Keiichi Noguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7579804/publications.pdf

Version: 2024-02-01

252 8,779 50 78
papers citations h-index g-index

332 332 332 332 6818

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Rhodium-Catalyzed Enantioselective Synthesis, Crystal Structures, and Photophysical Properties of Helically Chiral $1,1\hat{a}\in^2$ -Bitriphenylenes. Journal of the American Chemical Society, 2012, 134, 4080-4083.	13.7	351
2	Molecular and Crystal Structure of Hydrated Chitosan. Macromolecules, 1997, 30, 5849-5855.	4.8	289
3	Enantioselective Synthesis of Axially Chiral Anilides through Rhodium-Catalyzed [2+2+2] Cycloaddition of 1,6-Diynes with Trimethylsilylynamides. Journal of the American Chemical Society, 2006, 128, 4586-4587.	13.7	213
4	Asymmetric Assembly of Aromatic Rings To Produce Tetra-ortho-Substituted Axially Chiral Biaryl Phosphorus Compounds. Angewandte Chemie - International Edition, 2007, 46, 3951-3954.	13.8	166
5	Crystal structure of the planar zigzag form of syndiotactic polypropylene. Journal of Polymer Science, Part C: Polymer Letters, 1990, 28, 393-398.	0.7	158
6	Enantioselective Synthesis of Axially Chiral Phthalides through Cationic [RhI(H8-binap)]-Catalyzed Cross Alkyne Cyclotrimerization. Angewandte Chemie - International Edition, 2004, 43, 6510-6512.	13.8	157
7	Entropyâ€Controlled Catalytic Asymmetric 1,4â€Type Friedel–Crafts Reaction of Phenols Using Conformationally Flexible Guanidine/Bisthiourea Organocatalyst. Angewandte Chemie - International Edition, 2010, 49, 7299-7303.	13.8	146
8	Rh-Catalyzed Synthesis of Helically Chiral and Ladder-Type Molecules via $[2+2+2]$ and Formal $[2+1+2+1]$ Cycloadditions Involving Câ^C Triple Bond Cleavage. Journal of the American Chemical Society, 2007, 129, 12078-12079.	13.7	141
9	Oneâ€Step Construction of Five Successive Rings by Rhodiumâ€Catalyzed Intermolecular Double [2+2+2] Cycloaddition: Enantioenriched [9]Heliceneâ€Like Molecules. Angewandte Chemie - International Edition, 2009, 48, 5470-5473.	13.8	133
10	Rhodium-Catalyzed Chemo-, Regio-, and Enantioselective $[2 + 2 + 2]$ Cycloaddition of Alkynes with Isocyanates. Organic Letters, 2005, 7, 4737-4739.	4.6	125
11	Strain-induced crystal modification in poly(tetramethylene succinate). Polymer, 1994, 35, 3338-3339.	3.8	122
12	Crystal structures of collagen model peptides with Pro-Hyp-Gly repeating sequence at 1.26 \tilde{A} resolution: Implications for proline ring puckering. Biopolymers, 2004, 76, 367-377.	2.4	104
13	Enantioselective Synthesis of Pâ€Stereogenic Alkynylphosphine Oxides by Rhâ€Catalyzed [2+2+2] Cycloaddition. Angewandte Chemie - International Edition, 2008, 47, 3410-3413.	13.8	104
14	Asymmetric Synthesis and Photophysical Properties of Benzopyrano- or Naphthopyrano-Fused Helical Phosphafluorenes. Organic Letters, 2010, 12, 1324-1327.	4.6	103
15	Enantioselective Synthesis ofC2-Symmetric Spirobipyridine Ligands through Cationic Rh(I)/Modified-BINAP- Catalyzed Double [2 + 2 + 2] Cycloaddition. Organic Letters, 2007, 9, 1295-1298.	4.6	97
16	Highly Regioâ€, Diastereoâ€, and Enantioselective [2+2+2] Cycloaddition of 1,6â€Enynes with Electronâ€Deficient Ketones Catalyzed by a Cationic Rh ^I /H ₈ â€binap Complex. Angewandte Chemie - International Edition, 2008, 47, 1312-1316.	13.8	95
17	Enantioselective Synthesis of Spirocyclic Benzopyranones by Rhodiumâ€Catalyzed Intermolecular [4+2]â€Annulation. Angewandte Chemie - International Edition, 2008, 47, 5820-5822.	13.8	94
18	Enantioselective Synthesis of Tetra-ortho-Substituted Axially Chiral Biaryls through Rhodium-Catalyzed Double $[2+2+2]$ Cycloaddition. Organic Letters, 2006, 8, 3489-3492.	4.6	86

#	Article	IF	CITATIONS
19	Convergent and Rapid Assembly of Substituted 2-Pyridones through Formation of <i>N</i> -Alkenyl Alkynylamides Followed by Gold-Catalyzed Cycloisomerization. Organic Letters, 2008, 10, 3563-3566.	4.6	86
20	Structural study of anhydrous tendon chitosan obtained via chitosan/acetic acid complex. International Journal of Biological Macromolecules, 1999, 26, 285-293.	7. 5	85
21	A Novel Pseudo-Polyrotaxane Structure Composed of Cyclodextrins and a Straight-Chain Polymer:Â Crystal Structures of Inclusion Complexes of \tilde{l}^2 -Cyclodextrin with Poly(trimethylene oxide) and Poly(propylene glycol). Macromolecules, 2000, 33, 1500-1502.	4.8	85
22	Rhodium-Catalyzed Asymmetric One-Pot Transesterification and $[2 + 2 + 2]$ Cycloaddition Leading to Enantioenriched 3,3-Disubstituted Phthalides. Organic Letters, 2007, 9, 1307-1310.	4.6	85
23	Carbonyl Sulfide Hydrolase from <i>Thiobacillus thioparus</i> Strain THI115 Is One of the \hat{l}^2 -Carbonic Anhydrase Family Enzymes. Journal of the American Chemical Society, 2013, 135, 3818-3825.	13.7	82
24	Role of urea in alkaline dissolution of cellulose. Cellulose, 2013, 20, 97-103.	4.9	81
25	Enantioselective Synthesis of Axially Chiral Biaryls through Rhodium-Catalyzed Complete Intermolecular Cross-Cyclotrimerization of Internal Alkynes. Organic Letters, 2005, 7, 3119-3121.	4.6	80
26	Revision of collagen molecular structure. Biopolymers, 2006, 84, 181-191.	2.4	80
27	Enantioselective Synthesis of Planar-Chiral Metacyclophanes through Rhodium-Catalyzed Alkyne Cyclotrimerization. Journal of the American Chemical Society, 2007, 129, 1522-1523.	13.7	80
28	Cationic Rh(I)/Modified-BINAP-Catalyzed Reactions of Carbonyl Compounds with 1,6-Diynes Leading to Dienones and Ortho-Functionalized Aryl Ketones. Organic Letters, 2007, 9, 2203-2206.	4.6	78
29	Cationic Rhodium(I) Complex-Catalyzed [3 + 2] and [2 + 1] Cycloadditions of Propargyl Esters with Electron-Deficient Alkynes and Alkenes. Journal of the American Chemical Society, 2010, 132, 7896-7898.	13.7	73
30	Packaging guest proteins into the encapsulin nanocompartment from <i>Rhodococcus erythropolis</i> N771. Biotechnology and Bioengineering, 2015, 112, 13-20.	3.3	73
31	One-Step Synthesis of Donorâ^'Acceptor type Conjugated Polymers from Ferrocene-Containing Poly(aryleneethynylene)s. Macromolecules, 2009, 42, 5903-5905.	4.8	72
32	Palladiumâ€Catalyzed Enantioselective Intramolecular Hydroarylation of Alkynes To Form Axially Chiral 4â€Aryl 2â€Quinolinones. Angewandte Chemie - International Edition, 2011, 50, 3963-3967.	13.8	70
33	Enantioselective Synthesis of [9]―and [11]Heliceneâ€like Molecules: Double Intramolecular [2+2+2] Cycloaddition. Angewandte Chemie - International Edition, 2014, 53, 8480-8483.	13.8	69
34	Highly Enantioselective Synthesis of <i>N</i> , <i>Nâ€</i> Dialkylbenzamides with Aryl–Carbonyl Axial Chirality by Rhodium atalyzed [2+2+2] Cycloaddition. Chemistry - A European Journal, 2008, 14, 6593-6596.	3.3	68
35	Rhodiumâ€Catalyzed Intramolecular Cyclization of Naphtholâ€or Phenolâ€Linked 1,6â€Enynes Through the Cleavage and Formation of sp ² CO Bonds. Angewandte Chemie - International Edition, 2012, 51, 5976-5980.	13.8	68
36	Enantioselective Synthesis, Crystal Structure, and Photophysical Properties of a 1,1′â€Bitriphenyleneâ€Based Sila[7]helicene. European Journal of Organic Chemistry, 2015, 2015, 1409-1414.	2.4	65

