Angel A Marti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7582184/publications.pdf Version: 2024-02-01

ANCEL A MADTI

#	Article	IF	CITATIONS
1	Graphene Quantum Dots Derived from Carbon Fibers. Nano Letters, 2012, 12, 844-849.	9.1	2,041
2	Coal as an abundant source of graphene quantum dots. Nature Communications, 2013, 4, 2943.	12.8	686
3	Exfoliation of a non-van der Waals material from iron ore hematite. Nature Nanotechnology, 2018, 13, 602-609.	31.5	295
4	Pyrene Excimer Signaling Molecular Beacons for Probing Nucleic Acids. Journal of the American Chemical Society, 2008, 130, 336-342.	13.7	289
5	Interrogating Amyloid Aggregates using Fluorescent Probes. Chemical Reviews, 2019, 119, 11819-11856.	47.7	184
6	Bandgap Engineering of Coal-Derived Graphene Quantum Dots. ACS Applied Materials & Interfaces, 2015, 7, 7041-7048.	8.0	182
7	Fluorescent Hybridization Probes for Sensitive and Selective DNA and RNA Detection. Accounts of Chemical Research, 2007, 40, 402-409.	15.6	174
8	Defectâ€Engineeringâ€Enabled Highâ€Efficiency Allâ€Inorganic Perovskite Solar Cells. Advanced Materials, 2019, 31, e1903448.	21.0	143
9	Fluorinated h-BN as a magnetic semiconductor. Science Advances, 2017, 3, e1700842.	10.3	121
10	Carbon nanotube networks on different platforms. Carbon, 2014, 79, 1-18.	10.3	115
11	Sensing Amyloid-β Aggregation Using Luminescent Dipyridophenazine Ruthenium(II) Complexes. Journal of the American Chemical Society, 2011, 133, 11121-11123.	13.7	113
12	Pyrene binary probes for unambiguous detection of mRNA using time-resolved fluorescence spectroscopy. Nucleic Acids Research, 2006, 34, 3161-3168.	14.5	101
13	Direct Ion Exchange of Tris(2,2â€~-bipyridine)ruthenium(II) into an α-Zirconium Phosphate Framework. Inorganic Chemistry, 2003, 42, 2830-2832.	4.0	96
14	Luminescent Polymer Composite Films Containing Coal-Derived Graphene Quantum Dots. ACS Applied Materials & Interfaces, 2015, 7, 26063-26068.	8.0	93
15	Laser-Induced Conversion of Teflon into Fluorinated Nanodiamonds or Fluorinated Graphene. ACS Nano, 2018, 12, 1083-1088.	14.6	91
16	Optical Bifunctionality of Europium-Complexed Luminescent Graphene Nanosheets. Nano Letters, 2011, 11, 5227-5233.	9.1	88
17	Increased Solubility, Liquid-Crystalline Phase, and Selective Functionalization of Single-Walled Carbon Nanotube Polyelectrolyte Dispersions. ACS Nano, 2013, 7, 4503-4510.	14.6	86
18	A covalently linked phenanthridine–ruthenium(ii) complex as a RNA probe. Chemical Communications, 2009, , 2640.	4.1	85

#	Article	IF	CITATIONS
19	Detection of α-Synuclein Amyloidogenic Aggregates <i>in Vitro</i> and in Cells using Light-Switching Dipyridophenazine Ruthenium(II) Complexes. Journal of the American Chemical Society, 2012, 134, 20776-20782.	13.7	83
20	A Non-van der Waals Two-Dimensional Material from Natural Titanium Mineral Ore Ilmenite. Chemistry of Materials, 2018, 30, 5923-5931.	6.7	82
21	Macroscopic Nanotube Fibers Spun from Single-Walled Carbon Nanotube Polyelectrolytes. ACS Nano, 2014, 8, 9107-9112.	14.6	81
22	The Spin Chemistry and Magnetic Resonance of H ₂ @C ₆₀ . From the Pauli Principle to Trapping a Long Lived Nuclear Excited Spin State inside a Buckyball. Accounts of Chemical Research, 2010, 43, 335-345.	15.6	74
