003, 17, 1-21.	0.5	36

#	Article	IF	CITATIONS
145	Epidermal Growth Factor Receptor Mediates Increased Cell Proliferation, Migration, and Aggregation in Esophageal Keratinocytes in Vitro and in Vivo. Journal of Biological Chemistry, 2003, 278, 1824-1830.	3.4	220
146	Constitutive mitogen-activated protein kinase activation in melanoma is mediated by both BRAF mutations and autocrine growth factor stimulation. Cancer Research, 2003, 63, 756-9.	0.9	340
147	Fibroblastâ€dependent differentiation of human microvascular endothelial cells into capillaryâ€iike, threeâ€dimensional networks. FASEB Journal, 2002, 16, 1316-1318.	0.5	130
148	Melanoma–stroma interactions: structural and functional aspects. Lancet Oncology, The, 2002, 3, 35-43.	10.7	214
149	Melanoma development and progression: a conspiracy between tumor and host. Differentiation, 2002, 70, 522-536.	1.9	168
150	Osteonectin/SPARC induction by ectopic beta(3) integrin in human radial growth phase primary melanoma cells. Cancer Research, 2002, 62, 226-32.	0.9	39
151	BRAF and RAS mutations in human lung cancer and melanoma. Cancer Research, 2002, 62, 6997-7000.	0.9	848
152	Mel-CAM-specific genetic suppressor elements inhibit melanoma growth and invasion through loss of gap junctional communication. Oncogene, 2001, 20, 4676-4684.	5.9	72
153	Downregulation of E-cadherin and Desmoglein 1 by autocrine hepatocyte growth factor during melanoma development. Oncogene, 2001, 20, 8125-8135.	5.9	173
154	Dynamics of intercellular communication during melanoma development. Trends in Molecular Medicine, 2000, 6, 163-169.	2.6	100
155	Human Melanoma Progression in Skin Reconstructs. American Journal of Pathology, 2000, 156, 193-200.	3.8	203
156	E-Cadherin Expression in Melanoma Cells Restores Keratinocyte-Mediated Growth Control and Down-Regulates Expression of Invasion-Related Adhesion Receptors. American Journal of Pathology, 2000, 156, 1515-1525.	3.8	320
157	Basic fibroblast growth factor induces a transformed phenotype in normal human melanocytes. Oncogene, 1999, 18, 6469-6476.	5.9	111
158	Progression-related expression of β3 integrin in melanomas and nevi. Human Pathology, 1999, 30, 562-567.	2.0	116
159	Adenoviral Gene Transfer of Î ² 3 Integrin Subunit Induces Conversion from Radial to Vertical Growth Phase in Primary Human Melanoma. American Journal of Pathology, 1998, 153, 1435-1442.	3.8	199
160	Melanoma cell lines from different stages of progression and their biological and molecular analyses. Melanoma Research, 1997, 7, S43.	1.2	96
161	Interactions of Melanocytes and Melanoma Cells With the Microenvironment. Pigment Cell & Melanoma Research, 1994, 7, 81-88.	3.6	43
162	In Vitro Growth Patterns of Normal Human Melanocytes and Melanocytes from Different Stages of Melanoma Progression. Journal of Immunotherapy, 1992, 12, 199-202.	2.4	41

#	Article	IF	CITATIONS
163	Growth and Phenotoypic Characteristics of Human Nevus Cells in Culture. Journal of Investigative Dermatology, 1988, 90, 134-141.	0.7	50
164	Expression of the receptor for epidermal growth factor correlates with increased dosage of chromosome 7 in malignant melanoma. Somatic Cell and Molecular Genetics, 1985, 11, 297-302.	0.7	169