List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/757961/publications.pdf Version: 2024-02-01

KADI DITZ

#	Article	IF	CITATIONS
1	Soil health in agricultural systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 685-701.	4.0	696
2	Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity-ecosystem function relationship. Oikos, 2000, 90, 279-294.	2.7	529
3	Soil microbial community structure: Effects of substrate loading rates. Soil Biology and Biochemistry, 1998, 31, 145-153.	8.8	428
4	Assessing shifts in microbial community structure across a range of grasslands of differing management intensity using CLPP, PLFA and community DNA techniques. Applied Soil Ecology, 2004, 25, 63-84.	4.3	331
5	Spatial distribution of bacterial communities and their relationships with the micro-architecture of soil. FEMS Microbiology Ecology, 2003, 44, 203-215.	2.7	291
6	Tillage, habitat space and function of soil microbes. Soil and Tillage Research, 2000, 53, 201-213.	5.6	258
7	An examination of the biodiversity–ecosystem function relationship in arable soil microbial communities. Soil Biology and Biochemistry, 2001, 33, 1713-1722.	8.8	244
8	Interactions between soil structure and fungi. The Mycologist, 2004, 18, 52-59.	0.4	229
9	Three-dimensional Microorganization of the Soil–Root–Microbe System. Microbial Ecology, 2006, 52, 151-158.	2.8	227
10	Selecting biological indicators for monitoring soils: A framework for balancing scientific and technical opinion to assist policy development. Ecological Indicators, 2009, 9, 1212-1221.	6.3	227
11	The holistic rhizosphere: integrating zones, processes, and semantics in the soil influenced by roots. Journal of Experimental Botany, 2016, 67, 3629-3643.	4.8	204
12	Functional stability, substrate utilisation and biological indicators of soils following environmental impacts. Applied Soil Ecology, 2001, 16, 49-61.	4.3	196
13	In Situ Spatial Patterns of Soil Bacterial Populations, Mapped at Multiple Scales, in an Arable Soil. Microbial Ecology, 2002, 44, 296-305.	2.8	180
14	The Relationship between Microbial Community Structure and Functional Stability, Tested Experimentally in an Upland Pasture Soil. Microbial Ecology, 2004, 47, 104-113.	2.8	180
15	Plant: soil interactions in temperate multi-cropping production systems. Plant and Soil, 2014, 376, 1-29.	3.7	179
16	Nano-scale secondary ion mass spectrometry — A new analytical tool in biogeochemistry and soil ecology: A review article. Soil Biology and Biochemistry, 2007, 39, 1835-1850.	8.8	178
17	Food preferences of earthworms for soil fungi. Pedobiologia, 2000, 44, 666-676.	1.2	175
18	The future of soils and land use in the UK: Soil systems for the provision of land-based ecosystem services. Land Use Policy, 2009, 26, S187-S197.	5.6	167

