S Moein Moghimi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7581674/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long-circulating and target-specific nanoparticles: theory to practice. Pharmacological Reviews, 2001, 53, 283-318.	16.0	2,472
2	Nanomedicine: current status and future prospects. FASEB Journal, 2005, 19, 311-330.	0.5	1,732
3	Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Progress in Lipid Research, 2003, 42, 463-478.	11.6	1,084
4	A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Molecular Therapy, 2005, 11, 990-995.	8.2	967
5	The Possible "Proton Sponge ―Effect of Polyethylenimine (PEI) Does Not Include Change in Lysosomal pH. Molecular Therapy, 2013, 21, 149-157.	8.2	593
6	Factors Controlling Nanoparticle Pharmacokinetics: An Integrated Analysis and Perspective. Annual Review of Pharmacology and Toxicology, 2012, 52, 481-503.	9.4	477
7	Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo. Nature Nanotechnology, 2017, 12, 387-393.	31.5	411
8	Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. Trends in Biotechnology, 2000, 18, 412-420.	9.3	351
9	Non-phagocytic uptake of intravenously injected microspheres in rat spleen: Influence of particle size and hydrophilic coating. Biochemical and Biophysical Research Communications, 1991, 177, 861-866.	2.1	279
10	Distinct Polymer Architecture Mediates Switching of Complement Activation Pathways at the Nanosphereâ^'Serum Interface: Implications for Stealth Nanoparticle Engineering. ACS Nano, 2010, 4, 6629-6638.	14.6	263
11	Nanoparticles and innate immunity: new perspectives on host defence. Seminars in Immunology, 2017, 34, 33-51.	5.6	244
12	Nanotechnologies for Alzheimer's disease: diagnosis, therapy, and safety issues. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 521-540.	3.3	240
13	Poly(ethylene glycol)s generate complement activation products in human serum through increased alternative pathway turnover and a MASP-2-dependent process. Molecular Immunology, 2008, 46, 225-232.	2.2	231
14	Material properties in complement activation. Advanced Drug Delivery Reviews, 2011, 63, 1000-1007.	13.7	230
15	Coating particles with a block co-polymer (poloxamine-908) suppresses opsonization but permits the activity of dysopsonins in the serum. Biochimica Et Biophysica Acta - Molecular Cell Research, 1993, 1179, 157-165.	4.1	227
16	Serum-mediated recognition of liposomes by phagocytic cells of the reticuloendothelial system – The concept of tissue specificity. Advanced Drug Delivery Reviews, 1998, 32, 45-60.	13.7	219
17	Hyaluronan-coated nanoparticles: The influence of the molecular weight on CD44-hyaluronan interactions and on the immune response. Journal of Controlled Release, 2011, 156, 231-238.	9.9	204
18	Immunoglobulin deposition on biomolecule corona determines complement opsonization efficiency of preclinical and clinical nanoparticles. Nature Nanotechnology, 2019, 14, 260-268.	31.5	204

#	Article	IF	CITATIONS
19	Polycation cytotoxicity: a delicate matter for nucleic acid therapy—focus on polyethylenimine. Soft Matter, 2010, 6, 4001.	2.7	193
20	Dendrimers in Medicine: Therapeutic Concepts and Pharmaceutical Challenges. Bioconjugate Chemistry, 2015, 26, 1198-1211.	3.6	193
21	Methylation of the phosphate oxygen moiety of phospholipidâ€methoxy(polyethylene glycol) conjugate prevents PEGylated liposomeâ€mediated complement activation and anaphylatoxin production. FASEB Journal, 2006, 20, 2591-2593.	0.5	185
22	Dysfunctional oxidative phosphorylation makes malignant melanoma cells addicted to glycolysis driven by the V600EBRAF oncogene. Oncotarget, 2013, 4, 584-599.	1.8	166
23	PEGylated Nanoparticles Bind to and Alter Amyloid-Beta Peptide Conformation: Toward Engineering of Functional Nanomedicines for Alzheimer's Disease. ACS Nano, 2012, 6, 5897-5908.	14.6	164
24	Complement activation cascade triggered by PEG–PL engineered nanomedicines and carbon nanotubes: The challenges ahead. Journal of Controlled Release, 2010, 146, 175-181.	9.9	157
25	The polyoxyethylene/polyoxypropylene block coâ€polymer Poloxamerâ€407 selectively redirects intravenously injected microspheres to sinusoidal endothelial cells of rabbit bone marrow. FEBS Letters, 1992, 305, 62-66.	2.8	155
26	Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes. Nature Nanotechnology, 2017, 12, 589-594.	31.5	154
27	An integrated assessment of morphology, size, and complement activation of the PEGylated liposomal doxorubicin products Doxil®, Caelyx®, DOXOrubicin, and SinaDoxosome. Journal of Controlled Release, 2016, 221, 1-8.	9.9	152
28	An investigation of the filtration capacity and the fate of large filtered sterically-stabilized microspheres in rat spleen. Biochimica Et Biophysica Acta - General Subjects, 1993, 1157, 233-240.	2.4	151
