
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/758016/publications.pdf Version: 2024-02-01

YIOING LÃ14

#	Article	IF	CITATIONS
1	Brainâ€Targeted Aggregationâ€Inducedâ€Emission Nanoparticles with Nearâ€Infrared Imaging at 1550Ânm Boosts Orthotopic Glioblastoma Theranostics. Advanced Materials, 2022, 34, e2106082.	21.0	75
2	Quantifying the Influence of Inert Shell Coating on Luminescence Brightness of Lanthanide Upconversion Nanoparticles. ACS Photonics, 2022, 9, 758-764.	6.6	13
3	Lifetime Multiplexing with Lanthanide Complexes for Luminescence <i>In Situ</i> Hybridisation. Analysis & Sensing, 2022, 2, .	2.0	2
4	Editorial: Precise Diagnosis and Therapy Using Near-Infrared Light. Frontiers in Bioengineering and Biotechnology, 2022, 10, 864759.	4.1	0
5	Homogenization of Optical Field in Nanocrystal-Embedded Perovskite Composites. ACS Energy Letters, 2022, 7, 1657-1671.	17.4	4
6	Assessing the activity of antibodies conjugated to upconversion nanoparticles for immunolabeling. Analytica Chimica Acta, 2022, 1209, 339863.	5.4	4
7	Aspect Ratio of PEGylated Upconversion Nanocrystals Affects the Cellular Uptake In Vitro and In Vivo. Acta Biomaterialia, 2022, 147, 403-413.	8.3	11
8	Chemical compounds with a neuroprotective effect from the seeds of <i>Celosia argentea</i> L Food and Function, 2021, 12, 83-96.	4.6	6
9	Lifetime-Engineered Ruby Nanoparticles (Tau-Rubies) for Multiplexed Imaging of μ-Opioid Receptors. ACS Sensors, 2021, 6, 1375-1383.	7.8	5
10	Tuning the Elasticity of Polymersomes for Brain Tumor Targeting. Advanced Science, 2021, 8, e2102001.	11.2	21
11	Time-resolved microfluidic flow cytometer for decoding luminescence lifetimes in the microsecond region. Lab on A Chip, 2020, 20, 655-664.	6.0	5
12	Controlling the non-linear emission of upconversion nanoparticles to enhance super-resolution imaging performance. Nanoscale, 2020, 12, 20347-20355.	5.6	23
13	The feasibility of Miltuximab®-IRDye700DX-mediated photoimmunotherapy of solid tumors. Photodiagnosis and Photodynamic Therapy, 2020, 32, 102064.	2.6	5
14	A Robust Intrinsically Green Fluorescent Poly(Amidoamine) Dendrimer for Imaging and Traceable Central Nervous System Delivery in Zebrafish. Small, 2020, 16, 2003654.	10.0	8
15	Light-Emitting Diode Excitation for Upconversion Microscopy: A Quantitative Assessment. Nano Letters, 2020, 20, 8487-8492.	9.1	11
16	Simultaneous super-linear excitation-emission and emission depletion allows imaging of upconversion nanoparticles with higher sub-diffraction resolution. Optics Express, 2020, 28, 24308.	3.4	13
17	Lifetime-Multiplexed Luminescence in situ Hybridisation for Bacteria Detection. , 2020, , .		0
18	Achieving spontaneous super-resolution in a confocal microscope by exploiting super-linear emitters		0

(Conference Presentation). , 2020, , .

#	Article	IF	CITATIONS
19	Revisiting the Effect of Inert Shell on Luminescence Enhancement of Upconversion Nanoparticles. , 2020, , .		0
20	A practical theoretical framework for optimizing spontaneous super-resolution on confocal microscopes (Conference Presentation). , 2020, , .		0
21	3D sub-diffraction imaging in a conventional confocal configuration by exploiting super-linear emitters. Nature Communications, 2019, 10, 3695.	12.8	51
22	Resolution and contrast enhancement of laser-scanning multiphoton microscopy using thulium-doped upconversion nanoparticles. Nano Research, 2019, 12, 2933-2940.	10.4	17
23	Label-Free Fluorescent Poly(amidoamine) Dendrimer for Traceable and Controlled Drug Delivery. Biomacromolecules, 2019, 20, 2148-2158.	5.4	19
24	Efficient upconverting carbon nitride nanotubes for near-infrared-driven photocatalytic hydrogen production. Nanoscale, 2019, 11, 20274-20283.	5.6	26
25	Bright upconversion nanoparticles under light-emitting diode excitation. , 2019, , .		0
26	DNA nanoclew templated spherical nucleic acids for siRNA delivery. Chemical Communications, 2018, 54, 3609-3612.	4.1	50
27	Developing a pH-sensitive Al(OH) ₃ layer-mediated UCNP@Al(OH) ₃ /Au nanohybrid for photothermal therapy and fluorescence imaging <i>in vivo</i> . Journal of Materials Chemistry B, 2018, 6, 7862-7870.	5.8	17
28	Effective and Targeted Human Orthotopic Glioblastoma Xenograft Therapy via a Multifunctional Biomimetic Nanomedicine. Advanced Materials, 2018, 30, e1803717.	21.0	148
29	Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nature Nanotechnology, 2018, 13, 941-946.	31.5	584
30	Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature, 2017, 543, 229-233.	27.8	643
31	Deep-penetrating photodynamic therapy with KillerRed mediated by upconversion nanoparticles. Acta Biomaterialia, 2017, 51, 461-470.	8.3	77
32	A versatile upconversion surface evaluation platform for bio–nano surface selection for the nervous system. Nanoscale, 2017, 9, 13683-13692.	5.6	13
33	Nanostructured Siliconâ€Based Fingerprint Dusting Powders for Enhanced Visualization and Detection by Mass Spectrometry. ChemPlusChem, 2016, 81, 258-261.	2.8	4
34	High-Contrast Visualization of Upconversion Luminescence in Mice Using Time-Gating Approach. Analytical Chemistry, 2016, 88, 3449-3454.	6.5	88
35	Phosphorylated Peptide Functionalization of Lanthanide Upconversion Nanoparticles for Tuning Nanomaterial–Cell Interactions. ACS Applied Materials & Interfaces, 2016, 8, 6935-6943.	8.0	26
36	Facile Assembly of Functional Upconversion Nanoparticles for Targeted Cancer Imaging and Photodynamic Therapy. ACS Applied Materials & Interfaces, 2016, 8, 11945-11953.	8.0	86