#	Article	IF	CITATIONS
19	Effect of elevated CO 2 on rhizosphere carbon flow and soil microbial processes. Global Change Biology, 1997, 3, 363-377.	9.5	163
20	Shaping 3D Root System Architecture. Current Biology, 2017, 27, R919-R930.	3.9	162
21	Title is missing!. , 1999, 212, 1-11.		160
22	Spatial structure in soil chemical and microbiological properties in an upland grassland. FEMS Microbiology Ecology, 2004, 49, 191-205.	2.7	154
23	Towards an evolutionary ecology of life in soil. Trends in Ecology and Evolution, 2005, 20, 81-87.	8.7	141
24	Microbial diversity affects self-organization of the soil–microbe system with consequences for function. Journal of the Royal Society Interface, 2012, 9, 1302-1310.	3.4	131
25	An Efficient Markov Chain Model for the Simulation of Heterogeneous Soil Structure. Soil Science Society of America Journal, 2004, 68, 346-351.	2.2	118
26	Investigating microbial micro-habitat structure using X-ray computed tomography. Geoderma, 2006, 133, 398-407.	5.1	115
27	Quantification of fungal morphology, gaseous transport and microbial dynamics in soil: an integrated framework utilising fractal geometry. Geoderma, 1993, 56, 157-172.	5.1	109
28	Quantification of the in situ distribution of soil bacteria by large-scale imaging of thin sections of undisturbed soil. FEMS Microbiology Ecology, 2001, 37, 67-77.	2.7	104
29	The Plate Debate: Cultivable communities have no utility in contemporary environmental microbial ecology. FEMS Microbiology Ecology, 2007, 60, 358-362.	2.7	104
30	The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environmental Science and Pollution Research, 2013, 20, 1041-1049.	5.3	101
31	Effect of bulk density on the spatial organisation of the fungus Rhizoctonia solani in soil. FEMS Microbiology Ecology, 2003, 44, 45-56.	2.7	100
32	Functional Consequences of Nutrient Translocation in Mycelial Fungi. Journal of Theoretical Biology, 2002, 217, 459-477.	1.7	96
33	The Development of Fungal Networks in Complex Environments. Bulletin of Mathematical Biology, 2007, 69, 605-634.	1.9	91
34	Quantification of the fractal nature of colonies of Trichoderma viride. Mycological Research, 1990, 94, 1138-1141.	2.5	88
35	Soil physics, fungal epidemiology and the spread of Rhizoctonia solani. New Phytologist, 2001, 151, 459-468.	7.3	88
36	Growth responses of some soil fungi to spatially heterogeneous nutrients. FEMS Microbiology Ecology, 1995, 16, 269-280.	2.7	83

#	Article	IF	CITATIONS
37	Growth and Function of Fungal Mycelia in Heterogeneous Environments. Bulletin of Mathematical Biology, 2003, 65, 447-477.	1.9	83
38	Soil seal development under simulated rainfall: Structural, physical and hydrological dynamics. Journal of Hydrology, 2018, 556, 211-219.	5.4	75
39	Microbial biomass and mineral N transformations in soil planted with barley, ryegrass, pea or turnip. Plant and Soil, 1990, 127, 157-167.	3.7	72
40	Solubilization of calcium phosphate as a consequence of carbon translocation by Rhizoctonia solani. FEMS Microbiology Ecology, 2002, 40, 65-71.	2.7	71
41	Selection of biological indicators appropriate for European soil monitoring. Applied Soil Ecology, 2016, 97, 12-22.	4.3	71
42	Nematodes as indicators of enhanced microbiological activity in a Scottish organic farming system. Soil Use and Management, 1994, 10, 20-24.	4.9	69
43	Community-level responses of metabolically-active soil microorganisms to the quantity and quality of substrate inputs. Soil Biology and Biochemistry, 2004, 36, 841-848.	8.8	68
44	Slow-release 15N fertilizer formulations to measure N2-fixation by isotope dilution. Soil Biology and Biochemistry, 1984, 16, 657-661.	8.8	66
45	A review of the impacts of degradation threats on soil properties in the <scp>UK</scp> . Soil Use and Management, 2015, 31, 1-15.	4.9	64
46	EVIDENCE ON THE PATHWAYS OF PHOSPHORUS TRANSFER BETWEEN VESICULAR – ARBUSCULAR MYCORRHIZAL PLANTS. New Phytologist, 1986, 104, 77-87.	7.3	63
47	Root-induced nitrogen mineralisation: A theoretical analysis. Plant and Soil, 1989, 117, 185-193.	3.7	63
48	Nanoparticles within WWTP sludges have minimal impact on leachate quality and soil microbial community structure and function. Environmental Pollution, 2016, 211, 399-405.	7.5	61
49	Impact of fumigation with metam sodium upon soil microbial community structure in two Japanese soils. Soil Science and Plant Nutrition, 1999, 45, 207-223.	1.9	59
50	Community DNA hybridisation and %G+C profiles of microbial communities from heavy metal polluted soils. FEMS Microbiology Ecology, 2006, 24, 103-112.	2.7	59
51	Standardisation of methods in soil microbiology: progress and challenges. FEMS Microbiology Ecology, 2012, 82, 1-10.	2.7	59
52	Defining and quantifying the resilience of responses to disturbance: a conceptual and modelling approach from soil science. Scientific Reports, 2016, 6, 28426.	3.3	58
53	Nutritional influence on the ability of fungal mycelia to penetrate toxic metal-containing domains. Mycological Research, 2003, 107, 861-871.	2.5	57
54	Can there be a contemporary ecological dimension to soil biology without a habitat?. Soil Biology and Biochemistry, 1998, 30, 1229-1232.	8.8	56