#	Article	IF	Citations
37	Rhodiumâ€Catalyzed [3+2+2] and [2+2+2] Cycloadditions of Two Alkynes with Cyclopropylideneacetamides. Angewandte Chemie - International Edition, 2015, 54, 8241-8244.	13.8	64
38	Selective Functionalization of Styrenes with Oxygen Using Different Electrode Materials: Olefin Cleavage and Synthesis of Tetrahydrofuran Derivatives. Angewandte Chemie - International Edition, 2019, 58, 125-129.	13.8	64
39	Asymmetric Synthesis of Axially Chiral Biaryl Diphosphine Ligands by Rhodium-Catalyzed Enantioselective Intramolecular Double [2 + 2 + 2] Cycloaddition. Organic Letters, 2011, 13, 362-365.	4.6	63
40	Synthesis of Chiral Tetrasubstituted Alkenes by an Asymmetric Cascade Reaction Catalyzed Cooperatively by Cationic Rhodium(I) and Silver(I) Complexes. Angewandte Chemie - International Edition, 2009, 48, 8129-8132.	13.8	61
41	Practical Enantioselective Synthesis of Axially Chiral Biaryl Diphosphonates and Dicarboxylates by Cationic Rhodium(I)/Segphos-Catalyzed Double $[2+2+2]$ Cycloaddition. Organic Letters, 2008, 10, 2849-2852.	4.6	59
42	Enantioselective Synthesis of Planarâ€Chiral Carbaâ€Paracyclophanes: Rhodiumâ€Catalyzed [2+2+2] Cycloaddition of Cyclic Diynes with Terminal Monoynes. Angewandte Chemie - International Edition, 2013, 52, 5617-5621.	13.8	59
43	Rhodium-Catalyzed Regio- and Enantioselective Intermolecular [4+2] Carbocyclization of 4-Alkynals withN,N-Dialkyl Acrylamides. Angewandte Chemie - International Edition, 2005, 44, 7260-7263.	13.8	57
44	Enantioselective Cycloisomerization of 1,6-Enynes to Bicyclo[3.1.0]hexanes Catalyzed by Rhodium and Benzoic Acid. Journal of the American Chemical Society, 2014, 136, 7627-7630.	13.7	57
45	The Source of "Fairy Rings― 2-Azahypoxanthine and its Metabolite Found in a Novel Purine Metabolic Pathway in Plants. Angewandte Chemie - International Edition, 2014, 53, 1552-1555.	13.8	56
46	Rhodium-Catalyzed Reactions of Dithiols and 1,4-Bis(bromomethyl)benzenes Leading To Enantioenriched Dithiaparacyclophanes. Organic Letters, 2007, 9, 4881-4884.	4.6	55
47	Rhodium-Catalyzed Olefin Isomerization/Enantioselective Intramolecular Alder-Ene Reaction Cascade. Organic Letters, 2011, 13, 4894-4897.	4.6	55
48	Rhodium-Catalyzed [2+2+2] Cycloaddition of 1,6-Diynes with Isothiocyanates and Carbon Disulfide. Organic Letters, 2006, 8, 907-909.	4.6	53
49	Helical twists of collagen model peptides. Biopolymers, 2006, 84, 421-432.	2.4	52
50	Rhodium-Catalyzed Enantioselective Cyclizations of \hat{I}^3 -Alkynylaldehydes with Acyl Phosphonates: Ligand- and Substituent-Controlled Câ \in "P or Câ \in "H Bond Cleavage. Journal of the American Chemical Society, 2011, 133, 6918-6921.	13.7	52
51	Enantioselective Construction of Bridged Multicyclic Skeletons: Intermolecular [2+2+2] Cycloaddition/Intramolecular Diels–Alder Reaction Cascade. Angewandte Chemie - International Edition, 2011, 50, 1664-1667.	13.8	52
52	Rhodium atalyzed Regioâ€; Diastereoâ€; and Enantioselective [2+2+2] Cycloaddition of 1,6â€Enynes with Acrylamides. Angewandte Chemie - International Edition, 2012, 51, 13031-13035.	13.8	52
53	Structure and Molecular Dynamics Simulation of Archaeal Prefoldin: The Molecular Mechanism for Binding and Recognition of Nonnative Substrate Proteins. Journal of Molecular Biology, 2008, 376, 1130-1141.	4.2	51

Highâ€resolution structures of collagenâ€like peptides [(Proâ€Proâ€Gly)₄]: Implications for tripleâ€helix laydration 51 and Hyp(X) puckering. Biopolymers, 2009, 91, 361-372.