23	Unraveling the Photoluminescence Response of Light-Switching Ruthenium(II) Complexes Bound to Amyloid-β. Journal of the American Chemical Society, 2013, 135, 10810-10816.	13.7	73
24	Molecular beacons with intrinsically fluorescent nucleotides. Nucleic Acids Research, 2006, 34, e50-e50.	14.5	66
25	Recent trends in molecular beacon design and applications. Analytical and Bioanalytical Chemistry, 2012, 402, 3091-3102.	3.7	65
26	Demonstration of a Chemical Transformation Inside a Fullerene. The Reversible Conversion of the Allotropes of H ₂ @C ₆₀ . Journal of the American Chemical Society, 2008, 130, 10506-10507.	13.7	62
27	Inorganicâ^'Organic Hybrid Luminescent Binary Probe for DNA Detection Based on Spin-Forbidden Resonance Energy Transfer. Journal of the American Chemical Society, 2007, 129, 8680-8681.	13.7	59
28	Grb2 monomer–dimer equilibrium determines normal versus oncogenic function. Nature Communications, 2015, 6, 7354.	12.8	56
29	Structural and Photophysical Characterisation offac-[Tricarbonyl(chloro)(5,6-epoxy-1,10-phenanthroline)rhenium(I)]. European Journal of Inorganic Chemistry, 2005, 2005, 118-124.	2.0	50
30	Phosphorylation State-Responsive Lanthanide Peptide Conjugates: A Luminescence Switch Based on Reversible Complex Reorganization. Organic Letters, 2006, 8, 2723-2726.	4.6	48
31	Probing a Bifunctional Luminomagnetic Nanophosphor for Biological Applications: a Photoluminescence and Timeâ€Resolved Spectroscopic Study. Small, 2011, 7, 1767-1773.	10.0	48
32	Deamidation of Asparagine to Aspartate Destabilizes Cu, Zn Superoxide Dismutase, Accelerates Fibrillization, and Mirrors ALS-Linked Mutations. Journal of the American Chemical Society, 2013, 135, 15897-15908.	13.7	48
33	Unimolecular Submersible Nanomachines. Synthesis, Actuation, and Monitoring. Nano Letters, 2015, 15, 8229-8239.	9.1	47
34	Monitoring the Formation of Amyloid Oligomers Using Photoluminescence Anisotropy. Journal of the American Chemical Society, 2019, 141, 15605-15610.	13.7	47
35	Highly Luminescent–Paramagnetic Nanophosphor Probes for In Vitro High ontrast Imaging of Human Breast Cancer Cells. Small, 2012, 8, 3028-3034.	10.0	46
36	Self-Assembled Monolayers Based Upon a Zirconium Phosphate Platform. Chemistry of Materials, 2013, 25, 723-728.	6.7	45

#	Article	IF	CITATIONS
37	Arresting Amyloid with Coulomb's Law: Acetylation of ALS-Linked SOD1 by Aspirin Impedes Aggregation. Biophysical Journal, 2015, 108, 1199-1212.	0.5	44
38	Unprecedented Dual Light-Switching Response of a Metal Dipyridophenazine Complex toward Amyloid-β Aggregation. Journal of the American Chemical Society, 2016, 138, 8686-8689.	13.7	43
39	Photophysical Characterization of the Interactions among Tris(2,2′-bipyridyl)ruthenium(II) Complexes Ion-Exchanged within Zirconium Phosphate. Inorganic Chemistry, 2010, 49, 7298-7303.	4.0	38
40	Surfactant-assisted individualization and dispersion of boron nitride nanotubes. Nanoscale Advances, 2019, 1, 1096-1103.	4.6	38
41	Scalable Purification of Boron Nitride Nanotubes via Wet Thermal Etching. Chemistry of Materials, 2019, 31, 1520-1527.	6.7	38
42	Spectroscopic investigation of a FRET molecular beacon containing two fluorophores for probing DNA/RNA sequences. Photochemical and Photobiological Sciences, 2006, 5, 493.	2.9	36
43	Carbon nanotubides: an alternative for dispersion, functionalization and composites fabrication. Nanoscale, 2015, 7, 15037-15045.	5.6	36