#	Article	IF	CITATIONS
55	Negative fungal chemotropism to toxic metals. FEMS Microbiology Letters, 2000, 193, 207-211.	1.8	55
56	A technique to extract, enumerate and measure protozoa from mineral soils. Soil Biology and Biochemistry, 1988, 20, 163-173.	8.8	54
57	Nutritional influence on fungal colony growth and biomass distribution in response to toxic metals. FEMS Microbiology Letters, 2001, 204, 311-316.	1.8	53
58	On the origin of carbon dioxide released from rewetted soils. Soil Biology and Biochemistry, 2016, 101, 1-5.	8.8	53
59	Effects of cropping systems upon the three-dimensional architecture of soil systems are modulated by texture. Geoderma, 2018, 332, 73-83.	5.1	51
60	Changes to water repellence of soil caused by the growth of white-rot fungi: studies using a novel microcosm system. FEMS Microbiology Letters, 2000, 184, 73-77.	1.8	50
61	The preparation of soil thin sections for biological studies. Journal of Soil Science, 1986, 37, 681-690.	1.2	48
62	Developmental morphology of cover crop species exhibit contrasting behaviour to changes in soil bulk density, revealed by X-ray computed tomography. PLoS ONE, 2017, 12, e0181872.	2.5	48
63	Ryegrass rhizosphere microbial community structure under elevated carbon dioxide concentrations, with observations on wheat rhizosphere. Soil Biology and Biochemistry, 1998, 30, 315-321.	8.8	47
64	Effects of animal manure application and crop plants upon size and activity of soil microbial biomass under organically grown spring barley. Biology and Fertility of Soils, 1997, 24, 372-377.	4.3	44
65	%G+C profiling and cross hybridisation of microbial DNA reveals great variation in below-ground community structure in UK upland grasslands. Applied Soil Ecology, 2000, 14, 125-134.	4.3	43
66	Evaluation of polyester, epoxy and acrylic resins for suitability in preparation of soil thin sections for in situ biological studies. Geoderma, 1996, 69, 31-57.	5.1	42
67	The origins of spatial heterogeneity in vegetative mycelia: a reaction-diffusion model. Mycological Research, 1996, 100, 1473-1480.	2.5	42
68	Effects of triclosan on soil microbial respiration. Environmental Toxicology and Chemistry, 2011, 30, 360-366.	4.3	42
69	Direct extraction of microbial community DNA from humified upland soils. Letters in Applied Microbiology, 1997, 25, 30-33.	2.2	41
70	The role played by microorganisms in the biogenesis of soil cracks: importance of substrate quantity and quality. Soil Biology and Biochemistry, 2001, 33, 1851-1858.	8.8	41
71	Soil as an extended composite phenotype of the microbial metagenome. Scientific Reports, 2020, 10, 10649.	3.3	41
72	Broad-scale approaches to the determination of soil microbial community structure: Application of the community DNA hybridization technique. Microbial Ecology, 1996, 31, 269-80.	2.8	40