#	Article	IF	CITATIONS
55	Crystal Transition Mechanisms in Poly(tetramethylene succinate). Polymer Journal, 1995, 27, 1230-1238.	2.7	50
56	Crystal Modification in Poly(ethylene succinate). Polymer Journal, 1995, 27, 1264-1266.	2.7	50
57	Structure and characterization of amidase from Rhodococcus sp. N-771: Insight into the molecular mechanism of substrate recognition. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 184-192.	2.3	50
58	Strophasterolsâ€A to D with an Unprecedented Steroid Skeleton: From the Mushroom <i>Stropharia rugosoannulata</i> . Angewandte Chemie - International Edition, 2012, 51, 10820-10822.	13.8	50
59	Highly Enantioselective Construction of Axial Chirality by Palladium-Catalyzed Cycloisomerization of <i>N</i> -Alkenyl Arylethynylamides. Organic Letters, 2009, 11, 1805-1808.	4.6	49
60	Repetitive Interactions Observed in the Crystal Structure of a Collagen-Model Peptide, [(Pro-Pro-Gly)9]3. Journal of Biochemistry, 2005, 138, 135-144.	1.7	48
61	Crystallization of amorphous poly(lactic acid) induced by organic solvents. Journal of Applied Polymer Science, 2011, 119, 2058-2064.	2.6	47
62	Molecular-Iodine-Catalyzed Cyclization of 2-Alkynylanilines via Iodocyclization–Protodeiodination Sequence. Organic Letters, 2017, 19, 6744-6747.	4.6	47
63	Highly Chemoâ€, Regioâ€, and Enantioselective Rhodiumâ€Catalyzed Crossâ€Cyclotrimerization of Two Different Alkynes with Alkenes. Angewandte Chemie - International Edition, 2014, 53, 2956-2959.	13.8	45
64	Significant correlation between refractive index and activity of mitochondria: single mitochondrion study. Biomedical Optics Express, 2015, 6, 859.	2.9	45
65	Catalytic $[2 + 2 + 2]$ and Thermal $[4 + 2]$ Cycloaddition of 1,2-Bis(arylpropiolyl)benzenes. Journal of Organic Chemistry, 2007, 72, 2243-2246.	3.2	44
66	Enantioselective Synthesis of Axially Chiral 1â€Arylisoquinolines by Rhodiumâ€Catalyzed [2+2+2] Cycloaddition. Chemistry - A European Journal, 2011, 17, 1428-1432.	3. 3	44
67	Relationship between structural coherence and intrinsic carrier transport in an isolated poly(3-hexylthiophene) nanofiber. Physical Review B, 2011, 83, .	3.2	44
68	Refined molecular and crystal structure of silk I based on Ala-Gly and (Ala-Gly)2?Ser-Gly peptide sequence. Biopolymers, 2001, 59, 310-319.	2.4	43
69	Rhodium-Catalyzed Highly Enantio- and Diastereoselective Cotrimerization of Alkenes and Dialkyl Acetylenedicarboxylates Leading to Furylcyclopropanes. Organic Letters, 2008, 10, 2825-2828.	4.6	42
70	Synthesis of Triphenylene Derivatives by Rhodium-Catalyzed $[2 + 2 + 2]$ Cycloaddition: Application to the Synthesis of Highly Fluorescent Triphenylene-Based Long Ladder Molecules. Journal of Organic Chemistry, 2013, 78, 6202-6210.	3.2	41
71	Rhodium-Catalyzed Cycloisomerization of 2-Silylethynyl Phenols and Anilines via 1,2-Silicon Migration. Organic Letters, 2016, 18, 1654-1657.	4.6	41
72	Linking Conformational Flexibility and Kinetics: Catalytic 1,4â€Type Friedel–Crafts Reactions of Phenols Utilizing 1,3â€Diamineâ€Tethered Guanidine/Bisthiourea Organocatalysts. Chemistry - an Asian Journal, 2011, 6, 2463-2470.	3.3	39

#	Article	IF	CITATIONS
73	Metalâ€Free [2+2+1] Annulation of Alkynes, Nitriles and Nitrogen Atoms from Iminoiodanes for Synthesis of Highly Substituted Imidazoles. Advanced Synthesis and Catalysis, 2015, 357, 667-671.	4.3	38
74	Circularly Polarized Luminescence from Chiral Spiro Molecules: Synthesis and Optical Properties of 10,10′-Spirobi(indeno[1,2- <i>b</i>][1]benzothiophene) Derivatives. Organic Letters, 2017, 19, 5082-5085.	4.6	38
75	1,8-Dibenzoyl-2,7-dimethoxynaphthalene. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o807-o807.	0.2	37
76	Two different molecular conformations found in chitosan type II salts. Carbohydrate Research, 2003, 338, 1229-1233.	2.3	35
77	Molecular and crystal structures of chitosan/HI type I salt determined by X-ray fiber diffraction. Carbohydrate Research, 2004, 339, 825-833.	2.3	35
78	Molecular and crystal structure of poly(tetramethylene adipate) α form based on synchrotron X-ray fiber diffraction. Polymer, 2005, 46, 10823-10830.	3.8	35
79	Molecular Properties of 2-Pyrone-4,6-dicarboxylic Acid (PDC) as a Stable Metabolic Intermediate of Lignin Isolated by Fractional Precipitation with Na+ Ion. Bulletin of the Chemical Society of Japan, 2007, 80, 2436-2442.	3.2	35
80	Rhodium-catalyzed enantio- and diastereoselective intramolecular $[2 + 2 + 2]$ cycloaddition of unsymmetrical dienynes. Chemical Communications, 2008, , 3804.	4.1	35
81	Rhodium-Catalyzed Asymmetric Reductive Cyclization of Heteroatom-Linked 5-Alkynals with Heteroatom-Substituted Acetaldehydes. Journal of the American Chemical Society, 2010, 132, 1238-1239.	13.7	35
82	Single helical structure of curdlan triacetate. Biopolymers, 1996, 38, 557-566.	2.4	34
83	Enantioselective Synthesis of Axially Chiral Hydroxy Carboxylic Acid Derivatives by Rhodium-Catalyzed [2 + 2 + 2] Cycloaddition. Journal of Organic Chemistry, 2011, 76, 1926-1929.	3.2	34
84	Asymmetric Dearomatization of 1-Aminonaphthalene Derivatives by Gold-Catalyzed Intramolecular Double C–C Bond Formation. Organic Letters, 2015, 17, 676-679.	4.6	34
85	Rhodiumâ€Catalyzed Asymmetric [2+2+2] Cyclization of 1,6â€Enynes and Aldehydes. Chemistry - A European Journal, 2011, 17, 12578-12581.	3.3	33
86	Enantioselective synthesis of \hat{l} ±, \hat{l} ±-disubstituted \hat{l} ±-amino acids by Rh-catalyzed [2+2+2] cycloaddition of 1,6-diynes with protected dehydroamino acid. Tetrahedron, 2008, 64, 6289-6293.	1.9	32
87	Isolation of Bioactive Steroids from the <i>Stropharia rugosoannulata</i> Mushroom and Absolute Configuration of Strophasterol B. Bioscience, Biotechnology and Biochemistry, 2013, 77, 1779-1781.	1.3	32
88	Average Crystal Structure of (Pro-Pro-Gly)9 at 1.0Ã Resolution. Polymer Journal, 2001, 33, 812.	2.7	32
89	Crystal structure of methyl3-O-β-d-glucopyranosyl-β-d-glucopyranoside (methyl β-d-laminarabioside) monohydrate. Carbohydrate Research, 1992, 237, 33-43.	2.3	31
90	Crystal structure of an extensively simplified variant of bovine pancreatic trypsin inhibitor in which over one-third of the residues are alanines. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15334-15339.	7.1	31