#	Article	IF	CITATIONS
37	Emission stability and reversibility of upconversion nanocrystals. Journal of Materials Chemistry C, 2016, 4, 9227-9234.	5.5	27
38	Stable Upconversion Nanohybrid Particles for Specific Prostate Cancer Cell Immunodetection. Scientific Reports, 2016, 6, 37533.	3.3	25
39	Facile Peptides Functionalization of Lanthanide-Based Nanocrystals through Phosphorylation Tethering for Efficient <i>in Vivo</i> NIR-to-NIR Bioimaging. Analytical Chemistry, 2016, 88, 1930-1936.	6.5	27
40	High-Precision Pinpointing of Luminescent Targets in Encoder-Assisted Scanning Microscopy Allowing High-Speed Quantitative Analysis. Analytical Chemistry, 2016, 88, 1312-1319.	6.5	3
41	Systematic assessment of blood circulation time of functionalized upconversion nanoparticles in the chick embryo. , 2015, , .		0
42	One-Step Protein Conjugation to Upconversion Nanoparticles. Analytical Chemistry, 2015, 87, 10406-10413.	6.5	54
43	On-the-fly decoding luminescence lifetimes in the microsecond region for lanthanide-encoded suspension arrays. Nature Communications, 2014, 5, 3741.	12.8	135
44	Tunable lifetime multiplexing using luminescent nanocrystals. Nature Photonics, 2014, 8, 32-36.	31.4	652
45	How to Build a Timeâ€Gated Luminescence Microscope. Current Protocols in Cytometry, 2014, 67, 2.22.1-2.22.36.	3.7	23
46	Practical Implementation, Characterization and Applications of a Multi-Colour Time-Gated Luminescence Microscope. Scientific Reports, 2014, 4, 6597.	3.3	51
47	Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nature Nanotechnology, 2013, 8, 729-734.	31.5	569
48	Observation of mesenteric microcirculatory disturbance in rat by laser oblique scanning optical microscopy. Scientific Reports, 2013, 3, 1762.	3.3	4
49	Orthogonal Scanning Automated Microscopy Speeds Up Time-Gated Luminescence Detection. , 2013, , .		0
50	A cost-effective analog method to produce time-gated luminescence images. Proceedings of SPIE, 2012, ,	0.8	6
51	Laser oblique scanning optical microscopy (LOSOM) for phase relief imaging. Optics Express, 2012, 20, 14100.	3.4	12
52	Time-Gated Orthogonal Scanning Automated Microscopy (OSAM) for High-speed Cell Detection and Analysis. Scientific Reports, 2012, 2, 837.	3.3	25
53	Resolving Low-Expression Cell Surface Antigens by Time-Gated Orthogonal Scanning Automated Microscopy. Analytical Chemistry, 2012, 84, 9674-9678.	6.5	16
54	LOSOM: phase relief imaging can be achieved with confocal system. Proceedings of SPIE, 2012, , .	0.8	0

#	Article	IF	CITATIONS
55	Advances in lanthanide bioprobes and high-throughput background-free biophotonics sensing. , 2011, , \cdot		0
56	Automated detection of rareâ€event pathogens through timeâ€gated luminescence scanning microscopy. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2011, 79A, 349-355.	1.5	22
57	Cytometric investigation of rare-events featuring time-gated detection and high-speed stage scanning. , 2011, , .		0
58	Solid-state laser system for terahertz radiation generation. , 2009, , .		0
59	Editorial: Modern Tools for Time-Resolved Luminescence Biosensing and Imaging. Frontiers in Physics, 0, 9, .	2.1	0
60	Lifetime Multiplexing with Lanthanide Complexes for Luminescence In Situ Hybridisation. Analysis & Sensing, 0, , .	2.0	0