KARL RITZ

#	Article	IF	CITATIONS
73	Solubilization of metal phosphates by Rhizoctonia solani. Mycological Research, 2002, 106, 1468-1479.	2.5	39
74	Preferential spread of the pathogenic fungus Rhizoctonia solani through structured soil. Soil Biology and Biochemistry, 2004, 36, 203-210.	8.8	39
75	Enteropathogen survival in soil from different land-uses is predominantly regulated by microbial community composition. Applied Soil Ecology, 2015, 89, 76-84.	4.3	39
76	Temporal variations in potential nitrification dynamics in soil related to differences in rates and types of carbon and nitrogen inputs. Soil Biology and Biochemistry, 2001, 33, 2135-2144.	8.8	38
77	Evidence for Rapid Cycling of Phosphorus from Dying Roots to Living Plants. Oikos, 1985, 45, 174.	2.7	36
78	Translocation of carbon by Rhizoctonia solani in nutritionally-heterogeneous microcosms. Mycological Research, 2004, 108, 453-462.	2.5	36
79	Inefficiency of mustard extraction technique for assessing size and structure of earthworm communities in UK pasture. Soil Biology and Biochemistry, 2006, 38, 2990-2992.	8.8	36
80	Cover crop species have contrasting influence upon soil structural genesis and microbial community phenotype. Scientific Reports, 2019, 9, 7473.	3.3	36
81	Soil microbial biomass and activity under a potato crop fertilised with N with and without C. Biology and Fertility of Soils, 1992, 12, 265-271.	4.3	35
82	Survival of bacterial and fungal populations following chloroform-fumigation: Effects of soil matric potential and bulk density. Soil Biology and Biochemistry, 1996, 28, 1545-1547.	8.8	35
83	Microbiological factors affecting the colonisation of soil aggregates by Fusarium oxysporum f. sp. raphani. Soil Biology and Biochemistry, 1996, 28, 1513-1521.	8.8	35
84	The thermodynamic efficiency of soil microbial communities subject to long-term stress is lower than those under conventional input regimes. Soil Biology and Biochemistry, 2012, 47, 149-157.	8.8	34
85	Potential application of a community hybridization technique for assessing changes in the population structure of soil microbial communities. Soil Biology and Biochemistry, 1994, 26, 963-971.	8.8	33
86	Effects of carbon and nitrate additions to soil upon leaching of nitrate, microbial predators and nitrogen uptake by plants. Plant and Soil, 1987, 102, 229-237.	3.7	32
87	Analysis of soil and bacterioplankton community DNA by melting profiles and reassociation kinetics. FEMS Microbiology Letters, 2006, 149, 151-156.	1.8	31
88	Variations in the rates of nitrification and denitrification during the growth of potatoes (Solanum) Tj ETQq0 0 0 r plant yield. Biology and Fertility of Soils, 1991, 11, 157-162.	gBT /Overl 4.3	ock 10 Tf 50 29
89	Effects of compost stability on plant growth, microbiological parameters and nitrogen availability in media containing mixed garden-waste compost. Bioresource Technology, 1995, 54, 279-284.	9.6	29
90	Travelling waves and pattern formation in a model for fungal development. Journal of Mathematical Biology, 1997, 35, 589-608.	1.9	29