29	On the issue of transparency and reproducibility in nanomedicine. Nature Nanotechnology, 2019, 14, 629-635.	31.5	149
30	Polyplex Evolution: Understanding Biology, Optimizing Performance. Molecular Therapy, 2017, 25, 1476-1490.	8.2	146
31	Tissue specific opsonins for phagocytic cells and their different affinity for cholesterol-rich liposomes. FEBS Letters, 1988, 233, 143-147.	2.8	138
32	Recognition by macrophages and liver cells of opsonized phospholipid vesicles and phospholipid headgroups. , 2001, 18, 1-8.		133
33	PEGylation of microspheres generates a heterogeneous population of particles with differential surface characteristics and biological performance. FEBS Letters, 2002, 532, 338-344.	2.8	131
34	Cubosomes and hexosomes as versatile platforms for drug delivery. Therapeutic Delivery, 2015, 6, 1347-1364.	2.2	130
35	Surface engineered nanospheres with enhanced drainage into lymphatics and uptake by macrophages of the regional lymph nodes. FEBS Letters, 1994, 344, 25-30.	2.8	129
36	Subcutaneous and intravenous delivery of diagnostic agents to the lymphatic system: applications in lymphoscintigraphy and indirect lymphography. Advanced Drug Delivery Reviews, 1999, 37, 295-312.	13.7	129

#	Article	IF	CITATIONS
37	Mechanisms of splenic clearance of blood cells and particles: towards development of new splenotropic agents. Advanced Drug Delivery Reviews, 1995, 17, 103-115.	13.7	126
38	Capture of Stealth Nanoparticles by the Body's Defences. Critical Reviews in Therapeutic Drug Carrier Systems, 2001, 18, 24.	2.2	125
39	Complement activation by PEGylated single-walled carbon nanotubes is independent of C1q and alternative pathway turnover. Molecular Immunology, 2008, 45, 3797-3803.	2.2	122
40	Cationic carriers of genetic material and cell death: A mitochondrial tale. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1203-1209.	1.0	117
41	Serum opsonins and phagocytosis of saturated and unsaturated phospholipid liposomes. Biochimica Et Biophysica Acta - Biomembranes, 1989, 984, 384-387.	2.6	110
42	Single-Walled Carbon Nanotube Surface Control of Complement Recognition and Activation. ACS Nano, 2013, 7, 1108-1119.	14.6	110
43	Low and high molecular weight poly(<scp>l</scp> â€lysine)s/poly(<scp>l</scp> â€lysine)–DNA complexes initiate mitochondrialâ€mediated apoptosis differently. FEBS Letters, 2005, 579, 6191-6198.	2.8	109
44	Causative factors behind poloxamer 188 (Pluronic F68, Flocorâ,,¢)-induced complement activation in human sera. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2004, 1689, 103-113.	3.8	106
45	Liposome triggering of innate immune responses: A perspective on benefits and adverse reactions. Journal of Liposome Research, 2009, 19, 85-90.	3.3	104
46	Crossing the blood-brain-barrier with nanoligand drug carriers self-assembled from a phage display peptide. Nature Communications, 2019, 10, 4635.	12.8	98
47	Functionalization with ApoE-derived peptides enhances the interaction with brain capillary endothelial cells of nanoliposomes binding amyloid-beta peptide. Journal of Biotechnology, 2011, 156, 341-346.	3.8	92
48	Allergic Reactions and Anaphylaxis to LNP-Based COVID-19 Vaccines. Molecular Therapy, 2021, 29, 898-900.	8.2	91
49	Reshaping the Future of Nanopharmaceuticals: <i>Ad Iudicium</i> . ACS Nano, 2011, 5, 8454-8458.	14.6	90
50	Chemical camouflage of nanospheres with a poorly reactive surface: towards development of stealth and target-specific nanocarriers. Biochimica Et Biophysica Acta - Molecular Cell Research, 2002, 1590, 131-139.	4.1	88
51	Tumour exosomes display differential mechanical and complement activation properties dependent on malignant state: implications in endothelial leakiness. Journal of Extracellular Vesicles, 2015, 4, 29685.	12.2	86
52	C1q-Mediated Complement Activation and C3 Opsonization Trigger Recognition of Stealth Poly(2-methyl-2-oxazoline)-Coated Silica Nanoparticles by Human Phagocytes. ACS Nano, 2018, 12, 5834-5847.	14.6	86
53	Exploiting bone marrow microvascular structure for drug delivery and future therapies. Advanced Drug Delivery Reviews, 1995, 17, 61-73.	13.7	84
54	Microspheres for targeting drugs to specific body sites. Journal of Controlled Release, 1993, 24, 157-163.	9.9	83

#	Article	IF	CITATIONS
55	Differential properties of organ-specific serum opsonins for liver and spleen macrophages. Biochimica Et Biophysica Acta - Biomembranes, 1989, 984, 379-383.	2.6	82
56	Cancer nanomedicine and the complement system activation paradigm: Anaphylaxis and tumour growth. Journal of Controlled Release, 2014, 190, 556-562.	9.9	82