#	Article	IF	Citations
91	Rhodiumâ€Catalyzed Asymmetric Formal Olefination or Cycloaddition: 1,3â€Dicarbonyl Compounds Reacting with 1,6â€Diynes or 1,6â€Enynes. Angewandte Chemie - International Edition, 2011, 50, 4475-4479.	13.8	31
92	Rhodium(III)â€Catalyzed Tandem [2+2+2] Annulation–Lactamization of Anilides with Two Alkynoates via Cleavage of Two Adjacent Câ^'H or Câ^'H/Câ^'O bonds. Chemistry - an Asian Journal, 2016, 11, 2260-2264.	3.3	31
93	Synthesis of Polyether Cyclophanes through Rhodium-Catalyzed Cross-Alkyne Cyclotrimerization. European Journal of Organic Chemistry, 2006, 2006, 3575-3581.	2.4	30
94	Highly Diastereoselective Addition of Allyltitanocenes to Ketones. Chemistry - A European Journal, 2009, 15, 2680-2686.	3.3	30
95	Properties and Crystal Structure of Methylenetetrahydrofolate Reductase from Thermus thermophilus HB8. PLoS ONE, 2011, 6, e23716.	2.5	30
96	Stereoselective synthesis of alexine stereoisomers from (S)-pyroglutamic acid. Tetrahedron, 1998, 54, 8985-8998.	1.9	29
97	Unique side chain conformation of a leu residue in a triple-helical structure. Biopolymers, 2007, 86, 212-221.	2.4	29
98	Liquid Crystalline Features in a Polyolefin of Poly(methylene-1,3-cyclopentane). Macromolecules, 2008, 41, 7448-7452.	4.8	29
99	[1]Benzothiophene-Fused Chiral Spiro Polycyclic Aromatic Compounds: Optical Resolution, Functionalization, and Optical Properties. Journal of Organic Chemistry, 2018, 83, 15057-15065.	3.2	28
100	Polar and Low Viscosity Ionic Liquid Mixtures from Amino Acids. Chemistry Letters, 2008, 37, 1026-1027.	1.3	27
101	Rhodiumâ€Catalyzed Cascade Reactions of Dienynes Leading to Substituted Dihydronaphthalenes and Naphthalenes. Angewandte Chemie - International Edition, 2012, 51, 6722-6727.	13.8	27
102	Dearomatization of Fused Arenes Using Platinumâ€Catalyzed Intramolecular Formation of Two Cï£; C Bonds. Angewandte Chemie - International Edition, 2012, 51, 6219-6222.	13.8	27
103	Kinetic and structural studies on roles of the serine ligand and a strictly conserved tyrosine residue in nitrile hydratase. Journal of Biological Inorganic Chemistry, 2010, 15, 655-665.	2.6	26
104	Effects of click postfunctionalization on thermal stability and field effect transistor performances of aromatic polyamines. Polymer Chemistry, 2012, 3, 1427.	3.9	26
105	Crystal Structures of the Lumazine Protein from <i>Photobacterium kishitanii</i> in Complexes with the Authentic Chromophore, 6,7-Dimethyl- 8-(1′- <scp>d</scp> -Ribityl) Lumazine, and Its Analogues, Riboflavin and Flavin Mononucleotide, at High Resolution. Journal of Bacteriology, 2010, 192, 127-133.	2.2	24
106	Crystal structure of 1-deoxy-d-xylulose 5-phosphate reductoisomerase from the hyperthermophile Thermotoga maritima for insights into the coordination of conformational changes and an inhibitor binding. Journal of Structural Biology, 2010, 170, 532-539.	2.8	24
107	Osteoclast-forming suppressing compounds, gargalols A, B, and C, from the edible mushroom Grifola gargal. Tetrahedron, 2011, 67, 6576-6581.	1.9	24
108	Enantioselective Synthesis and Epimerization Behavior of a Chiral Sâ€Shaped [11]Heliceneâ€Like Molecule Having Collision between Terminal Benzene Rings. European Journal of Organic Chemistry, 2019, 2019, 1390-1396.	2.4	24

#	Article	IF	Citations
109	Molecular and Crystal Structures of Dodecyltrimethylammonium Bromide and its Complex with <i>p</i> -Phenylphenol. Molecular Crystals and Liquid Crystals, 1997, 300, 31-43.	0.3	23
110	winlals for a linked-atom least-square refinement program for helical polymers on windows PCs. Computational Biology and Chemistry, 2003, 27, 265-285.	2.3	23
111	Plausible molecular and crystal structures of chitosan/HI type II salt. Carbohydrate Research, 2004, 339, 835-843.	2.3	23
112	Rhodiumâ€Catalyzed [3+2+2] and [2+2+2] Cycloadditions of Two Alkynes with Cyclopropylideneacetamides. Angewandte Chemie, 2015, 127, 8359-8362.	2.0	23
113	Gold-Catalyzed Domino Synthesis of Functionalized Benzofurans and Tetracyclic Isochromans via Formal Carboalkoxylation. Organic Letters, 2016, 18, 4136-4139.	4.6	23
114	Rhodium-Catalyzed Asymmetric $[2 + 2 + 2]$ Cycloaddition of 1,6-Enynes with Cyclopropylideneacetamides. Organic Letters, 2016, 18, 388-391.	4.6	23
115	Expression and characterization of the Plasmodium translocon of the exported proteins component EXP2. Biochemical and Biophysical Research Communications, 2017, 482, 700-705.	2.1	23
116	1-(4-Chlorobenzoyl)-2,7-dimethoxynaphthalene. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o1278-o1278.	0.2	23
117	Thermodynamic and structural analysis of highly stabilized BPTIs by single and double mutations. Proteins: Structure, Function and Bioinformatics, 2009, 77, 962-970.	2.6	22
118	Analysis and Control of Protein Crystallization Using Short Peptide Tags That Change Solubility without Affecting Structure, Thermal Stability, and Function. Crystal Growth and Design, 2015, 15, 2703-2711.	3.0	22
119	Novel <i>N</i> -Methylated 8-Oxoisoguanines from Pacific Sponges with Diverse Neuroactivities. Journal of Medicinal Chemistry, 2010, 53, 6089-6099.	6.4	21
120	Three-Dimensional Structures of OSW-1 and Its Congener. Organic Letters, 2010, 12, 5732-5735.	4.6	21
121	Rhodium-Catalyzed One-Pot Intermolecular $[2+2+2]$ Trimerization/Asymmetric Intramolecular $[4+2]$ Cycloaddition of Two Aryl Ethynyl Ethers and 5-Alkynals. Organic Letters, 2012, 14, 5856-5859.	4.6	21
122	High resolution crystal structure of dengueâ€3 envelope protein domain III suggests possible molecular mechanisms for serospecific antibody recognition. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1090-1095.	2.6	21
123	(2,7-Dimethoxynaphthalene-1,8-diyl)bis(4-fluorobenzoyl)dimethanone. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o329-o329.	0.2	21
124	Timeâ€Resolved Crystallography of the Reaction Intermediate of Nitrile Hydratase: Revealing a Role for the Cysteinesulfenic Acid Ligand as a Catalytic Nucleophile. Angewandte Chemie - International Edition, 2015, 54, 10763-10767.	13.8	20
125	Cationic Rhodium(I) Complex-Catalyzed Cotrimerization of Propargyl Esters and Arylacetylenes Leading to Substituted Dihydropentalenes. Organic Letters, 2010, 12, 5596-5599.	4.6	19
126	Total Synthesis of Rishirilideâ€B by Organocatalytic Oxidative Kinetic Resolution: Revision of Absolute Configuration of (+)â€Rishirilideâ€B. Angewandte Chemie - International Edition, 2017, 56, 6609-6612.	13.8	19