44	Can H ₂ Inside C ₆₀ Communicate with the Outside World?. Journal of the American Chemical Society, 2007, 129, 14554-14555.	13.7	34
45	Design and characterization of two-dye and three-dye binary fluorescent probes for mRNA detection. Tetrahedron, 2007, 63, 3591-3600.	1.9	34
46	Comparative NMR Properties of H ₂ and HD in Toluene- <i>d</i> ₈ and in H ₂ /HD@C ₆₀ . Journal of Physical Chemistry B, 2010, 114, 14689-14695.	2.6	34
47	Non-covalent ruthenium polypyridyl complexes–carbon nanotubes composites: an alternative for functional dissolution of carbon nanotubes in solution. Chemical Communications, 2011, 47, 2246.	4.1	34
48	Magnetic Properties and Photocatalytic Applications of 2D Sheets of Nonlayered Manganese Telluride by Liquid Exfoliation. ACS Applied Nano Materials, 2018, 1, 6427-6434.	5.0	33
49	Latest Trends in Temperature Sensing by Molecular Probes. ChemPhotoChem, 2020, 4, 255-270.	3.0	33
50	Sensing Temperature in Vitro and in Cells Using a BODIPY Molecular Probe. Journal of Physical Chemistry B, 2019, 123, 7282-7289.	2.6	32
51	Time-resolved photoluminescence spectroscopy for the detection of cysteine and other thiol containing amino acids in complex strongly autofluorescent media. Chemical Communications, 2012, 48, 11760.	4.1	30
52	Facile Self-Assembly Route to Co3O4 Nanoparticles Confined into Single-Walled Carbon Nanotube Matrix for Highly Reversible Lithium Storage. Electrochimica Acta, 2017, 235, 613-622.	5.2	30
53	Atomic Layered Titanium Sulfide Quantum Dots as Electrocatalysts for Enhanced Hydrogen Evolution Reaction. Advanced Materials Interfaces, 2018, 5, 1700895.	3.7	30
54	Low-temperature titania-graphene quantum dots paste for flexible dye-sensitised solar cell applications. Electrochimica Acta, 2019, 305, 278-284.	5.2	30

#	Article	IF	CITATIONS
55	Bifunctional Luminomagnetic Rare-Earth Nanorods for High-Contrast Bioimaging Nanoprobes. Scientific Reports, 2016, 6, 32401.	3.3	29
56	Facile synthesis of highly fluorescent free-standing films comprising graphitic carbon nitride (g-C ₃ N ₄) nanolayers. New Journal of Chemistry, 2020, 44, 2644-2651.	2.8	29
57	Intercalation of Re(phen)(CO)3Cl into zirconium phosphate: a water insoluble inorganic complex immobilized in a highly polar rigid matrix. Dalton Transactions, 2007, , 1713-1718.	3.3	28
58	Formation of a gold–carbon dot nanocomposite with superior catalytic ability for the reduction of aromatic nitro groups in water. RSC Advances, 2014, 4, 25863-25866.	3.6	28
59	Photochemical Identification of Molecular Binding Sites on the Surface of Amyloid-Î ² Fibrillar Aggregates. CheM, 2017, 3, 898-912.	11.7	27
60	Carbon-Based Nanoreporters Designed for Subsurface Hydrogen Sulfide Detection. ACS Applied Materials & Interfaces, 2014, 6, 7652-7658.	8.0	26
61	An Insight into the Phase Transformation of WS ₂ upon Fluorination. Advanced Materials, 2018, 30, e1803366.	21.0	26
62	Metal complexes and time-resolved photoluminescence spectroscopy for sensing applications. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 307-308, 35-47.	3.9	25
63	Combinatorial fluorescence energy transfer molecular beacons for probing nucleic acid sequences. Photochemical and Photobiological Sciences, 2006, 5, 896.	2.9	24
