Mazeyar Parvinzadeh Gashti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/758154/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Air Plasma Functionalization of Electrospun Nanofibers for Skin Tissue Engineering. Biomedicines, 2022, 10, 617.	3.2	13
2	Argon and Argon–Oxygen Plasma Surface Modification of Gelatin Nanofibers for Tissue Engineering Applications. Membranes, 2021, 11, 31.	3.0	34
3	Ultrasonically developed silver/iota-carrageenan/cotton bionanocomposite as an efficient material for biomedical applications. International Journal of Biological Macromolecules, 2021, 180, 439-457.	7.5	30
4	Influence of Topical Cross-Linking on Mechanical and Ballistic Performance of a Woven Ultra-High-Molecular-Weight Polyethylene Fabric Used in Soft Body Armor. ACS Applied Polymer Materials, 2021, 3, 6008-6018.	4.4	6
5	Gel diffusion-inspired biomimetic calcium iodate/gelatin composite particles: Structural characterization and antibacterial activity. Journal of Solid State Chemistry, 2020, 285, 121262.	2.9	9
6	Thermal properties of aliphatic polyesters. , 2020, , 151-189.		1
7	Polypyrrole-MWCNT-Ag composites for electromagnetic shielding: Comparison between chemical deposition and UV-reduction approaches. Journal of Physics and Chemistry of Solids, 2018, 118, 80-87.	4.0	57
8	Hydrogel-assisted low-temperature synthesis of calcium borate nanoparticles. Journal of the Australian Ceramic Society, 2018, 54, 601-607.	1.9	13
9	Fluorinated-PAN nanofibers: Preparation, optimization, characterization and fog harvesting property. Journal of Industrial and Engineering Chemistry, 2018, 62, 146-155.	5.8	48
10	Polyvinylpyrrolidone/Carbon Nanotube/Cotton Functional Nanocomposite: Preparation and Characterization of Properties. Fibers and Polymers, 2018, 19, 1940-1947.	2.1	24
11	Photocatalytic discoloration of denim using advanced oxidation process with H2O2/UV. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 360, 278-288.	3.9	18
12	Comparison between nano and micro silicon softener on corona discharge-treated cotton fabric. Journal of Industrial Textiles, 2018, 47, 1757-1768.	2.4	5
13	Extraction of dyes fromDelphinium Zalilflowers and dyeing silk yarns. Journal of the Textile Institute, 2017, 108, 66-70.	1.9	32
14	Nanotechnology-based coating techniques for smart textiles. , 2016, , 243-268.		23
15	Extraction of polyphenolic dyes from henna, pomegranate rind, and <i>Pterocarya fraxinifolia</i> for nylon 6 dyeing. Coloration Technology, 2016, 132, 162-176.	1.5	69
16	A microfluidic method and custom model for continuous, non-intrusive biofilm viscosity measurements under different nutrient conditions. Biomicrofluidics, 2016, 10, 064107.	2.4	14
17	A video imaging method for time-dependent measurements of molecular mass transfer and biofilm dynamics in microchannels. MRS Advances, 2016, 1, 2099-2106.	0.9	1
18	Growth of strontium hydrogen phosphate/gelatin composites: a biomimetic approach. New Journal of Chemistry, 2016, 40, 5495-5500.	2.8	35

#	Article	IF	CITATIONS
19	Fabrication of a multifunctional graphene/polyvinylphosphonic acid/cotton nanocomposite via facile spray layer-by-layer assembly. RSC Advances, 2016, 6, 23288-23299.	3.6	77
20	Microscopy of Nanomaterials. , 2016, , 105-128.		0
21	Zwitter ionic modification of cobalt-ferrite nanofiber for the removal of anionic and cationic dyes. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67, 306-317.	5.3	29
22	Through thick and thin: a microfluidic approach for continuous measurements of biofilm viscosity and the effect of ionic strength. Lab on A Chip, 2016, 16, 4710-4717.	6.0	16