#	Article	IF	CITATIONS
127	(4-Chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o2497-o2497.	0.2	19
128	Unexpected Puckering of Hydroxyproline in the Guest Triplets, Hyp-Pro-Gly and Pro-alloHyp-Gly Sandwiched between Pro-Pro-Gly Sequence. ChemBioChem, 2005, 6, 1184-1187.	2.6	18
129	Crystallization of Amorphous Poly(Lactic Acid) Induced by Vapor of Acetone to Form High Crystallinity and Transparency Specimen. Open Journal of Polymer Chemistry, 2013, 03, 29-33.	3.3	18
130	Asymmetric Synthesis of <i>C</i> ₂ ‧ymmetric Axially Chiral Biaryls through Rhodium atalyzed and Alkyne controlled Diastereoselective Double [2+2+2] Cycloaddition. European Journal of Organic Chemistry, 2013, 2013, 6774-6778.	2.4	17
131	Computational prediction and experimental characterization of a "size switch type repacking―during the evolution of dengue envelope protein domain III (ED3). Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 585-592.	2.3	17
132	Structure and spectroelectrochemical property of a ruthenium complex containing phenanthroline–quinone, and assembly of the complexes on a gold electrode. Inorganica Chimica Acta, 2006, 359, 807-814.	2.4	16
133	1,8-Bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o4120-o4120.	0.2	16
134	Thermodynamic Characterization of the Interaction between Prefoldin and Group II Chaperonin. Journal of Molecular Biology, 2010, 399, 628-636.	4.2	16
135	Successful PEGylation of hollow encapsulin nanoparticles from Rhodococcus erythropolis N771 without affecting their disassembly and reassembly properties. Biomaterials Science, 2017, 5, 1082-1089.	5.4	16
136	Communication: Relaxed 2/1-Helical Conformation of Type II Chitosan has a Tetrasaccharide Motif. Journal of Carbohydrate Chemistry, 2000, 19, 789-794.	1.1	15
137	An improved bioluminescenceâ€based signaling assay for odor sensing with a yeast expressing a chimeric olfactory receptor. Biotechnology and Bioengineering, 2012, 109, 3143-3151.	3.3	15
138	An unusual sterol from the mushroom Stropharia rugosoannulata. Tetrahedron Letters, 2013, 54, 4900-4902.	1.4	15
139	Magnetic-field induced alignment of low molecular weight polyethylene. Polymer, 2013, 54, 784-790.	3.8	15
140	Macrocyclization by Rhodiumâ€Catalyzed Crossâ€Cyclotrimerization of Lâ€Shaped Diynes with Di―tert â€butyl Acetylenedicarboxylate: Effect of Bent Linkers of Diynes. European Journal of Organic Chemistry, 2016, 2016, 4668-4673.	2.4	15
141	Synthesis of Pyrrole-Containing Chiral Spiro Molecules and Their Optical and Chiroptical Properties. Bulletin of the Chemical Society of Japan, 2019, 92, 1008-1017.	3.2	15
142	Structures of Complex Crystals of Alkylammonium Salts with Aromatic Molecules. Molecular Crystals and Liquid Crystals, 1996, 276, 185-191.	0.3	14
143	Rhodium-catalyzed Highly Enantioselective [4 + 2] Annulation of 2-Alkynylbenzaldehydes with Acyl Phosphonates. Chemistry Letters, 2008, 37, 934-935.	1.3	14
144	Development of colorless wood via two-step delignification involving alcoholysis and bleaching with maintaining natural hierarchical structure. Journal of Wood Science, 2020, 66, .	1.9	14

#	Article	IF	Citations
145	Highly Stereoselective Preparation of Tertiary Homoallylic Alcohols with Multiple Stereogenic Centers. Chemistry - A European Journal, 2010, 16, 4729-4732.	3.3	13
146	Structure and function of archaeal prefoldin, a co-chaperone of group II chaperonin. Frontiers in Bioscience - Landmark, 2010, 15, 708.	3.0	13
147	Asymmetric Dearomatization of 1â€AminoÂnaphthalene Derivatives through C–C Bond Formation with Electronâ€Rich Heterocycles as Nucleophiles. European Journal of Organic Chemistry, 2015, 2015, 4374-4382.	2.4	13
148	(4-Chlorobenzoyl)(2-ethoxy-7-methoxynaphthalen-1-yl)methanone. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o543-o543.	0.2	13
149	Crystal Structure of Nystose Trihydrate. Bulletin of the Chemical Society of Japan, 1993, 66, 374-379.	3.2	12
150	Structural Studies of Cetyltrimethylammonium Chloride and its Complex with <i>p</i> -Phenylphenol. Molecular Crystals and Liquid Crystals, 1998, 312, 101-115.	0.3	12
151	Armillariols A to C from the culture broth of Armillaria sp Tetrahedron Letters, 2013, 54, 5481-5483.	1.4	12
152	Rhodium-catalyzed Enantioselective $[2+2+2]$ Cycloaddition of Tosylamide-linked 5-Allenal and 5-Allenone with Internal Alkynes. Chemistry Letters, 2014, 43, 1260-1262.	1.3	12
153	Functional Expression and Characterization of Tetrachloroethene Dehalogenase From Geobacter sp Frontiers in Microbiology, 2018, 9, 1774.	3.5	12
154	Crystallization of poly(L-lactic acid)/poly(D-lactic acid) blend induced by organic solvents. Polymer Bulletin, 2019, 76, 3677-3691.	3.3	12
155	Choline dihydrogen phosphate. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o709-o709.	0.2	11
156	Inter-Ring Communication Is Dispensable in the Reaction Cycle of Group II Chaperonins. Journal of Molecular Biology, 2014, 426, 2667-2678.	4.2	11
157	Crystal structures of halohydrin hydrogenâ€halideâ€lyases from <i>Corynebacterium</i> sp. Nâ€1074. Proteins: Structure, Function and Bioinformatics, 2015, 83, 2230-2239.	2.6	11
158	Alkyne aza-Prins cyclization of $\langle i \rangle N \langle i \rangle$ -(hexa-3,5-diynyl) tosylamides with aldehydes using triflic acid and a binuclear aluminum complex. Chemical Communications, 2019, 55, 8619-8622.	4.1	11
159	Formation of titanacyclobutenes with a spiro-bonded cyclopropane. Chemical Communications, 2008, , 3537.	4.1	10
160	Two crystal modifications of (Pro-Pro-Gly) $<$ sub>4 $<$ sub>-Hyp-Hyp-Gly-(Pro-Pro-Gly) $<$ sub>4 $<$ sub>reveal the puckering preference of Hyp($<$ i> $>$ $<$ $>$ in the Hyp($<$ i> $>$ $<$ i):Hyp($<$ i> $>$ i):Pro($<$ i> $>$ i):Pro($<$ i> $>$ i):Pro($<$ 0):Pro($<$ 0):	2.5	10
161	Improvement of enantioselectivity of the B-type halohydrin hydrogen-halide-lyase from Corynebacterium sp. N-1074. Journal of Bioscience and Bioengineering, 2016, 122, 270-275.	2.2	10
162	Dietary Supplementation with Lysine and Threonine Modulates the Performance and Plasma Metabolites of Broiler Chicken. Journal of Poultry Science, 2019, 56, 204-211.	1.6	10