6

#	Article	IF	CITATIONS
91	Functional resilience of microbial communities from perturbed upland grassland soils to further persistent or transient stresses. Soil Biology and Biochemistry, 2006, 38, 2300-2306.	8.8	29
92	Relationship between Functional Diversity and Genetic Diversity in Complex Microbial Communities. , 1997, , 1-9.		29
93	An inter-laboratory comparison of multi-enzyme and multiple substrate-induced respiration assays to assess method consistency in soil monitoring. Biology and Fertility of Soils, 2009, 45, 623-633.	4.3	28
94	Temporal variations in soil microbial biomass C and N under a spring barley crop. Soil Biology and Biochemistry, 1988, 20, 625-630.	8.8	27
95	A positive numerical scheme for a mixed-type partial differential equation model for fungal growth. Applied Mathematics and Computation, 2003, 138, 321-340.	2.2	27
96	The effect of triclosan on microbial community structure in three soils. Chemosphere, 2012, 89, 1-9.	8.2	27
97	Are secondary forests second-rate? Comparing peatland greenhouse gas emissions, chemical and microbial community properties between primary and secondary forests in Peninsular Malaysia. Science of the Total Environment, 2019, 655, 220-231.	8.0	27
98	Detailed visualisation of hyphal distribution in fungal mycelia growing in heterogeneous nutritional environments. Journal of Microbiological Methods, 1996, 25, 23-28.	1.6	26
99	Interspecific fungal interactions in spatially heterogeneous systems. FEMS Microbiology Ecology, 1998, 27, 21-32.	2.7	24
100	An Efficient Markov Chain Model for the Simulation of Heterogeneous Soil Structure. Soil Science Society of America Journal, 2004, 68, 346.	2.2	24
101	Image analysis of space-filling by networks: Application to a fungal mycelium. Biotechnology Letters, 1996, 10, 205-210.	0.5	23
102	In situ visualisation of fungi in soil thin sections: problems with crystallisation of the fluorochrome FB 28 (Calcofluor M2R) and improved staining by SCRI Renaissance 2200. Mycological Research, 2002, 106, 293-297.	2.5	22
103	A mathematical approach to studying fungal mycelia. The Mycologist, 2003, 17, 165-171.	0.4	22
104	Environmental impacts as affected by different oil palm cropping systems in tropical peatlands. Agriculture, Ecosystems and Environment, 2019, 276, 8-20.	5.3	22
105	Movement of 32 P between Intact Grassland Plants of the Same Age. Oikos, 1984, 43, 138.	2.7	21
106	Bacterial Interactions At The Microscale – Linking Habitat To Function In Soil. , 2007, , 61-85.		21
107	Large-scale behavior of fungal mycelia. Mathematical and Computer Modelling, 1996, 24, 81-87.	2.0	20
108	Microbial population dynamics related to temporal variations in nitrification in three arable fields. European Journal of Soil Science, 2003, 54, 707-714.	3.9	20

#	Article	IF	CITATIONS
109	Broad-scale analysis of soil microbial community DNA from Upland grasslands. Antonie Van Leeuwenhoek, 1998, 73, 9-14.	1.7	19
110	The spectral quality of light influences the temporal development of the microbial phenotype at the arable soil surface. Soil Biology and Biochemistry, 2009, 41, 553-560.	8.8	19
111	Nutrient transport between ryegrass plants differeing in nutrient status. Oecologia, 1986, 70, 128-131.	2.0	18
112	Impact of basidiomycete fungi on the wettability of soil contaminated with a hydrophobic polycyclic aromatic hydrocarbon. Biologia (Poland), 2006, 61, S334-S338.	1.5	17
113	Microbial community phenotypic profiles change markedly with depth within the first centimetre of the arable soil surface. Soil Biology and Biochemistry, 2007, 39, 1226-1229.	8.8	17
114	Interactions between microbial community structure and the soil environment found on golf courses. Soil Biology and Biochemistry, 2007, 39, 1533-1541.	8.8	17
115	Distinct respiratory responses of soils to complex organic substrate areÂgoverned predominantly by soil architecture and its microbial community. Soil Biology and Biochemistry, 2016, 103, 493-501.	8.8	17
116	Insensitivity of soil biological communities to phosphorus fertilization in intensively managed grassland systems. Grass and Forage Science, 2016, 71, 139-152.	2.9	17
117	Development and application of a DNA metabarcoding method for comprehensive analysis of soil nematode communities. Applied Soil Ecology, 2021, 166, 103974.	4.3	17
118	Aggregation and collapse of fungal wall vesicles in hyphal tips: a model for the origin of the Spitzenk¶rper. Philosophical Transactions of the Royal Society B: Biological Sciences, 1997, 352, 1963-1974.	4.0	16
119	The habitat of soil microbes. , 2005, , 31-43.		16
120	A simple reactive-transport model of calcite precipitation in soils and other porous media. Geochimica Et Cosmochimica Acta, 2015, 165, 108-122.	3.9	16
121	Evidence for functional state transitions in intensively-managed soil ecosystems. Scientific Reports, 2018, 8, 11522.	3.3	16
122	Impacts of conversion from natural forest to cedar plantation on the structure and diversity of root-associated and soil microbial communities. Applied Soil Ecology, 2021, 167, 104027.	4.3	16
123	Phacelia (Phacelia tanacetifolia Benth.) affects soil structure differently depending on soil texture. Plant and Soil, 2019, 441, 543-554.	3.7	15
124	Effects of soil matric potential and bulk density on the growth of Fusarium oxysporum f. sp. raphani. Soil Biology and Biochemistry, 1996, 28, 1139-1145.	8.8	14
125	Probing the basis of soil resilience. Soil Use and Management, 2015, 31, 72-81.	4.9	14
126	Reorganisation of rhizosphere soil pore structure by wild plant species in compacted soils. Journal of Experimental Botany, 2020, 71, 6107-6115.	4.8	14