57	Modulatory Role of Surface Coating of Superparamagnetic Iron Oxide Nanoworms in Complement Opsonization and Leukocyte Uptake. ACS Nano, 2015, 9, 10758-10768.	14.6	82
58	Therapeutic synthetic polymers: a game of Russian roulette?. Drug Discovery Today, 2002, 7, 998-1001.	6.4	80
59	Mechanisms of complement activation by dextran-coated superparamagnetic iron oxide (SPIO) nanoworms in mouse versus human serum. Particle and Fibre Toxicology, 2014, 11, 64.	6.2	79
60	Polymeric particulate technologies for oral drug delivery and targeting: a pathophysiological perspective. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, S5-S20.	3.3	76
61	A structurally diverse library of safe-by-design citrem-phospholipid lamellar and non-lamellar liquid crystalline nano-assemblies. Journal of Controlled Release, 2016, 239, 1-9.	9.9	76
62	The effect of methoxy-PEG chain length and molecular architecture on lymph node targeting of immuno-PEG liposomes. Biomaterials, 2006, 27, 136-144.	11.4	73
63	Liposome-Mediated Triggering of Complement Cascade. Journal of Liposome Research, 2008, 18, 195-209.	3.3	72
64	T cells expressing VHH-directed oligoclonal chimeric HER2 antigen receptors: Towards tumor-directed oligoclonal T cell therapy. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 378-386.	2.4	72
65	Mechanisms regulating body distribution of nanospheres conditioned with pluronic and tetronic block co-polymers. Advanced Drug Delivery Reviews, 1995, 16, 183-193.	13.7	71
66	Complement: Alive and Kicking Nanomedicines. Journal of Biomedical Nanotechnology, 2009, 5, 364-372.	1.1	71
67	Overcoming Nanoparticle-Mediated Complement Activation by Surface PEG Pairing. Nano Letters, 2020, 20, 4312-4321.	9.1	70
68	Just so stories: The random acts of anti-cancer nanomedicine performance. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1661-1666.	3.3	69
69	Nanomedicine and the complement paradigm. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 458-460.	3.3	68
70	Repeated intraperitoneal injections of liposomes containing phosphatidic acid and cardiolipin reduce amyloid-β levels in APP/PS1 transgenic mice. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 421-430.	3.3	68
71	Complement activation turnover on surfaces of nanoparticles. Nano Today, 2017, 15, 8-10.	11.9	67
72	Particulate Systems for Targeting of Macrophages: Basic and Therapeutic Concepts. Journal of Innate Immunity, 2012, 4, 509-528.	3.8	66

#	Article	IF	CITATIONS
73	Recent Developments in Polymeric Nanoparticle Engineering and Their Applications in Experimental and Clinical Oncology. Anti-Cancer Agents in Medicinal Chemistry, 2006, 6, 553-561.	1.7	65
74	Genetically engineered T cells bearing chimeric nanoconstructed receptors harboring TAG-72-specific camelid single domain antibodies as targeting agents. Cancer Letters, 2013, 334, 237-244.	7.2	64
75	Citrem modulates internal nanostructure of glyceryl monooleate dispersions and bypasses complement activation: Towards development of safe tunable intravenous lipid nanocarriers. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1909-1914.	3.3	64
76	High resolution respirometry analysis of polyethylenimine-mediated mitochondrial energy crisis and cellular stress: Mitochondrial proton leak and inhibition of the electron transport system. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 1213-1225.	1.0	63
77	Combined MUC1-specific nanobody-tagged PEG-polyethylenimine polyplex targeting and transcriptional targeting of tBid transgene for directed killing of MUC1 over-expressing tumour cells. Journal of Controlled Release, 2011, 156, 85-91.	9.9	62
78	Modulation of lymphatic distribution of subcutaneously injected poloxamer 407 oated nanospheres: the effect of the ethylene oxide chain configuration. FEBS Letters, 2003, 540, 241-244.	2.8	61
79	Activation of the Human Complement System by Cholesterol-Rich and PEGylated Liposomes—Modulation of Cholesterol-Rich Liposome-Mediated Complement Activation by Elevated Serum LDL and HDL Levels. Journal of Liposome Research, 2006, 16, 167-174.	3.3	61
80	Modulatory Effect of Human Plasma on the Internal Nanostructure and Size Characteristics of Liquid-Crystalline Nanocarriers. Langmuir, 2015, 31, 5042-5049.	3.5	59
81	Advanced colloid-based systems for efficient delivery of drugs and diagnostic agents to the lymphatic tissues. Progress in Biophysics and Molecular Biology, 1996, 65, 221-249.	2.9	58
82	Concentration Dependent Structural Ordering of Poloxamine 908 on Polystyrene Nanoparticles and Their Modulatory Role on Complement Consumption. Journal of Nanoscience and Nanotechnology, 2006, 6, 3126-3133.	0.9	58