#	Article	IF	CITATIONS
163	Enantioselective Synthesis of Planar Chiral Paracyclophanes with Short ansa Chains and Structure of Strained Dioxa[7]paracyclophane. Synlett, 2011, 2011, 539-542.	1.8	9
164	Structural and functional characterization of aspartate racemase from the acidothermophilic archaeon Picrophilus torridus. Extremophiles, 2016, 20, 385-393.	2.3	8
165	Magnetic-field-induced alignment of syndiotactic polystyrene. Polymer Journal, 2016, 48, 709-714.	2.7	8
166	Confirmation of the absolute configuration of Stachybotrin C using single-crystal X-ray diffraction analysis of its 4-bromobenzyl ether derivative. Journal of Antibiotics, 2018, 71, 584-591.	2.0	8
167	Distribution and chemical species of phosphorus across density fractions in Andisols of contrasting mineralogy. Geoderma, 2021, 395, 115080.	5.1	8
168	Molecular and crystal structure of (2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl)-(1 â†') Tj ETQq0 0 0 rgBT /Overlock	2.3	547 Td (3)-[2 7
169	Bilayered Super-Structures of Antiferroelectric Mesogens. Molecular Crystals and Liquid Crystals, 1996, 276, 193-201.	0.3	7
170	The Molecular Complexes of Monoalkylammonium Bromide Salts with (R)-(+)-1,1′-Bi-2-Naphthol and Rac-1,1′-Bi-2-Naphthol. Molecular Crystals and Liquid Crystals, 2000, 338, 47-59.	0.3	7
171	1,8-Bis(4-chlorobenzoyl)-7-methoxynaphthalen-2-ol ethanol monosolvate. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o1790-o1790.	0.2	7
172	Hetero Diels–Alder Reaction and Ene Reaction of Acylnitroso Species in situ Generated by Hypoiodite Catalysis. European Journal of Organic Chemistry, 2018, 2018, 6199-6203.	2.4	7
173	Needle-shaped amyloid deposition in rat mammary gland: evidence of a novel amyloid fibril protein. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2020, 27, 25-35.	3.0	7
174	Multiple Myeloma–Associated Ig Light Chain Crystalline Cast Nephropathy. Kidney International Reports, 2020, 5, 1595-1602.	0.8	7
175	Molecular and crystal structure of galactinol dihydrate [1-O-(α-d-galactopyranosyl)-myo-inositol dihydrate]. Carbohydrate Research, 2000, 328, 241-248.	2.3	6
176	Crystalline structure of polyethylene containing vinylene units in the main chain. Polymer, 2011, 52, 4857-4866.	3.8	6
177	Two arginine residues in the substrate pocket predominantly control the substrate selectivity of thiocyanate hydrolase. Journal of Bioscience and Bioengineering, 2013, 116, 22-27.	2.2	6
178	Rhodiumâ€Catalyzed Cyclization Reactions of γâ€Alkynyl Aldehydes with Carboxylic Acid Anhydrides. European Journal of Organic Chemistry, 2013, 2013, 5266-5271.	2.4	6
179	Crystal structure of the collagen model peptide (Proâ€Proâ€Gly) ₄ â€Hypâ€Aspâ€Glyâ€(Proâ€Proâ€Gly) ₄ at 1.0 à resolution. Biopolyi 436-447.	ന ങ്ങു 201	3, 0 9,
180	Characterization of group II chaperonins from an acidothermophilic archaeon PicrophilusÂtorridus. FEBS Open Bio, 2016, 6, 751-764.	2.3	6