#	Article	IF	CITATIONS
127	Maize-Brachiaria intercropping: A strategy to supply recycled N to maize and reduce soil N2O emissions?. Agriculture, Ecosystems and Environment, 2021, 319, 107491.	5.3	14
128	Colony development in nutritionally heterogeneous enviromnents. , 1999, , 49-74.		13
129	Application of an augmented nitrification assay to elucidate the effects of a spring barley crop and manures on temporal variations in rates. Biology and Fertility of Soils, 1997, 24, 378-383.	4.3	12
130	Evidence for emergent behaviour in the community-scale dynamics of a fungal microcosm. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 1947-1952.	2.6	12
131	The effects of fungal inoculum arrangement (scale and context) on emergent community development in an agar model system. FEMS Microbiology Ecology, 2002, 39, 9-16.	2.7	12
132	Earthworm community structure on five English golf courses. Applied Soil Ecology, 2008, 39, 336-341.	4.3	12
133	Proportion of Sewage Sludge to Soil Influences the Survival of <i>Salmonella</i> Dublin and <i>Escherichia coli</i> . Clean - Soil, Air, Water, 2018, 46, 1800042.	1.1	11
134	Impact of Soil Type, Biology and Temperature on the Survival of Non-Toxigenic <i>Escherichia</i> Coli O157. Biology and Environment, 2013, 113, 1-6.	0.3	11
135	The effect of microbial communities on soil hydrological processes: A microcosm study utilising simulated rainfall. Geoderma, 2007, 142, 11-17.	5.1	10
136	Size and phenotypic structure of microbial communities within soil profiles in relation to different playing areas on a UK golf course. European Journal of Soil Science, 2008, 59, 835-841.	3.9	10
137	Does biochar interfere with standard methods for determining soil microbial biomass and phenotypic community structure?. Soil Biology and Biochemistry, 2015, 81, 143-146.	8.8	10
138	Is Intercropping an Environmentally-Wise Alternative to Established Oil Palm Monoculture in Tropical Peatlands?. Frontiers in Forests and Global Change, 2020, 3, .	2.3	10
139	Nutrient and trace element concentrations influence greenhouse gas emissions from Malaysian tropical peatlands. Soil Use and Management, 2021, 37, 138-150.	4.9	10
140	Simultaneous Preservation of Soil Structural Properties and Phospholipid Proflles: A Comparison of Three Drying Techniques. Pedosphere, 2008, 18, 284-287.	4.0	9
141	GHG emission under different cropping systems in some Histosols of Malaysia. Geoderma Regional, 2019, 18, e00229.	2.1	9
142	Land-Use Changes Associated with Oil Palm Plantations Impact PLFA Microbial Phenotypic Community Structure throughout the Depth of Tropical Peats. Wetlands, 2020, 40, 2351-2366.	1.5	9
143	Significant structural evolution of a longâ€ŧerm fallow soil in response to agricultural management practices requires at least 10 years after conversion. European Journal of Soil Science, 2021, 72, 829-841.	3.9	9
144	Effects of water amendment on basal and substrate-induced respiration rates of mineral soils. Biology and Fertility of Soils, 1989, 8, 242.	4.3	8