64	Soft-Lithographic Patterning of Luminescent Carbon Nanodots Derived from Collagen Waste. ACS Applied Materials & Interfaces, 2018, 10, 36275-36283.	8.0	24
65	Optimizing the Sensitivity of Photoluminescent Probes Using Time-Resolved Spectroscopy: A Molecular Beacon Case Study. Analytical Chemistry, 2012, 84, 8075-8082.	6.5	23
66	Ascertaining Free Histidine from Mixtures with Histidine-Containing Proteins Using Time-Resolved Photoluminescence Spectroscopy. Journal of Physical Chemistry A, 2014, 118, 10353-10358.	2.5	23
67	Films of Bare Single-Walled Carbon Nanotubes from Superacids with Tailored Electronic and Photoluminescence Properties. ACS Nano, 2012, 6, 5727-5734.	14.6	22
68	Kaplan–Meier Meets Chemical Kinetics: Intrinsic Rate of SOD1 Amyloidogenesis Decreased by Subset of ALS Mutations and Cannot Fully Explain Age of Disease Onset. ACS Chemical Neuroscience, 2017, 8, 1378-1389.	3.5	20
69	Chemical Decoration of Boron Nitride Nanotubes Using the Billups-Birch Reaction: Toward Enhanced Thermostable Reinforced Polymer and Ceramic Nanocomposites. ACS Applied Nano Materials, 2018, 1, 2421-2429.	5.0	20
70	Understanding the Exfoliation and Dispersion of Hexagonal Boron Nitride Nanosheets by Surfactants: Implications for Antibacterial and Thermally Resistant Coatings. ACS Applied Nano Materials, 2021, 4, 142-151.	5.0	20
71	Luminogenic iridium azide complexes. Chemical Communications, 2015, 51, 15192-15195.	4.1	19
72	A novel electroluminescent device based on a reduced graphene oxide wrapped phosphor (ZnS:Cu,Al) and hexagonal-boron nitride for high-performance luminescence. Nanoscale, 2017, 9, 5002-5008.	5.6	17

#	Article	IF	CITATIONS
73	Synthesis of light-driven motorized nanocars for linear trajectories and their detailed NMR structural determination. Tetrahedron, 2017, 73, 4864-4873.	1.9	17
74	A Mechanistic Design Principle for Protein Tyrosine Kinase Sensors:  Application to a Validated Cancer Target. Organic Letters, 2008, 10, 301-304.	4.6	16
75	Facile Methodology for Monitoring Amyloid-β Fibrillization. ACS Chemical Neuroscience, 2012, 3, 896-899.	3.5	16
76	Liquid crystals of neat boron nitride nanotubes and their assembly into ordered macroscopic materials. Nature Communications, 2022, 13, .	12.8	16
77	Probing of Ni-Encapsulated Ferromagnetic Boron Nitride Nanotubes by Time-Resolved and Steady-State Photoluminescence Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 12803-12809.	3.1	15
78	Threeâ€Dimensional Solventâ€Vapor Map Generated by Supramolecular Metal omplex Entrapment. Angewandte Chemie - International Edition, 2013, 52, 12615-12618.	13.8	15
79	Synthesis of a Lightâ€Ðriven Motorized Nanocar. Asian Journal of Organic Chemistry, 2015, 4, 1308-1314.	2.7	15
80	Ruthenium Red Colorimetric and Birefringent Staining of Amyloid-Î ² Aggregates in Vitro and in Tg2576 Mice. ACS Chemical Neuroscience, 2013, 4, 379-384.	3.5	13
81	Fluorinated Boron Nitride Quantum Dots: A New 0D Material for Energy Conversion and Detection of Cellular Metabolism. Particle and Particle Systems Characterization, 2019, 36, 1800346.	2.3	13
82	Synthesis of a fluorescent BODIPY-tagged ROMP catalyst and initial polymerization-propelled diffusion studies. Tetrahedron, 2015, 71, 5965-5972.	1.9	12
83	Reflux pretreatment-mediated sonication: A new universal route to obtain 2D quantum dots. Materials Today, 2019, 22, 17-24.	14.2	12