#	Article	IF	CITATIONS
181	Direct Synthesis of Bis(alkylamino)maleonitriles from Alcohols and TMSCN with Bi(OTf)3. Synthesis, 2017, 49, 1301-1306.	2.3	6
182	Oxidative cycloaddition of hydroxamic acids with dienes or guaiacols mediated by iodine(III) reagents. Beilstein Journal of Organic Chemistry, 2018, 14, 531-536.	2.2	6
183	Selective Functionalization of Styrenes with Oxygen Using Different Electrode Materials: Olefin Cleavage and Synthesis of Tetrahydrofuran Derivatives. Angewandte Chemie, 2019, 131, 131-135.	2.0	6
184	Solvent-sensitive circularly polarized luminescent compounds bearing a 9,9′-spirobi[fluorene] skeleton. Organic and Biomolecular Chemistry, 2020, 18, 2866-2876.	2.8	6
185	Transformation of Thia[7]helicene to Aza[7]helicenes and [7]Helicene-like Compounds via Aromatic Metamorphosis. Molecules, 2022, 27, 606.	3.8	6
186	Hot Spot Mutagenesis Improves the Functional Expression of Unique Mammalian Odorant Receptors. International Journal of Molecular Sciences, 2022, 23, 277.	4.1	6
187	Molecular and crystal structures of $2,3,4,6,1\hat{a}\in^2,3\hat{a}\in^2,4\hat{a}\in^2$, $6\hat{a}\in^2$ -octa-O-acetyl- \hat{l}^2 -sophorose, methyl $2,3,4,6,3\hat{a}\in^2,4\hat{a}\in^2$ -hexa-O-acetyl- $6\hat{a}\in^2$ -deoxy- \hat{l}^2 Carbohydrate Research, 1995, 271, 137-150.	-s ap horos	idæ.
188	Dehydrogenative Nucleophilic Addition of Aliphatic Ether to Benzaldehyde Dimethyl Acetal Mediated by Ether–Boron Trifluoride (1/1) Affording 1-Alkoxy-2-alkylindenes or α,β-Unsaturated Carbonyl Compounds Specifically. Bulletin of the Chemical Society of Japan, 2006, 79, 627-633.	3.2	5
189	Expression, purification, crystallization and preliminary crystallographic analysis of hepatitis B virus core protein dimerizedviaa peptide linker containing an EGFP insertion. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 942-945.	0.7	5
190	Preferred sideâ€chain conformation of arginine residues in a tripleâ€helical structure. Biopolymers, 2014, 1000-1009.	2.4	5
191	Ketone-hybridized Cyclic Water Hexamer with Chair-conformation in Crystal of Macrocyclic <i>peri</i> -Aroylnaphthalene Compound. Chemistry Letters, 2019, 48, 1522-1525.	1.3	5
192	Crystalline structure and phase transition of syndiotactic styreneâ€based copolymers. Polymer International, 2019, 68, 71-78.	3.1	5
193	PV1 Protein from Plasmodium falciparum Exhibits Chaperone-Like Functions and Cooperates with Hsp100s. International Journal of Molecular Sciences, 2020, 21, 8616.	4.1	5
194	Fluoro Group Pivoting Dual Hydrogen Bonding Intramolecular Bridge for 1,2-Bis(2-fluorophenyl)acenaphthenediol Molecule in Solution: NMR Spectrometrical Confirmation of Simultaneous Participation of F–C(sp ²) Group to Through-space-couplings with Aromatic and Hydroxy Hydrogen Atoms. Chemistry Letters, 2020, 49, 295-298.	1.3	5
195	BF ₃ -Catalyzed Skeletal Rearrangement of 7-En-2-ynones to <i>endo</i> -Type Cyclic Dienes. Organic Letters, 2020, 22, 4063-4067.	4.6	5
196	2-(4-Chlorobenzoyl)-3,6-dimethoxynaphthalene. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o612-o612.	0.2	5
197	Tetramethylammonium dihydrogen phosphate hemihydrate. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, 0797-0797.	0.2	5
198	Molecular and crystal structure of methyl hepta-O-acetyl-α-laminarabioside. Carbohydrate Research, 1994, 253, 29-38.	2.3	4

#	Article	IF	CITATIONS
199	Molecular and crystal structures of two 1,6-anhydro- \hat{l}^2 -maltotriose derivatives. Carbohydrate Research, 1995, 278, 195-203.	2.3	4
200	Formation of Giant Liposomes from Crystalline Complexes of Monoalkylammonium Surfactants and 4â∈Hydroxybiphenyl. Angewandte Chemie - International Edition, 1999, 38, 916-918.	13.8	4
201	Crystallization of Poly(3-hexylthiophene) Nanofiber in a Narrow Groove. Polymers, 2016, 8, 231.	4.5	4
202	Expression, Functional Characterization, and Preliminary Crystallization of the Cochaperone Prefoldin from the Thermophilic Fungus Chaetomium thermophilum. International Journal of Molecular Sciences, 2018, 19, 2452.	4.1	4
203	2,2′-Dimethoxybiphenyl. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o1731-o1731.	0.2	4
204	2-Acetamido-2-deoxy-3-O- \hat{l}^2 -D-galactopyranosyl-D-glucose dihydrate. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o1781-o1782.	0.2	4
205	(8-Bromo-2-hydroxy-7-methoxy-1-naphthyl)(4-chlorobenzoyl)methanone. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, 0676-0676.	0.2	4
206	Crystallization of (Pro-Hyp-Gly)10and Its Triple-Helical Structure Deduced from Cylindrical Patterson Map. Chemistry Letters, 1998, 27, 385-386.	1.3	3
207	THE CRYSTAL STRUCTURES OF 1:1 MOLECULAR COMPLEXES OF MONOALKYLAMMONIUM HALIDES WITH RAC-1,1′-BI-2-NAPHTHOL. Molecular Crystals and Liquid Crystals, 2003, 399, 29-42.	0.9	3
208	DESIGN AND SYNTHESIS OF A C2-SYMMETRIC CHIRAI 1,2-BIS(DIPHENYLPHOSPHINO)BENZENE LIGAND VIA RHODIUM-CATALYZED INTRAMOLECULAR [2+2+2] CYCLOADDITION. Heterocycles, 2012, 86, 139.	0.7	3
209	Expression, purification, crystallization and preliminary X-ray crystallographic studies of hepatitis B virus core fusion protein corresponding to octahedral particles. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 165-169.	0.7	3
210	2-Picoline catalyst-triggered $[2+2+2]$ cycloaddition-type reaction of acetylenedicarboxylates, aldehydes and alkenes. Organic and Biomolecular Chemistry, 2018, 16, 5965-5968.	2.8	3
211	Modification and thermal properties of syndiotactic-1,2-polybutadiene. Polymer Bulletin, 2019, 76, 241-257.	3.3	3
212	A zeolite as a tool for successful refolding of PEGylated proteins and their reassembly with tertiary structures. Biotechnology Progress, 2019, 35, e2853.	2.6	3
213	Halogen-substituent effect on the spectroscopic properties of 2-phenyl-6-dimethylaminobenzothiazoles. Tetrahedron Letters, 2019, 60, 1702-1705.	1.4	3
214	Crystal structure and Hirshfeld surface analysis of 2-hydroxy-7-methoxy-1,8-bis(2,4,6-trichlorobenzoyl)naphthalene. Acta Crystallographica Section E: Crystallographic Communications, 2019, 75, 1418-1422.	0.5	3
215	Novel Blue-to-Green Phosphor of Cu-Al-S System Sensitized with Rare-Earth Elements. Japanese Journal of Applied Physics, 1995, 34, L41-L43.	1.5	3
216	The Hexadecyltrimethylammonium Chloride Inclusion Complex with Rac-1,1′-Bi-2-Naphthol. Molecular Crystals and Liquid Crystals, 2000, 348, 227-237.	0.3	2