83	Nanomedicine safety in preclinical and clinical development: focus on idiosyncratic injection/infusion reactions. Drug Discovery Today, 2018, 23, 1034-1042.	6.4	58
84	The effect of poloxamer-407 on liposome stability and targeting to bone marrow: comparison with polystyrene microspheres. International Journal of Pharmaceutics, 1991, 68, 121-126.	5.2	57
85	Opsonophagocytosis of liposomes by peritoneal macrophages and bone marrow reticuloendothelial cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1992, 1135, 269-274.	4.1	57
86	Cellular Distribution of Nonionic Micelles. Science, 2004, 303, 626-628.	12.6	57
87	Smart polymers in drug delivery: a biological perspective. Polymer Chemistry, 2017, 8, 41-51.	3.9	55
88	A Single Dose of Intravenously Injected Poloxamine-Coated Long-Circulating Particles Triggers Macrophage Clearance of Subsequent Doses in Rats. Clinical Science, 1997, 93, 371-379.	4.3	54
89	Perspectives on carbon nanotube-mediated adverse immune effects. Advanced Drug Delivery Reviews, 2012, 64, 1700-1705.	13.7	51
90	Enhanced hepatic clearance of intravenously administered sterically stabilized microspheres in zymosan-stimulated rats. Journal of Leukocyte Biology, 1993, 54, 513-517.	3.3	50

#	Article	IF	CITATIONS
91	Nanoparticle transport pathways into tumors. Journal of Nanoparticle Research, 2018, 20, 169.	1.9	50
92	Nanoparticle-mediated gene delivery to tumour neovasculature. Trends in Molecular Medicine, 2003, 9, 2-4.	6.7	47
93	The Interplay Between Blood Proteins, Complement, and Macrophages on Nanomedicine Performance and Responses. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 581-592.	2.5	47
94	Polyethylenimine-mediated impairment of mitochondrial membrane potential, respiration and membrane integrity: Implications for nucleic acid delivery and gene therapy. Mitochondrion, 2012, 12, 162-168.	3.4	46
95	Recent Advances in Cryo-TEM Imaging of Soft Lipid Nanoparticles. AIMS Biophysics, 2015, 2, 116-130.	0.6	45
96	Genomic perspectives in inter-individual adverse responses following nanomedicine administration: The way forward. Advanced Drug Delivery Reviews, 2012, 64, 1385-1393.	13.7	44
97	Particulate nanomedicinesâ ⁻ †. Advanced Drug Delivery Reviews, 2006, 58, 1451-1455.	13.7	43
98	Complement monitoring of Pluronic 127 gel and micelles: Suppression of copolymer-mediated complement activation by elevated serum levels of HDL, LDL, and apolipoproteins AI and B-100. Journal of Controlled Release, 2013, 170, 167-174.	9.9	43
99	Activation of Human Complement System by Dextran-Coated Iron Oxide Nanoparticles Is Not Affected by Dextran/Fe Ratio, Hydroxyl Modifications, and Crosslinking. Frontiers in Immunology, 2016, 7, 418.	4.8	43
100	Lactate Dehydrogenase Assay for Assessment of Polycation Cytotoxicity. Methods in Molecular Biology, 2013, 948, 13-22.	0.9	42
101	Poly(3â€hydroxybutyrateâ€ <i>co</i> â€Râ€3â€hydroxyhexanoate) Nanoparticles with Polyethylenimine Coat as Simple, Safe, and Versatile Vehicles for Cell Targeting: Population Characteristics, Cell Uptake, and Intracellular Trafficking. Advanced Healthcare Materials, 2014, 3, 817-824.	7.6	41
102	In Vitro and In Vivo Differences in Murine Third Complement Component (C3) Opsonization and Macrophage/Leukocyte Responses to Antibody-Functionalized Iron Oxide Nanoworms. Frontiers in Immunology, 2017, 8, 151.	4.8	40
103	Poloxamer-188 Revisited: a Potentially Valuable Immune Modulator?. Journal of the National Cancer Institute, 1996, 88, 766-768.	6.3	39
104	Complement activation by drug carriers and particulate pharmaceuticals: Principles, challenges and opportunities. Advanced Drug Delivery Reviews, 2020, 157, 83-95.	13.7	39
105	Complement activation by PEG-functionalized multi-walled carbon nanotubes is independent of PEG molecular mass and surface density. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 469-473.	3.3	38
106	Prolonging the circulation time and modifying the body distribution of intravenously injected polystyrene nanospheres by prior intravenous administration of poloxamine-908. A `hepatic-blockade' event or manipulation of nanosphere surface in vivo?. Biochimica Et Biophysica Acta - General Subjects 1997 1336 1-6	2.4	37
107	Recent advances in cellular, sub-cellular and molecular targeting. Advanced Drug Delivery Reviews, 2000, 41, 129-133.	13.7	37
108	Capture of stealth nanoparticles by the body's defences. Critical Reviews in Therapeutic Drug Carrier Systems, 2001, 18, 527-50.	2.2	37

#	Article	IF	CITATIONS
109	Ordering of Binary Polymeric Nanoparticles on Hydrophobic Surfaces Assembled from Low Volume Fraction Dispersions. Journal of the American Chemical Society, 2007, 129, 13390-13391.	13.7	36