84	Synthesis and Photostability of Unimolecular Submersible Nanomachines: Toward Single-Molecule Tracking in Solution. Organic Letters, 2016, 18, 2343-2346.	4.6	11
85	Single-walled carbon nanotubes shell decorating porous silicate materials: A general platform for studying the interaction of carbon nanotubes with photoactive molecules. Chemical Science, 2011, 2, 1682.	7.4	10
86	Tunable Alkylation of White Graphene (Hexagonal Boron Nitride) Using Reductive Conditions. Journal of Physical Chemistry C, 2019, 123, 19725-19733.	3.1	10
87	Fluorescent surfactants from common dyes – Rhodamine B and Eosin Y. Pure and Applied Chemistry, 2020, 92, 265-274.	1.9	10
88	Nonradiative Deactivation of Singlet Oxygen (¹ O ₂) by Cubane and Its Derivatives. Organic Letters, 2008, 10, 5509-5512.	4.6	9
89	Adverse Effect of PTFE Stir Bars on the Covalent Functionalization of Carbon and Boron Nitride Nanotubes Using Billups–Birch Reduction Conditions. ACS Omega, 2019, 4, 5098-5106.	3.5	9
90	Carbon nanotubes dispersed in aqueous solution by ruthenium(ii) polypyridyl complexes. Nanoscale, 2016, 8, 13488-13497.	5.6	8

Angel A Marti

#	Article	IF	CITATIONS
91	FRETView: a computer program to simplify the process of obtaining fluorescence resonance energy transfer parameters. Photochemical and Photobiological Sciences, 2007, 6, 909.	2.9	7
92	Real-Time Visualization and Dynamics of Boron Nitride Nanotubes Undergoing Brownian Motion. Journal of Physical Chemistry B, 2020, 124, 4185-4192.	2.6	7
93	Design, Synthesis and Biological Evaluation of Ferrocenyl Thiazole and Thiazolo[5,4-d]thiazole Catechols as Inhibitors of 5-hLOX and as Antibacterials against Staphylococcus aureus. Structural Relationship and Computational Studies. Organometallics, 2020, 39, 2672-2681.	2.3	7
94	Increased solubility and fiber spinning of graphenide dispersions aided by crown-ethers. Chemical Communications, 2017, 53, 1498-1501.	4.1	6
95	Singular wavelength dependence on the sensitization of lanthanides by graphene quantum dots. Chemical Communications, 2018, 54, 4325-4328.	4.1	5
96	Luminescent hybrid biocomposite films derived from animal skin waste. Carbon Trends, 2021, 4, 100059.	3.0	5
97	Probing Amyloid Nanostructures Using Photoluminescent Metal Complexes. European Journal of Inorganic Chemistry, 2021, 2021, 4408-4424.	2.0	4
98	A life in crystallography. Dalton Transactions, 2020, 49, 3914-3916.	3.3	3
99	A simple graphene modified electrode for the determination of antimony(III) in edible plants and beverage. Food Chemistry, 2022, 367, 130676.	8.2	3
100	Leadâ€Free Perovskites: Leadâ€Free Double Perovskite Cs ₂ SnX ₆ : Facile Solution Synthesis and Excellent Stability (Small 39/2019). Small, 2019, 15, 1970211.	10.0	2
101	Bidentate Coordination of 2Apy in cisâ€{Ru(phen)2(2Apy)]2+ÂAiming at Photobiological Studies. European Journal of Inorganic Chemistry, 0, , .	2.0	1
102	Exploring the Photophysical Properties of UiO-67 MOF Doped with Rhenium Carbonyl Complexes. Journal of Photochemistry and Photobiology, 2022, , 100127.	2.5	1
103	Fluorescent Responsive Probes for Oligonucleotide Detection. ACS Symposium Series, 2010, , 269-282.	0.5	0
104	Retrospective on the 26th Inter-American Photochemical Society Winter Conference. ACS Energy Letters, 2017, 2, 780-781.	17.4	0