Hjalmar Granberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7582377/publications.pdf

Version: 2024-02-01

687363 580821 25 975 13 25 g-index citations h-index papers 28 28 28 1589 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Spinning of Stiff and Conductive Filaments from Cellulose Nanofibrils and PEDOT:PSS Nanocomplexes. ACS Applied Polymer Materials, 2022, 4, 4119-4130.	4.4	8
2	Solar Heatâ€Enhanced Energy Conversion in Devices Based on Photosynthetic Membranes and PEDOT:PSSâ€Nanocellulose Electrodes. Advanced Sustainable Systems, 2020, 4, 1900100.	5. 3	11
3	Highly Conducting Nanographite-Filled Paper Fabricated via Standard Papermaking Techniques. ACS Applied Materials & Discrete Samp; Interfaces, 2020, 12, 48828-48835.	8.0	8
4	Paper machine manufactured photocatalysts - Lateral variations. Journal of Environmental Chemical Engineering, 2020, 8, 104075.	6.7	1
5	Ambientâ€Dried, 3Dâ€Printable and Electrically Conducting Cellulose Nanofiber Aerogels by Inclusion of Functional Polymers. Advanced Functional Materials, 2020, 30, 1909383.	14.9	92
6	Improving the Performance of Paper Supercapacitors Using Redox Molecules from Plants. Advanced Sustainable Systems, 2019, 3, 1900050.	5. 3	23
7	A Multiparameter Pressure–Temperature–Humidity Sensor Based on Mixed Ionic–Electronic Cellulose Aerogels. Advanced Science, 2019, 6, 1802128.	11.2	114
8	Anisotropic conductivity of Cellulose-PEDOT:PSS composite materials studied with a generic 3D four-point probe tool. Organic Electronics, 2019, 66, 258-264.	2.6	9
9	Cross-Linked and Shapeable Porous 3D Substrates from Freeze-Linked Cellulose Nanofibrils. Biomacromolecules, 2019, 20, 728-737.	5.4	24
10	On the mechanism behind freezing-induced chemical crosslinking in ice-templated cellulose nanofibril aerogels. Journal of Materials Chemistry A, 2018, 6, 19371-19380.	10.3	63
11	Room temperature synthesis of transition metal silicide-conducting polymer micro-composites for thermoelectric applications. Synthetic Metals, 2017, 225, 55-63.	3.9	9
12	Ionic thermoelectric paper. Journal of Materials Chemistry A, 2017, 5, 16883-16888.	10.3	79
13	Electrochemical circuits from â€~cut and stick' PEDOT:PSS-nanocellulose composite. Flexible and Printed Electronics, 2017, 2, 045010.	2.7	18
14	Thermoelectric Polymers and their Elastic Aerogels. Advanced Materials, 2016, 28, 4556-4562.	21.0	157
15	Photoconductive zinc oxide-composite paper by pilot paper machine manufacturing. Flexible and Printed Electronics, 2016, 1, 044003.	2.7	8
16	An Organic Mixed Ion–Electron Conductor for Power Electronics. Advanced Science, 2016, 3, 1500305.	11.2	188
17	Flexible Lamination-Fabricated Ultra-High Frequency Diodes Based on Self-Supporting Semiconducting Composite Film of Silicon Micro-Particles and Nano-Fibrillated Cellulose. Scientific Reports, 2016, 6, 28921.	3.3	15
18	Macro- and mesoporous nanocellulose beads for use in energy storage devices. Applied Materials Today, 2016, 5, 246-254.	4.3	47

#	Article	lF	CITATIONS
19	Reconfigurable sticker label electronics manufactured from nanofibrillated cellulose-based self-adhesive organic electronic materials. Organic Electronics, 2013, 14, 3061-3069.	2.6	25
20	Dynamics of moisture interaction with polyelectrolyte multilayers containing nanofibrillated cellulose. Nordic Pulp and Paper Research Journal, 2012, 27, 496-499.	0.7	5
21	Addition of silica nanoparticles to tailor the mechanical properties of nanofibrillated cellulose thin films. Journal of Colloid and Interface Science, 2011, 363, 566-572.	9.4	23
22	Modelling the angle-dependent light scattering from sheets of pulp fibre fragments. Nordic Pulp and Paper Research Journal, 2004, 19, 354-359.	0.7	7
23	Forward scattering of fiber-containing surfaces studied by 3-D reflectance distribution simulations and measurements. Optical Engineering, 2003, 42, 2384.	1.0	11
24	Anisotropic scatter behaviour of fiber-containing surfaces analyzed by 3D-BRDF measurements and simulations., 2002, 4780, 138.		0
25	Routledge Handbook of Sustainability and Fashion., 0,,.		26