110	Soluble and immobilized graphene oxide activates complement system differently dependent on surface oxidation state. Biomaterials, 2016, 78, 20-26.	11.4	35
111	Microneedle-based devices for point-of-care infectious disease diagnostics. Acta Pharmaceutica Sinica B, 2021, 11, 2344-2361.	12.0	35
112	Critical issues in site-specific targeting of solid tumours: the carrier, the tumour barriers and the bioavailable drug. Expert Opinion on Drug Delivery, 2008, 5, 205-219.	5.0	34
113	Polymeric particulate technologies for oral drug delivery and targeting: A pathophysiological perspective. Maturitas, 2012, 73, 5-18.	2.4	34
114	Real-time evidence of surface modification at polystyrene lattices by poloxamine 908 in the presence of serum: in vivo conversion of macrophage-prone nanoparticles to stealth entities by poloxamine 908. FEBS Letters, 2003, 547, 177-182.	2.8	33
115	Engineering Liposomes and Nanoparticles for Biological Targeting. Advances in Biochemical Engineering/Biotechnology, 2010, 125, 251-280.	1.1	33
116	Cisplatin Encapsulation Generates Morphologically Different Multicompartments in the Internal Nanostructures of Nonlamellar Liquid-Crystalline Self-Assemblies. Langmuir, 2018, 34, 6570-6581.	3.5	33
117	Innovations in avoiding particle clearance from blood by Kupffer cells: cause for reflection. Critical Reviews in Therapeutic Drug Carrier Systems, 1994, 11, 31-59.	2.2	33
118	Modulation of murine liver macrophage clearance of liposomes by diethylstilbestrol. The effect of vesicle surface charge and a role for the complement receptor Mac-1 (CD11b/CD18) of newly recruited macrophages in liposome recognition. Journal of Controlled Release, 2002, 78, 55-65.	9.9	32
119	ImmunoPEGliposome-mediated reduction of blood and brain amyloid levels in a mouse model of Alzheimer's disease is restricted to aged animals. Biomaterials, 2017, 112, 141-152.	11.4	32
120	Non-Lamellar Liquid Crystalline Nanocarriers for Thymoquinone Encapsulation. Molecules, 2020, 25, 16.	3.8	30
121	CAR T-cell bioengineering: Single variable domain of heavy chain antibody targeted CARs. Advanced Drug Delivery Reviews, 2019, 141, 41-46.	13.7	29
122	Polyethylenimine architecture-dependent metabolic imprints and perturbation of cellular redox homeostasis. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 328-342.	1.0	28
123	Peptide and nucleic acid-directed self-assembly of cationic nanovehicles through giant unilamellar vesicle modification: Targetable nanocomplexes for in vivo nucleic acid delivery. Acta Biomaterialia, 2017, 51, 351-362.	8.3	28
124	Polymeric Nanocarriers for siRNA Delivery: Challenges and Future Prospects. Journal of Biomedical Nanotechnology, 2008, 4, 258-275.	1.1	27
125	Re-establishing the long circulatory behaviour of poloxamine-coated particles after repeated intravenous administration: applications in cancer drug delivery and imaging. Biochimica Et Biophysica Acta - General Subjects, 1999, 1472, 399-403.	2.4	26
126	Recognition and clearance of methoxypoly(ethyleneglycol)2000-grafted liposomes by macrophages with enhanced phagocytic capacity Implications in experimental and clinical oncology. Biochimica Et Biophysica Acta - General Subjects, 2001, 1526, 227-229.	2.4	26

#	Article	IF	CITATIONS
127	Complement monitoring of carbon nanotubes. Nature Nanotechnology, 2010, 5, 382-382.	31.5	26
128	Structural profiling and biological performance of phospholipid–hyaluronan functionalized single-walled carbon nanotubes. Journal of Controlled Release, 2013, 170, 295-305.	9.9	26
129	Serum factors that regulate phagocytosis of liposomes by Kupffer cells. Biochemical Society Transactions, 1993, 21, 128S-128S.	3.4	25
130	Enhanced lymph node retention of subcutaneously injected IgG1-PEG2000-liposomes through pentameric IgM antibody-mediated vesicular aggregation. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 51-55.	2.6	24
131	Complement system and the brain: Selected pathologies and avenues toward engineering of neurological nanomedicines. Journal of Controlled Release, 2012, 161, 283-289.	9.9	24
132	Differential Modulation of Cellular Bioenergetics by Poly(<scp>l</scp> -lysine)s of Different Molecular Weights. Biomacromolecules, 2015, 16, 2119-2126.	5.4	24
133	Complement therapeutics meets nanomedicine: overcoming human complement activation and leukocyte uptake of nanomedicines with soluble domains of CD55. Journal of Controlled Release, 2019, 302, 181-189.	9.9	24
134	Translational gaps in animal models of human infusion reactions to nanomedicines. Nanomedicine, 2018, 13, 973-975.	3.3	23