23	Biomineralizationâ€Inspired Green Synthesis of Zinc Phosphateâ€Based Nanosheets in Gelatin Hydrogel. International Journal of Applied Ceramic Technology, 2016, 13, 1069-1073.	2.1	19
24	A Microfluidic Platform with Nanoparticle-Based Metal-Enhanced Fluorescence for pH Mapping Acidified Aqueous Solutions by CO2 Microbubbles. MRS Advances, 2016, 1, 2037-2043.	0.9	1
25	Chemically reduced versus photo-reduced clay-Ag-polypyrrole ternary nanocomposites: Comparing thermal, optical, electrical and electromagnetic shielding properties. Materials Research Bulletin, 2016, 83, 96-107.	5.2	39
26	New insight into compressive shrinkage finishing in a garment company: The effects on physical, mechanical and colorimetric properties of cotton woven fabrics. Fibers and Polymers, 2016, 17, 130-135.	2.1	6
27	A microfluidic platform with pH imaging for chemical and hydrodynamic stimulation of intact oral biofilms. Lab on A Chip, 2016, 16, 1412-1419.	6.0	51
28	Surface modification of electrospun PAN nanofibers by amine compounds for adsorption of anionic dyes. Desalination and Water Treatment, 2016, 57, 10333-10348.	1.0	50
29	Live-streaming: Time-lapse video evidence of novel streamer formation mechanism and varying viscosity. Biomicrofluidics, 2015, 9, 041101.	2.4	14
30	Extraction of juglone from <i>Pterocarya fraxinifolia</i> leaves for dyeing, antiâ€fungal finishing, and solar <scp>UV</scp> protection of wool. Coloration Technology, 2015, 131, 451-457.	1.5	64
31	Dispersibility of Hydrophilic and Hydrophobic Nano-Silica Particles in Polyethylene Terephthalate Films: Evaluation of Morphology and Thermal Properties. Polymers and Polymer Composites, 2015, 23, 285-296.	1.9	22
32	Polar Nature of Biomimetic Fluorapatite/Gelatin Composites: A Comparison of Bipolar Objects and the Polar State of Natural Tissue. Biomacromolecules, 2015, 16, 2814-2819.	5.4	16
33	Electromagnetic shielding response of UV-induced polypyrrole/silver coated wool. Fibers and Polymers, 2015, 16, 585-592.	2.1	53
34	New insights into corona discharge surface ionization of polyethylene terephthalate via a combined computational and experimental assessment. Current Applied Physics, 2015, 15, 1075-1083.	2.4	25
35	A robust method for producing electromagnetic shielding cellulose via iron oxide pillared clay coating under ultraviolet irradiation. Functional Materials Letters, 2015, 08, 1550073.	1.2	23
36	Poly(acrylic acid)-zeolite nanocomposites for dye removal from single and binary systems. Desalination and Water Treatment, 2015, , 1-19.	1.0	10

#	Article	IF	CITATIONS
37	Chemical grafting of disperse dyes onto polyacrylonitrile: A novel method for coloration of fibers. Fibers and Polymers, 2014, 15, 2307-2312.	2.1	7
38	Thin Film Plasma Functionalization of Polyethylene Terephthalate to Induce Bone-Like Hydroxyapatite Nanocrystals. Plasma Processes and Polymers, 2014, 11, 37-43.	3.0	40
39	Ultrasound for efficient emulsification and uniform coating of an anionic lubricant on cotton. Fibers and Polymers, 2014, 15, 65-70.	2.1	12
40	Clay nanoadsorbent as an environmentally friendly substitute for mordants in the natural dyeing of carpet piles. Coloration Technology, 2014, 130, 54-61.	1.5	46
41	Barium hydrogen phosphate/gelatin composites versus gelatin-free barium hydrogen phosphate: Synthesis and characterization of properties. Journal of Colloid and Interface Science, 2014, 431, 149-156.	9.4	20
