Sergio Pimpinelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7582637/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Characterization of Gfat1 (zeppelin) and Gfat2, Essential Paralogous Genes Which Encode the Enzymes That Catalyze the Rate-Limiting Step in the Hexosamine Biosynthetic Pathway in Drosophila melanogaster. Cells, 2022, 11, 448.	4.1	3
2	Environmental change and the evolution of genomes: Transposable elements as translators of phenotypic plasticity into genotypic variability. Functional Ecology, 2020, 34, 428-441.	3.6	30
3	The Hsp70 chaperone is a major player in stress-induced transposable element activation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17943-17950.	7.1	40
4	Stress-induced strain and brain region-specific activation of LINE-1 transposons in adult mice. Stress, 2018, 21, 575-579.	1.8	12
5	Canalization by Selection of <i>de Novo</i> Induced Mutations. Genetics, 2017, 206, 1995-2006.	2.9	40
6	Chromosome Healing Is Promoted by the Telomere Cap Component Hiphop in <i>Drosophila</i> . Genetics, 2017, 207, 949-959.	2.9	17
7	Loss of Pol32 in Drosophila melanogaster Causes Chromosome Instability and Suppresses Variegation. PLoS ONE, 2015, 10, e0120859.	2.5	8
8	Transposons, environmental changes, and heritable induced phenotypic variability. Chromosoma, 2014, 123, 345-354.	2.2	91
9	Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons. Nature, 2010, 463, 662-665.	27.8	262
10	Positive regulation of euchromatic gene expression by HP1a. Fly, 2010, 4, 299-301.	1.7	14
11	Heterochromatin Protein 1 (HP1a) Positively Regulates Euchromatic Gene Expression through RNA Transcript Association and Interaction with hnRNPs in Drosophila. PLoS Genetics, 2009, 5, e1000670.	3.5	128
12	The trithorax group and Pc group proteins are differentially involved in heterochromatin formation in Drosophila. Chromosoma, 2008, 117, 25-39.	2.2	26
13	HP1: a functionally multifaceted protein. Current Opinion in Genetics and Development, 2008, 18, 169-174.	3.3	120
14	Heterochromatin protein 1 interacts with 5′UTR of transposable element ZAM in a sequence-specific fashion. Gene, 2007, 393, 1-10.	2.2	20
15	Heterochromatic Genes in Drosophila: A Comparative Analysis of Two Genes. Genetics, 2006, 173, 1433-1445.	2.9	26
16	Trans-splicing of the mod(mdg4) Complex Locus Is Conserved Between the Distantly Related Species Drosophila melanogaster and D. virilis. Genetics, 2005, 169, 723-736.	2.9	34
17	<i>Drosophila</i> ATM and ATR checkpoint kinases control partially redundant pathways for telomere maintenance. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15167-15172.	7.1	78
18	dSAP18 and dHDAC1 contribute to the functional regulation of the Drosophila Fab-7 element. Nucleic Acids Research, 2005, 33, 4857-4864.	14.5	12