135	Multivalent targeting and killing of HER2 overexpressing breast carcinoma cells with methotrexate-encapsulated tetra-specific non-overlapping variable domain heavy chain anti-HER2 antibody-PEG-liposomes: In vitro proof-of-concept. European Journal of Pharmaceutical Sciences, 2018, 122–42-50	4.0	23
136	Heavy Chain Only Antibodies: A New Paradigm in Personalized HER2+ Breast Cancer Therapy. BioImpacts, 2013, 3, 1-4.	1.5	23
137	Differences in the molecular weight profile of poloxamer 407 affect its ability to redirect intravenously administered colloids to the bone marrow. International Journal of Pharmaceutics, 1992, 83, 273-276.	5.2	22
138	Modification of the Stewart biphasic colorimetric assay for stable and accurate quantitatitive determination of Pluronic and Tetronic block copolymers for application in biological systems. Analytical Biochemistry, 2007, 361, 287-293.	2.4	21
139	Polycation-Mediated Integrated Cell Death Processes. Advances in Genetics, 2014, 88, 353-398.	1.8	21
140	Revealing Dynamics of Accumulation of Systemically Injected Liposomes in the Skin by Intravital Microscopy. ACS Nano, 2017, 11, 11584-11593.	14.6	21
141	Lactate Dehydrogenase Assay for Assessment of Polycation Cytotoxicity. Methods in Molecular Biology, 2019, 1943, 291-299.	0.9	21
142	A structurally diverse library of glycerol monooleate/oleic acid non-lamellar liquid crystalline nanodispersions stabilized with nonionic methoxypoly(ethylene glycol) (mPEG)-lipids showing variable complement activation properties. Journal of Colloid and Interface Science, 2021, 582, 906-917.	9.4	21
143	Complement opsonization of nanoparticles: Differences between humans and preclinical species. Journal of Controlled Release, 2021, 338, 548-556.	9.9	20
144	The effect of block co-polymers on the uptake of model polystyrene microspheres by Kupffer cells - in vitro and in vivo studies. Biochemical Society Transactions, 1991, 19, 329S-329S.	3.4	19

#	Article	IF	CITATIONS
145	Current progress and future prospects of liposomes in dermal drug delivery. Journal of Microencapsulation, 1993, 10, 155-162.	2.8	19
146	Complement-mediated tumour growth: Implications for cancer nanotechnology and nanomedicines. Molecular Immunology, 2009, 46, 1571-1572.	2.2	19
147	Biological targeting and innovative therapeutic interventions with phage-displayed peptides and structured nucleic acids (aptamers). Current Opinion in Biotechnology, 2011, 22, 832-838.	6.6	19
148	Platelet mimicry: The emperor's new clothes?. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 245-248.	3.3	19
149	Calcium as a possible modulator of Kupffer cell phagocytic function by regulating liver-specific opsonic activity. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1028, 304-308.	2.6	18
150	Poly-(amidoamine) dendrimers with a precisely core positioned sulforhodamine B molecule for comparative biological tracing and profiling. Journal of Controlled Release, 2017, 246, 88-97.	9.9	18
151	Bionanotechnologies for treatment and diagnosis of Alzheimer's disease. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 515-518.	3.3	17
152	Hexosome engineering for targeting of regional lymph nodes. Materialia, 2020, 11, 100705.	2.7	17
153	Roadmap on nanomedicine. Nanotechnology, 2021, 32, 012001.	2.6	17
154	Effect of Splenic Congestion Associated with Haemolytic Anaemia on Filtration of â€~Spleen-Homing' Microspheres. Clinical Science, 1993, 84, 605-609.	4.3	16
155	New platforms for multi-functional ocular lenses: engineering double-sided functionalized nano-coatings. Journal of Drug Targeting, 2015, 23, 305-310.	4.4	16
156	AFM visualization of sub-50 nm polyplex disposition to the nuclear pore complex without compromising the integrity of the nuclear envelope. Journal of Controlled Release, 2016, 244, 24-29.	9.9	16
157	Airborne Particulate Matter and SARS-CoV-2 Partnership: Virus Hitchhiking, Stabilization and Immune Cell Targeting — A Hypothesis. Frontiers in Immunology, 2020, 11, 579352.	4.8	16
158	Pro-inflammatory concerns with lipid nanoparticles. Molecular Therapy, 2022, 30, 2109-2110.	8.2	16
159	Complement Propriety and Conspiracy in Nanomedicine: Perspective and a Hypothesis. Nucleic Acid Therapeutics, 2016, 26, 67-72.	3.6	15
160	Pharmacokinetic analysis reveals limitations and opportunities for nanomedicine targeting of endothelial and extravascular compartments of tumours. Journal of Drug Targeting, 2019, 27, 690-698.	4.4	15
161	Tunable 3D and 2D polystyrene nanoparticle assemblies using surface wettability, low volume fraction and surfactant effects. Nanotechnology, 2009, 20, 025604.	2.6	14
162	Dendrimer end-terminal motif-dependent evasion of human complement and complement activation through IgM hitchhiking. Nature Communications, 2021, 12, 4858.	12.8	14