42	Mineralization of Calcium Phosphate Crystals in Starch Template Inducing a Brushite Kidney Stone Biomimetic Composite. Crystal Growth and Design, 2013, 13, 2166-2173.	3.0	44
43	Various nano-silica particles affecting dyeability of poly(ethylene terephthalate)/silica nanocomposite films. Fibers and Polymers, 2013, 14, 743-751.	2.1	21
44	A novel method for colouration of cotton using clay nanoâ€adsorbent treatment. Pigment and Resin Technology, 2013, 42, 175-185.	0.9	40
45	Synthesis of bone-like micro-porous calcium phosphate/iota-carrageenan composites by gel diffusion. Colloids and Surfaces B: Biointerfaces, 2013, 110, 426-433.	5.0	47
46	SiO2-kaolinite affecting the surface properties of ternary poly(vinyl chloride)/silica/kaolinite nanocomposites. Fibers and Polymers, 2013, 14, 1870-1876.	2.1	15
47	ENZYMATIC SURFACE HYDROLYSIS OF POLYAMIDE 6,6 WITH MIXTURES OF PROTEOLYTIC AND LIPOLYTIC ENZYMES. Preparative Biochemistry and Biotechnology, 2013, 43, 798-814.	1.9	36
48	Functional cellulose fibers via polycarboxylic acid/carbon nanotube composite coating. Journal of Coatings Technology Research, 2013, 10, 123-132.	2.5	95
49	Surface oxidation of cellulose by ozone-gas in a vacuum cylinder to improve the functionality of fluoromonomer. Vacuum, 2013, 91, 7-13.	3.5	48
50	Glutamic acid inducing kidney stone biomimicry by a brushite/gelatin composite. Journal of Materials Chemistry B, 2013, 1, 1501.	5.8	49
51	Citric acid/ZrO2 nanocomposite inducing thermal barrier and self-cleaning properties on protein fibers. Composites Part B: Engineering, 2013, 52, 340-349.	12.0	49
52	UV radiation inducing succinic acid/silica–kaolinite network on cellulose fiber to improve the functionality. Composites Part B: Engineering, 2013, 48, 158-166.	12.0	48
53	UV radiation induced flame retardant cellulose fiber by using polyvinylphosphonic acid/carbon nanotube composite coating. Composites Part B: Engineering, 2013, 45, 282-289.	12.0	87
54	Morphological, optical and electromagnetic characterization of polybutylene terephthalate/silica nanocomposites. Fibers and Polymers, 2013, 14, 1324-1331.	2.1	20

#	Article	IF	CITATIONS
55	Effects of coating of nano―and microemulsion silicones on thermal properties and flammability of polyethylene terephthalate textile. Pigment and Resin Technology, 2013, 42, 34-44.	0.9	14
56	Effect of Colloidal Dispersion of Clay on Some Properties of Wool Fiber. Journal of Dispersion Science and Technology, 2013, 34, 853-858.	2.4	33
57	Synthesizing tertiary silver/silica/kaolinite nanocomposite using photo-reduction method: Characterization of morphology and electromagnetic properties. Composites Part B: Engineering, 2012, 43, 3374-3383.	12.0	38
58	Preparation of electromagnetic reflective wool using nano-ZrO2/citric acid as inorganic/organic hybrid coating. Sensors and Actuators A: Physical, 2012, 187, 1-9.	4.1	59
59	Effect of nanoclay type on dyeability of polyethylene terephthalate/clay nanocomposites. Journal of Applied Polymer Science, 2012, 125, 4109-4120.	2.6	39
60	Coating of macroemulsion and microemulsion silicones on poly(ethylene terephthalate) fibers: Evaluation of the thermal properties and flammability. Journal of Applied Polymer Science, 2012, 125, 1430-1438.	2.6	24
61	Structural, optical and electromagnetic properties of aluminum–clay nanocomposites. Superlattices and Microstructures, 2012, 51, 135-148.	3.1	45
62	Deposition of silver nanoparticles on carbon nanotube by chemical reduction method: Evaluation of surface, thermal and optical properties. Superlattices and Microstructures, 2012, 52, 50-62.	3.1	69