#	Article	IF	CITATIONS
145	Comment on Zhao et al. (2005) "Does ergosterol concentration provide a reliable estimate of soil fungal biomass?― Soil Biology and Biochemistry, 2006, 38, 1500-1501.	8.8	8
146	Fungal roles in transport processes in soils. , 0, , 51-73.		7
147	Underview: origins and consequences of below-ground biodiversity. , 2005, , 381-401.		7
148	Does soil biology hold the key to optimized slurry management? A manifesto for research. Soil Use and Management, 2011, 27, 464-469.	4.9	7
149	Engineering difference: Matrix design determines community composition in wastewater treatment systems. Ecological Engineering, 2012, 40, 183-188.	3.6	7
150	The effects of earthworms, botanical diversity and fertiliser type on the vertical distribution of soil nutrients and plant nutrient acquisition. Biology and Fertility of Soils, 2013, 49, 1189-1201.	4.3	7
151	Spatial Organisation Of Soil Fungi. , 2007, , 179-202.		7
152	Freezing as a means of preserving samples in soil respiration studies. Biology and Fertility of Soils, 1989, 8, 95.	4.3	6
153	Dynamics of mineral nitrogen in soils supporting potato crops. Biology and Fertility of Soils, 1995, 19, 36-40.	4.3	5
154	A sterile environment for growing, and monitoring, micro-organisms under a range of soil matric potentials. Soil Biology and Biochemistry, 2001, 33, 689-691.	8.8	5
155	Risk Assessment of E. coli Survival Up to the Grazing Exclusion Period After Dairy Slurry, Cattle Dung, and Biosolids Application to Grassland. Frontiers in Sustainable Food Systems, 2018, 2, .	3.9	5
156	Environmental Considerations for Common Burial Site Selection After Pandemic Events. , 2009, , 87-101.		5
157	Solvent-based washing removes lipophilic contaminant interference with phospholipid fatty acid analysis of soil communities. Soil Biology and Biochemistry, 2011, 43, 2208-2212.	8.8	4
158	Growth responses of some soil fungi to spatially heterogeneous nutrients. FEMS Microbiology Ecology, 1995, 16, 269-279.	2.7	4
159	Community DNA hybridisation and %G+C profiles of microbial communities from heavy metal polluted soils. FEMS Microbiology Ecology, 1997, 24, 103-112.	2.7	4
160	Analysis of soil and bacterioplankton community DNA by melting profiles and reassociation kinetics. FEMS Microbiology Letters, 1997, 149, 151-156.	1.8	4
161	TopCap: A Tool to Quantify Soil Surface Topology and Subsurface Structure. Vadose Zone Journal, 2018, 17, 1-10.	2.2	3
162	Views of the underworld: in situ visualization of soil biota , 2011, , 1-12.		3

10

#	Article	IF	CITATIONS
163	Effects of soilâ€surface microbial community phenotype upon physical and hydrological properties of an arable soil: a microcosm study. European Journal of Soil Science, 2010, 61, 493-503.	3.9	2
164	The Impact of Disturbed Soil Structure on the Degradation of 2 Fungicides Under Constant and Variable Moisture. Environmental Toxicology and Chemistry, 2021, 40, 2715-2725.	4.3	2
165	Quantification of fungal morphology, gaseous transport and microbial dynamics in soil: an integrated framework utilising fractal geometry. , 1993, , 157-172.		2
166	The zoological generation of soil structure , 2011, , 71-85.		2
167	Soils in Forensic Science: Underground Meets Underworld. , 2009, , 501-513.		1
168	Interspecific fungal interactions in spatially heterogeneous systems. FEMS Microbiology Ecology, 1998, 27, 21-32.	2.7	1