#	Article	IF	CITATIONS
163	Endothelial Cells as Therapeutic Targets in Cancer: New Biology and Novel Delivery Systems. Critical Reviews in Therapeutic Drug Carrier Systems, 2003, 20, 139-152.	2.2	14
164	Lymphatic targeting of immuno-PEC-liposomes: Evaluation of antibody-coupling procedures on lymph node macrophage uptake. Journal of Drug Targeting, 2008, 16, 586-590.	4.4	13
165	Complement monitoring of carbon nanotubes. Nature Nanotechnology, 2010, 5, 382-383.	31.5	13
166	Altered tissue-specific opsonic activities and opsono-recognition of liposomes in tumour-bearing rats. Biochimica Et Biophysica Acta - Biomembranes, 1996, 1285, 56-64.	2.6	12
167	Transformation of structurally diverse steroidal analogues by the fungus Corynespora cassiicola CBS 161.60 results in generation of 8Î ² -monohydroxylated metabolites with evidence in favour of 8Î ² -hydroxylation through inverted binding in the 9α-hydroxylase. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids. 2011. 1811. 1054-1061.	2.4	12
168	Integrinâ€Targeted, Short Interfering RNA Nanocomplexes for Neuroblastoma Tumorâ€Specific Delivery Achieve <i>MYCN</i> Silencing with Improved Survival. Advanced Functional Materials, 2021, 31, 2104843.	14.9	12
169	Reciprocity in the Developmental Regulation of Aquaporins 1, 3 and 5 during Pregnancy and Lactation in the Rat. PLoS ONE, 2014, 9, e106809.	2.5	12
170	Complement Sensing of Nanoparticles and Nanomedicines. ACS Symposium Series, 2012, , 365-382.	0.5	11
171	Total Internal Reflection Fluorescence (TIRF) Microscopy for Real-Time Imaging of Nanoparticle-Cell Plasma Membrane Interaction. , 2012, 906, 473-482.		10
172	Live-cell fluorescent microscopy platforms for real-time monitoring of polyplex–cell interaction: Basic guidelines. Methods, 2014, 68, 300-307.	3.8	10
173	Critical issues and pitfalls in serum and plasma handling for complement analysis in nanomedicine and bionanotechnology. Nano Today, 2022, 44, 101479.	11.9	10
174	LIPOSOME RECOGNITION BY RESIDENT AND NEWLY RECRUITED MURINE LIVER MACROPHAGES. Journal of Liposome Research, 2002, 12, 67-70.	3.3	9
175	Polymeric Nanoparticles as Drug Carriers and Controlled Release Implant Devices. , 2006, , 29-42.		9
176	Editorial [Hot Topic: Lipid-Based Nanosystems and Complexes in Experimental and Clinical Therapeutics (Guest Editors: A. Agrawal and S.M. Moghimi)]. Current Drug Delivery, 2005, 2, 295-295.	1.6	8
177	Nanotechnology: from fundamental concepts to clinical applications for healthy aging. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, S1-S4.	3.3	8
178	The Role of Complement in Antibody Therapy for Infectious Diseases. Microbiology Spectrum, 2014, 2, .	3.0	8
179	Determination of Polycation-Mediated Perturbation of Mitochondrial Respiration in Intact Cells by High-Resolution Respirometry (Oxygraph-2k, OROBOROS). Methods in Molecular Biology, 2019, 1943, 313-322.	0.9	8
180	Cell medium-dependent dynamic modulation of size and structural transformations of binary phospholipid/I‰-3 fatty acid liquid crystalline nano-self-assemblies: Implications in interpretation of cell uptake studies. Journal of Colloid and Interface Science, 2022, 606, 464-479.	9.4	8

S MOEIN MOGHIMI

#	Article	IF	CITATIONS
181	Elevated circulating endothelin-1 as a potential biomarker for high-risk COVID-19 severity. Precision Nanomedicine, 2020, 3, .	0.8	8
182	Surfactant-mediated complement activation in beagle dogs. International Immunopharmacology, 2013, 17, 33-34.	3.8	7
183	Targeting Biological Barriers: Turning a Wall into a Therapeutic Springboard. Molecular Therapy, 2018, 26, 933-934.	8.2	7
184	Antibody-Dependent Complement Responses toward SARS-CoV-2 Receptor-Binding Domain Immobilized on "Pseudovirus-like―Nanoparticles. ACS Nano, 2022, , .	14.6	7
185	Insidious pathogen-mimicking properties of nanoparticles in triggering the lectin pathway of the complement system. European Journal of Nanomedicine, 2015, 7, .	0.6	6
186	Physiopathological and physicochemical considerations in targeting of colloids and drug carriers to the bone marrow. Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 187-209.	2.2	6
187	Synthetic polymers in 21st century therapeutics: the way forward â–¾. Drug Discovery Today, 2003, 8, 154-156.	6.4	5
188	Complement monitoring of nanomedicines and implants. Advanced Drug Delivery Reviews, 2011, 63, 963-964.	13.7	5
189	Nanoparticles in Medicine. , 2014, , 77-89.		5
190	Editorial: Interaction Between the Immune System and Nanomaterials: Safety and Medical Exploitation. Current Bionanotechnology, 2016, 2, 3-5.	0.6	5
191	Recognition of extremophilic archaeal viruses by eukaryotic cells: a promising nanoplatform from the third domain of life. Scientific Reports, 2016, 6, 37966.	3.3	5
