
Zhaobin Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7579411/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increasing persistent haze in Beijing: potential impacts of weakening East Asian winter monsoons associated with northwestern Pacific sea surface temperature trends. Atmospheric Chemistry and Physics, 2018, 18, 3173-3183.	4.9	75
2	Association between dust weather and number of admissions for patients with respiratory diseases in spring in Lanzhou. Science of the Total Environment, 2012, 423, 8-11.	8.0	53
3	Regional atmospheric pollutant transport mechanisms over the North China Plain driven by topography and planetary boundary layer processes. Atmospheric Environment, 2020, 221, 117098.	4.1	46
4	Assessment of population exposure to PM10 for respiratory disease in Lanzhou (China) and its health-related economic costs based on GIS. BMC Public Health, 2013, 13, 891.	2.9	43
5	An assessment of China's PM10-related health economic losses in 2009. Science of the Total Environment, 2012, 435-436, 61-65.	8.0	36
6	Vertical evolution of black carbon characteristics and heating rate during a haze event in Beijing winter. Science of the Total Environment, 2020, 709, 136251.	8.0	36
7	Associations of black carbon and PM2.5 with daily cardiovascular mortality in Beijing, China. Atmospheric Environment, 2019, 214, 116876.	4.1	31
8	Projections of future temperature-related cardiovascular mortality under climate change, urbanization and population aging in Beijing, China. Environment International, 2022, 163, 107231.	10.0	31
9	Comparing the impact of strong and weak East Asian winter monsoon on PM2.5 concentration in Beijing. Atmospheric Research, 2019, 215, 165-177.	4.1	29
10	Joint occurrence of heatwaves and ozone pollution and increased health risks in Beijing, China: role of synoptic weather pattern and urbanization. Atmospheric Chemistry and Physics, 2022, 22, 6523-6538.	4.9	28
11	Assessment of resident's exposure level and health economic costs of PM10 in Beijing from 2008 to 2012. Science of the Total Environment, 2016, 563-564, 557-565.	8.0	27
12	Impacts of urbanization on the temperature-cardiovascular mortality relationship in Beijing, China. Environmental Research, 2020, 191, 110234.	7.5	26
13	Vertical Profiles of Aerosol Composition over Beijing, China: Analysis of In Situ Aircraft Measurements. Journals of the Atmospheric Sciences, 2019, 76, 231-245.	1.7	25
14	Emission inventory evaluation using observations of regional atmospheric background stations of China. Journal of Environmental Sciences, 2013, 25, 537-546.	6.1	22
15	Detection of critical PM _{2.5} emission sources and their contributions to a heavy haze episode in Beijing, China, using an adjoint model. Atmospheric Chemistry and Physics, 2018, 18, 6241-6258.	4.9	22
16	Assessment of the short-term mortality effect of the national action plan on air pollution in Beijing, China. Environmental Research Letters, 2020, 15, 034052.	5.2	19
17	Seasonal variation in health impacts associated with visibility in Beijing, China. Science of the Total Environment, 2020, 730, 139149.	8.0	19
18	Vertical-distribution Characteristics of Atmospheric Aerosols under Different Thermodynamic Conditions in Beijing. Aerosol and Air Quality Research, 2018, 18, 2775-2787.	2.1	19

ZHAOBIN SUN

#	Article	IF	CITATIONS
19	Model assessment of atmospheric pollution control schemes for critical emission regions. Atmospheric Environment, 2016, 124, 367-377.	4.1	17
20	Boundary layer structure characteristics under objective classification of persistent pollution weather types in the Beijing area. Atmospheric Chemistry and Physics, 2021, 21, 8863-8882.	4.9	16
21	Estimating the mortality burden attributable to temperature and PM _{2.5} from the perspective of atmospheric flow. Environmental Research Letters, 2020, 15, 124059.	5.2	16
22	Does the early haze warning policy in Beijing reflect the associated health risks, even for slight haze?. Atmospheric Environment, 2019, 210, 110-119.	4.1	14
23	Tracking sensitive source areas of different weather pollution types using GRAPES-CUACE adjoint model. Atmospheric Environment, 2018, 175, 154-166.	4.1	13
24	Dynamic effects of topography on dust particles in the Beijing region of China. Atmospheric Environment, 2019, 213, 413-423.	4.1	11
25	Oscillation of Surface PM2.5 Concentration Resulting from an Alternation of Easterly and Southerly Winds in Beijing: Mechanisms and Implications. Journal of Meteorological Research, 2018, 32, 288-301.	2.4	10
26	Analysis of abrupt changes in the PM2.5 concentration in Beijing during the conversion period from the summer to winter half-year in 2006–2015. Atmospheric Environment, 2019, 200, 319-328.	4.1	10
27	The health impacts of aerosol-planetary boundary layer interactions on respiratory and circulatory mortality. Atmospheric Environment, 2022, 276, 119050.	4.1	10
28	Modifying effects of temperature on human mortality related to black carbon particulates in Beijing, China. Atmospheric Environment, 2020, 243, 117845.	4.1	9
29	Tracking a Severe Pollution Event in Beijing in December 2016 with the GRAPES–CUACE Adjoint Model. Journal of Meteorological Research, 2018, 32, 49-59.	2.4	6
30	Development of four-dimensional variational assimilation system based on the GRAPES–CUACE adjoint model (GRAPES–CUACE-4D-Var V1.0) and its application in emission inversion. Geoscientific Model Development, 2021, 14, 337-350.	3.6	6
31	A foehn-induced haze front in Beijing: observations and implications. Atmospheric Chemistry and Physics, 2020, 20, 15793-15809.	4.9	5
32	The influences of the East Asian Monsoon on the spatio-temporal pattern of seasonal influenza activity in China. Science of the Total Environment, 2022, 843, 157024.	8.0	4
33	Construction of the environmental meteorological comprehensive health index under the atmospheric comprehensive health risk in Beijing, China. Urban Climate, 2022, 44, 101199.	5.7	3
34	Development of GRAPES-CUACE adjoint model version 2.0 and its application in sensitivity analysis of ozone pollution in north China. Science of the Total Environment, 2022, 826, 153879.	8.0	1
35	Assessment of black carbon exposure level and health economic loss in China. Environmental Science and Pollution Research, 2022, 29, 52123-52132.	5.3	0