#	Article	IF	Citations
217	Hexyltrimethylammonium Bromide Inclusion Complex With Rac-1,1′-Bi-2-Naphthol. Molecular Crystals and Liquid Crystals, 2000, 339, 73-82.	0.3	2
218	THE 1:1 INCLUSION COMPLEX OF OCTYLTRIMETHYLAMMONIUM BROMIDE WITH RAC-1,1′-Bi-2-NAPHTHOL. Molecular Crystals and Liquid Crystals, 2003, 404, 85-93.	0.9	2
219	A Bidirectional Tunnel-like Structure with a Rigid, Thick, and Chiral Aromatic Macrocycle Prepared by Self-complementary 6,6′-Substituted Binaphthyl Monomer. Chemistry Letters, 2008, 37, 660-661.	1.3	2
220	Comparative structural analysis of 2,7-diethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene and its homologues: orientation of the 4-phenoxybenzoyl groups at the 1- and 8-positions of the naphthalene ring. Acta Crystallographica Section C, Structural Chemistry, 2014, 70, 1096-1100.	0.5	2
221	The Source of "Fairy Rings†2-Azahypoxanthine and its Metabolite Found in a Novel Purine Metabolic Pathway in Plants. Angewandte Chemie, 2014, 126, 1578-1581.	2.0	2
222	Purification and characterization of proteins in multifloral honey from kelulut bee (stingless bee). Heliyon, 2019, 5, e02835.	3.2	2
223	Computational and Experimental Analysis on the Conformational Preferences of Anticancer Saponin OSW-1. Journal of Organic Chemistry, 2020, 85, 339-344.	3.2	2
224	Split conformation of Chaetomium thermophilum Hsp104 disaggregase. Structure, 2021, 29, 721-730.e6.	3.3	2
225	Chiral Benzo[b]siloleâ€Fused 9,9â€2â€Spirobi[fluorene]: Synthesis, Chiroptical Properties, and Transformation to Ï€â€Extended Polycyclic Arene. ChemPlusChem, 2021, 86, 171-175.	2.8	2
226	Refined molecular and crystal structure of silk I based on Ala–Gly and (Ala–Gly)2—Ser–Gly peptide sequence. Biopolymers, 2001, 59, 310-319.	2.4	2
227	2,7-Bis(4-acetylphenoxy)naphthalene. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o747-o747.	0.2	2
228	Isolation and Molecular Weight Characterization of Tetragonula laeviceps Honey Protein. Makara Journal of Technology, 2018, 22, 9.	0.3	2
229	Blocking PSD95â€PDZ3's amyloidogenesis through point mutations that inhibit highâ€ŧemperature reversible oligomerization (RO). FEBS Journal, 2022, 289, 3205-3216.	4.7	2
230	Arrangement of Small Molecules in Amphiphile Aggregation System. Molecular Crystals and Liquid Crystals, 1997, 300, 191-200.	0.3	1
231	THE CRYSTAL STRUCTURE OF 1:2 MOLECULAR COMPLEX OF OCTYLTRIMETHYLAMMONIUM BROMIDE WITH R-(+)-1,1′-BI-2-NAPHTHOL. Molecular Crystals and Liquid Crystals, 2003, 399, 61-68.	0.9	1
232	1,6,11,16-Tetraoxacycloeicosane-2,5,12,15-tetraone. Acta Crystallographica Section C: Crystal Structure Communications, 2006, 62, o528-o530.	0.4	1
233	WinLALS series for Helical Polymers running on Windows PCs. Zeitschrift Fýr Kristallographie, 2007, 222, 306-307.	1.1	1
234	The Crystal Structure of Decyltrimethylammonium Chloride with Rac-1,1′-Bi-2-Naphthol. Molecular Crystals and Liquid Crystals, 2009, 515, 99-108.	0.9	1

#	Article	IF	Citations
235	Crystal structure of 2,7-diethoxy-1,8-bis(4-nitrobenzoyl)naphthalene. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, 138-141.	0.2	1
236	PreLALS Workbench: Visual Data Manipulation Workbench for WinLALS on Windows PCs. Journal of Computer Aided Chemistry, 2005, 6, 12-22.	0.3	1
237	Enantioselective Synthesis of Axially Chiral Phthalides Through Cationic [Rh(I)(H8-binap)]-Catalyzed Cross Alkyne Cyclotrimerization ChemInform, 2005, 36, no.	0.0	0
238	Enantioselective Synthesis of Axially Chiral Biaryls Through Rhodium-Catalyzed Complete Intermolecular Cross-Cyclotrimerization of Internal Alkynes ChemInform, 2005, 36, no.	0.0	0
239	Crystal and Molecular Structure of 2:1 Complex of Tetradecyltrimethylammonium Bromide with Rac-1,1′-bi-2-naphthol. Molecular Crystals and Liquid Crystals, 2005, 428, 87-99.	0.9	0
240	The Formation of Isomorphous Packing Structures in Complexes of Dodecyltrimethylammonium Halides Complexes with Rac-1,1′-Bi-2-naphthol. Molecular Crystals and Liquid Crystals, 2008, 493, 44-56.	0.9	0
241	Development of a Liquid Crystalline Polyolefinâ€"Approach from Molecular Design. Kobunshi Ronbunshu, 2009, 66, 381-395.	0.2	0
242	Molecular design of main-chain liquid crystalline polyolefin. Proceedings of SPIE, 2009, , .	0.8	0
243	Intermolecular Interaction in Chitosan/Hydrogen Bromide Complex Based on X-Ray Fiber Diffraction. Kobunshi Ronbunshu, 2010, 67, 690-697.	0.2	0
244	Crystal Structures of the Lumazine Protein from <i>Photobacterium kishitanii</i> in Complexes with the Authentic Chromophore, 6,7-Dimethyl-8-(1′- ⟨scp⟩ d⟨ scp⟩ -Ribityl) Lumazine, and Its Analogues, Riboflavin and Flavin Mononucleotide, at High Resolution. Journal of Bacteriology, 2010, 192, 1749-1749.	2.2	0
245	Self-organized Structure Generated by Molecular Symmetry/Asymmetry Regulation. Chemistry Letters, 2011, 40, 1290-1291.	1.3	0
246	2-(Trimethylazaniumyl)ethyl hydrogen phosphate (phosphocholine) monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o549-o549.	0.2	0
247	Rýcktitelbild: Selective Functionalization of Styrenes with Oxygen Using Different Electrode Materials: Olefin Cleavage and Synthesis of Tetrahydrofuran Derivatives (Angew. Chem. 1/2019). Angewandte Chemie, 2019, 131, 356-356.	2.0	0
248	The crystal structure of $(1R *, 2S *)-1, 2$ -bis $(2$ -fluorophenyl)-3,8-dimethoxyacenaphthene-1,2-diol, C26H20F2O4. Zeitschrift Fur Kristallographie - New Crystal Structures, 2021, .	0.3	0
249	Oligomeric Structural Transition of HspB1 from Chinese Hamster. International Journal of Molecular Sciences, 2021, 22, 10797.	4.1	0
250	3-(2,3,5,6,7,8-Hexahydro-1H-cyclopenta[b]quinolin-9-yl)-1,5-bis(4-methoxyphenyl)biuret. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, 0655-0655.	0.2	0
251	The Inclusion Complex Formation of Monoalkylammonium Salts With (R) - (+), and Rac-1, 1'-bi-2-naphthol. Nihon Kessho Gakkaishi, 1998, 40, 59-59.	0.0	0
252	Synthesis and crystalline structure of poly(p-phenylene alkylene)s and poly(p-phenylene co-alkylenes)s by Kumada coupling reaction of $\hat{l}\pm,\hat{l}$ %-dibromoalkane and p-dichlorobenzene. Journal of Polymer Research, 2022, 29, 1.	2.4	0