SERGIO PIMPINELLI

#	Article	IF	CITATIONS
19	Heterochromatin and <i>tri</i> -methylated lysine 20 of histone H4 in animals. Journal of Cell Science, 2004, 117, 2491-2501.	2.0	230
20	The Drosophila Polycomb group gene Sex combs extra encodes the ortholog of mammalian Ring1 proteins. Mechanisms of Development, 2004, 121, 449-462.	1.7	42
21	HP1 Controls Telomere Capping, Telomere Elongation, and Telomere Silencing by Two Different Mechanisms in Drosophila. Molecular Cell, 2004, 15, 467-476.	9.7	155
22	A subset of the elements of the 1731 retrotransposon family are preferentially located in regions of the Y chromosome that are polytenized in larval salivary glands of Drosophila melanogaster. Genetica, 2003, 117, 303-310.	1.1	4
23	Analysing the contribution of nucleic acids to the structure and properties of centric heterochromatin. Genetica, 2003, 117, 117-125.	1.1	4
24	A strategy for mapping the heterochromatin of chromosome 2 of Drosophila melanogaster. Genetica, 2003, 117, 217-226.	1.1	15
25	Structure, regulation and evolution of the crystal-Stellate system of Drosophila. Genetica, 2003, 117, 247-257.	1.1	19
26	Chromosomal distribution of heterochromatin protein 1 (HP1) in Drosophila: a cytological map of euchromatic HP1 binding sites. Genetica, 2003, 117, 135-147.	1.1	100
27	Heterochromatin protein 1 (HP1) is associated with induced gene expression in <i>Drosophila</i> euchromatin. Journal of Cell Biology, 2003, 161, 707-714.	5.2	200
28	Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals. Chromosoma, 2002, 111, 22-36.	2.2	244
29	The GAGA factor ofDrosophilainteracts with SAP18, a Sin3â€associated polypeptide. EMBO Reports, 2000, 1, 253-259.	4.5	58
30	The ISWI Chromatin-Remodeling Protein Is Required for Gene Expression and the Maintenance of Higher Order Chromatin Structure In Vivo. Molecular Cell, 2000, 5, 355-365.	9.7	352
31	Centromeres from telomeres? The centromeric region of the Y chromosome of Drosophila melanogaster contains a tandem array of telomeric HeT-A- and TART-related sequences. Nucleic Acids Research, 1999, 27, 3318-3324.	14.5	62
32	Genetic and Molecular Characterization of sting, a Gene Involved in Crystal Formation and Meiotic Drive in the Male Germ Line of Drosophila melanogaster. Genetics, 1999, 151, 749-760.	2.9	135
33	Imprinted control of gene activity in Drosophila. Current Biology, 1998, 8, 1273-1276.	3.9	54
34	Heterochromatin protein 1 binds transgene arrays. Chromosoma, 1998, 107, 286-292.	2.2	92
35	The Heterochromatin Protein 1 Prevents Telomere Fusions in Drosophila. Molecular Cell, 1998, 2, 527-538.	9.7	279
36	Distinct Cytoplasmic and Nuclear Fractions of <i>Drosophila</i> Heterochromatin Protein 1: Their Phosphorylation Levels and Associations with Origin Recognition Complex Proteins. Journal of Cell Biology, 1998, 142, 307-318.	5.2	115

SERGIO PIMPINELLI

#	Article	IF	CITATIONS
37	Induced Chromosomal Exchange Directs the Segregation of Recombinant Chromatids in Mitosis of Drosophila. Genetics, 1998, 150, 173-188.	2.9	59
38	Segregation Distortion in Drosophila melanogaster: Genomic Organization of Responder Sequences. Genetics, 1996, 144, 1665-1671.	2.9	12
39	Interaction systems between heterochromatin and euchromatin inDrosophila melanogaster. Genetica, 1994, 94, 267-274.	1.1	23
40	Carnitine suppression of position-effect variegation in Drosophila melanogaster. Molecular Genetics and Genomics, 1994, 244, 588-595.	2.4	10
41	Chapter 21 Looking at Drosophila Mitotic Chromosomes. Methods in Cell Biology, 1994, 44, 371-391.	1.1	108
42	FUNCTIONAL ELEMENTS IN <i>DROSOPHILA MELANOGASTER</i> HETEROCHROMATIN. Annual Review of Genetics, 1992, 26, 239-276.	7.6	262
43	Segregation Distortion in Drosophila melanogaster: Genetic and Molecular Analyses. American Naturalist, 1991, 137, 287-331.	2.1	77
44	Unusual kinetochores and chromatin diminution in Parascaris. Trends in Genetics, 1989, 5, 310-315.	6.7	111
45	Cytological analysis of chromosomes in the two species Parascaris univalens and P. equorum. Chromosoma, 1986, 94, 1-10.	2.2	57
46	The peculiar genetic organization of Drosophila heterochromatin. Trends in Genetics, 1986, 2, 17-20.	6.7	53
47	THE GENETIC FACTORS ALTERED IN HOMOZYGOUS abo STOCKS OF DROSOPHILA MELANOGASTER. Genetics, 1986, 114, 885-895.	2.9	11
48	A cell division mutant of drosophila with a functionally abnormal spindle. Cell, 1985, 41, 907-912.	28.9	95
49	ON BIOLOGICAL FUNCTIONS MAPPING TO THE HETEROCHROMATIN OF <i>DROSOPHILA MELANOGASTER</i> . Genetics, 1985, 109, 701-724.	2.9	100
50	Cytological and genetic analysis of the Y chromosome of Drosophila melanogaster. Chromosoma, 1983, 88, 349-373.	2.2	156
51	Cytological dissection of sex chromosome heterochromatin of Drosophila hydei. Chromosoma, 1981, 84, 391-403.	2.2	27
52	Characterization of Drosophila heterochromatin. Chromosoma, 1976, 57, 351-375.	2.2	141
53	Characterization of Drosophila heterochromatin. Chromosoma, 1976, 57, 377-386.	2.2	105