192	Interaction of extremophilic archaeal viruses with human and mouse complement system and viral biodistribution in mice. Molecular Immunology, 2017, 90, 273-279.	2.2	5
193	The Innate Immune Responses, Adjuvants and Delivery Systems. , 0, , 113-127.		5
194	Defining and characterizing non-biological complex drugs (NBCDs) – Is size enough? The case for liposomal doxorubicin generics (†liposomal nanosimilars') for injection. GaBI Journal, 2014, 3, 56-57.	0.3	5
195	Organ-Specific Targeting of Synthetic and Natural Drug Carriers. Advances in Molecular and Cell Biology, 1994, 9, 263-282.	0.1	4
196	Activation of the mononuclear phagocyte system by poloxamine 908: its implications for targeted drug delivery. Pharmaceutical Research, 1997, 14, 1629-1633.	3.5	4
197	Nanotechnology: From fundamental concepts to clinical applications for healthy aging. Maturitas, 2012, 73, 1-4.	2.4	4
198	Nanoparticle Technology: Having Impact, but Needing Further Optimization. Molecular Therapy, 2017, 25, 1461-1463.	8.2	4

ARTICLE IF CITATIONS Tuning the Engines of Nanomedicine. Molecular Therapy, 2020, 28, 693-694. 199 8.2 Tissue Specific Serum Opsonins and Phagocytosis of Liposomes., 1990, , 87-94. 200 4 Exploitation of Macrophage Clearance Functions In Vivo. Handbook of Experimental Pharmacology, 1.8 2003, , 41-54. Chapter 3. Nanoparticle Engineering for the Lymphatic System and Lymph Node Targeting. RSC 202 0.2 4 Nanoscience and Nanotechnology, 2010, , 81-97. Factors Controlling Pharmacokinetics of Intravenously Injected Nanoparticulate Systems., 2009,, 267-282. 204 Nanoparticle patterning for biomedicine. BioImpacts, 2016, 6, 183-185. 1.5 3 Call for papers: Nanoparticle Development and Applications in Cellular and Molecular Therapies. 8.2 Molecular Therapy, 2016, 24, 1334-1335. The Art of Complement: Complement Sensing of Nanoparticles and Consequences. Advances in Delivery 206 0.4 3 Science and Technology, 2016, , 43-51. Perturbation of mitochondrial bioenergetics by polycations counteracts resistance to BRAFE600 inhibition in melanoma cells. Journal of Controlled Release, 2019, 309, 158-172. 208 A rally for brain targeting: the advent of a new era. Therapeutic Delivery, 2020, 11, 465-470. 2.2 3 Complement Activation by Nanomaterials. Molecular and Integrative Toxicology, 2020, , 83-98. 209 0.5 210 Skin Biosensing and Bioanalysis: what the Future Holds. Precision Nanomedicine, 2018, 1, 124-127. 0.8 3 Theranostics., 2014, , 1-3. Hypersensitivity Reactions to Nanomedicines: Causative Factors and Optimization of Design 212 2 Parameters. , 2010, , 225-237. Uptake and Intracellular Trafficking of Nanocarriers. Fundamental Biomedical Technologies, 2014, , 213 117-138. The diagnostic potential of microneedles in infectious diseases. Precision Nanomedicine, 2020, 3, . 214 0.8 2 Hormonal Control of Macrophage Phagocytosis of Phospholipid Vesicles. Journal of Liposome 3.3 1 Research, 2000, 10, 409-417. 216 Particulate nanomedicine in the footsteps of platelet homing. Nanomedicine, 2007, 2, 381-384. 3.3 1

S MOEIN MOGHIMI

#	Article	IF	CITATIONS
217	Combined Fluorimetric Caspase 3/7 Assay and Bradford Protein Determination for Assessment of Polycation-Mediated Cytotoxicity. Methods in Molecular Biology, 2013, 948, 23-33.	0.9	1
218	Anatomical and Physicochemical Factors Controlling Nanoparticle Pharmacokinetics. Frontiers in Nanobiomedical Research, 2014, , 31-44.	0.1	1
219	Theranostics. , 2017, , 4505-4507.		1
220	<i>A Special Issue on</i> Nano- and Micro-Technologies for Biological Targeting, Tracking, Imaging and Sensing. Journal of Biomedical Nanotechnology, 2009, 5, 611-613.	1.1	1
221	Use of â€~nano' prefix is no small matter. Nature, 2022, , .	27.8	1
222	Reprogramming the lymphocyte axis for advanced immunotherapy. Advanced Drug Delivery Reviews, 2019, 141, 1-2.	13.7	0
223	Combined Fluorimetric Caspase-3/7 Assay and Bradford Protein Determination for Assessment of Polycation-Mediated Cytotoxicity. Methods in Molecular Biology, 2019, 1943, 301-311.	0.9	0
224	The Journal of Nanotheranostics: A New Open-Access Journal at the Interface of Nanotechnology, Materials Science, and Medicine for Precision Medicine. Journal of Nanotheranostics, 2020, 1, 56-57.	3.1	0
225	Editorial: Immune Mechanisms in the Pathologic Response to Particles, Fibers, and Nanomaterials. Frontiers in Immunology, 2021, 12, 665810.	4.8	0
226	Recent Developments and Limitations of Poloxamine-Coated Long-Circulating Particles in Experimental Drug Delivery. , 1998, , 263-274.		0
227	The Role of Complement in Antibody Therapy for Infectious Diseases. , 0, , 63-74.		0
228	Liposomes. , 2016, , 1802-1808.		0