63	Preparation of water-repellent cellulose fibers using a polycarboxylic acid/hydrophobic silica nanocomposite coating. Surface and Coatings Technology, 2012, 206, 3208-3215.	4.8	89
64	A novel method for coating of carbon nanotube on cellulose fiber using 1,2,3,4-butanetetracarboxylic acid as a cross-linking agent. Progress in Organic Coatings, 2012, 74, 470-478.	3.9	119
65	Atmospheric-air plasma enhances coating of different lubricating agents on polyester fiber. EPJ Applied Physics, 2011, 56, 10801.	0.7	34
66	Influence of atmospheric-air plasma on the coating of a nonionic lubricating agent on polyester fiber. Radiation Effects and Defects in Solids, 2011, 166, 408-416.	1.2	60
67	Optical and electromagnetic characteristics of clay–iron oxide nanocomposites. Research on Chemical Intermediates, 2011, 37, 771-784.	2.7	46
68	Thermal Characterization and Flammability of Polyester Fiber Coated with Nonionic and Cationic Softeners. Journal of Surfactants and Detergents, 2011, 14, 595-603.	2.1	34
69	Atmospheric air-plasma treatment of polyester fiber to improve the performance of nanoemulsion silicone. Applied Surface Science, 2011, 257, 4062-4068.	6.1	109
70	Preparation of polybutylene terephthalate/silica nanocomposites by melt compounding: Evaluation of surface properties. Applied Surface Science, 2011, 257, 8443-8450.	6.1	43
71	Influence of Ultrasonic Waves on the Processing of Cotton with Cationic Softener. Journal of Surfactants and Detergents, 2010, 13, 135-141.	2.1	37
72	Enzymatic hydrolysis of nylon 6 fiber using lipolytic enzyme. Journal of Applied Polymer Science, 2010, 116, 3140-3147.	2.6	18

#	Article	IF	CITATIONS
73	Surface characterization of polyethylene terephthalate/silica nanocomposites. Applied Surface Science, 2010, 256, 2792-2802.	6.1	148
74	Biohydrolysis of nylon 6,6 fiber with different proteolytic enzymes. Polymer Degradation and Stability, 2009, 94, 1197-1205.	5.8	75
75	A new approach to improve dyeability of nylon 6 fibre using a subtilisin enzyme. Coloration Technology, 2009, 125, 228-233.	1.5	45
76	Ultrasonic Assisted Finishing of Cotton with Nonionic Softener. Tenside, Surfactants, Detergents, 2009, 46, 335-339.	1.2	23
77	Macro―and Microemulsion Silicone Softeners on Polyester Fibers: Evaluation of Different Physical Properties. Journal of Surfactants and Detergents, 2008, 11, 269-273.	2.1	44
78	Enzymatic degradation of natural protein fiber. Journal of Biotechnology, 2008, 136, S300.	3.8	2
79	Effect of Nano and Micro Emulsion Silicone Softeners on Properties of Polyester Fibers. Tenside, Surfactants, Detergents, 2008, 45, 254-257.	1.2	32
80	Textile Softeners on Cotton Dyed with Direct Dyes: Reflectance and Fastness Assessments. Tenside, Surfactants, Detergents, 2008, 45, 13-16.	1.2	33
81	Effect of proteolytic enzyme on dyeing of wool with madder. Enzyme and Microbial Technology, 2007, 40, 1719-1722.	3.2	102
82	Dyeing of wool with Marigold and its properties. Fibers and Polymers, 2007, 8, 181-185.	2.1	44
83	The Effects of Softeners on the Properties of Sulfur-Dyed Cotton Fibers. Journal of Surfactants and Detergents, 2007, 10, 219-223.	2.1	45
84	Colorimetric properties of wool dyed with natural dyes after treatment with ammonia. Coloration Technology, 2004, 120, 161-166.	1.5	55
85	Effect of ammonia on madder-dyed natural protein fiber. Journal of Applied Polymer Science, 2004, 93, 2704-2710.	2.6	44
86	Surface and Bulk Modification of Synthetic Textiles to Improve Dyeability. , 0, , .		11