Hao Xue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/757929/publications.pdf

Version: 2024-02-01

40 1, papers citat

1,731 citations

18 h-index 395702 33 g-index

40 all docs 40 docs citations

40 times ranked

2497 citing authors

#	Article	IF	CITATIONS
1	Reconfigurable Fiber Triboelectric Nanogenerator for Self-Powered Defect Detection. ACS Nano, 2022, 16, 7721-7731.	14.6	15
2	Magnets Assisted Triboelectric Nanogenerator for Harvesting Water Wave Energy. Advanced Materials Technologies, 2022, 7, .	5.8	4
3	Study on preparation and performance of flexible all-solid-state supercapacitor based on nitrogen-doped RGO/CNT/MnO2 composite fibers. Journal of Alloys and Compounds, 2021, 859, 157816.	5.5	34
4	3D printed stretchable smart fibers and textiles for self-powered e-skin. Nano Energy, 2021, 84, 105866.	16.0	75
5	Toward the Burgeoning Optical Sensors with Ultraâ€Precision Hierarchical Structures Inspired by Butterflies. Advanced Materials Interfaces, 2021, 8, 2100142.	3.7	8
6	Piezotronic effect boosted photocatalytic performance of heterostructured BaTiO3/TiO2 nanofibers for degradation of organic pollutants. Nano Energy, 2020, 77, 105122.	16.0	110
7	Generation of High-Order Bessel Orbital Angular Momentum Vortex Beam Using a Single-Layer Reflective Metasurface. IEEE Access, 2020, 8, 126504-126510.	4.2	19
8	Quantifying and understanding the triboelectric series of inorganic non-metallic materials. Nature Communications, 2020, 11, 2093.	12.8	287
9	Polyanilineâ€Modified Hierarchical Graphene Fiber for Ultrahighâ€Performance Electrochemical Supercapacitor with Carbon Fiber in Core as Current Collector. Energy Technology, 2019, 7, 1900522.	3.8	8
10	Sintering behavior and microwave performance of CaSiO3 ceramics doped with BaCu(B2O5) for LTCC applications. Ceramics International, 2019, 45, 18937-18942.	4.8	18
11	Microstructure and broadband dielectric properties of Zn2SiO4 ceramics with nano-sized TiO2 addition. Ceramics International, 2019, 45, 13251-13256.	4.8	37
12	Boosting the Solar Cell Efficiency by Flexo-photovoltaic Effect?. ACS Nano, 2019, 13, 12259-12267.	14.6	111
13	The synthesis and electrochemical performance of NiCo ₂ O ₄ embedded carbon nanofibers for high-performance supercapacitors. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27, 189-197.	2.1	22
14	Low temperature sintering and microwave dielectric properties of Zn1.8SiO3.8 ceramics with BaCu(B2O5) additive for LTCC applications. Ceramics International, 2018, 44, 14145-14150.	4.8	13
15	Enhancement of Dielectric Performance of Polymer Composites via Constructing BaTiO ₃ –Poly(dopamine)–Ag Nanoparticles through Mussel-Inspired Surface Functionalization. ACS Omega, 2018, 3, 14087-14096.	3.5	31
16	Low temperature sintering and microwave dielectric properties of TiO2 ceramics. Journal of the European Ceramic Society, 2017, 37, 4667-4672.	5.7	24
17	A wearable pyroelectric nanogenerator and self-powered breathing sensor. Nano Energy, 2017, 38, 147-154.	16.0	251
18	Effects of the Bi2O3-SiO2 addition on the sintering behavior and microwave dielectric properties of Zn1.8SiO3.8 ceramics. Journal of Alloys and Compounds, 2017, 725, 1063-1068.	5.5	15

#	Article	IF	Citations
19	Lead-free (Na0.83K0.17)0.5Bi0.5TiO3 nanofibers for wearable piezoelectric nanogenerators. Journal of Alloys and Compounds, 2016, 688, 1066-1071.	5.5	30
20	Highly oriented BaTiO ₃ film self-assembled using an interfacial strategy and its application as a flexible piezoelectric generator for wind energy harvesting. Journal of Materials Chemistry A, 2015, 3, 9965-9971.	10.3	76
21	A hybrid fibers based wearable fabric piezoelectric nanogenerator for energy harvesting application. Nano Energy, 2015, 13, 298-305.	16.0	175
22	Hydrothermal synthesis and photoluminescent properties of Li2Sr0.996SiO4:Pr3+0.004 phosphors for white-LED lightings. Journal of Rare Earths, 2015, 33, 244-248.	4.8	10
23	Single BaTiO3 nanowires-polymer fiber based nanogenerator. Nano Energy, 2015, 11, 510-517.	16.0	98
24	Magnetoelectric sensor with miniature universal tunable bias magnetic circuit. Applied Physics Letters, 2013, 103, .	3.3	14
25	Giant phase shift effect in Tb0.3Dy0.7Fe2/Pb(Zr,Ti)O3 laminated composite. Applied Physics Letters, 2013, 102, .	3.3	11
26	The Influence of Flexural Deformation on the Static Magnetoelectric Coefficient of a Bilayered Magnetoelectric Composite. Materials Research Letters, 2013, 1, 45-50.	8.7	9
27	Piezoelectric PZT fiber composite as a low frequency vibration sensor. , 2013, , .		3
28	A flexible piezoelectric power generator based on self-assembled, highly & amp;lt;001& amp;#x003E; oriented BaTiO <inf>3</inf> micro platelet thin layer., 2013,,.		0
29	Effect of oxygen sintering atmosphere on the electrical behavior of CCTO ceramics. Journal of the European Ceramic Society, 2012, 32, 1245-1249.	5.7	101
30	Magneto-electric effect of KNN-Ni composites., 2011,,.		0
31	Preparation and dielectric properties of CaCu <inf>3</inf> Ti <inf>4</inf> O <inf>12</inf> -(NaBi) <inf>0.5</inf> Composites., 2011,,.	u <inf&g< td=""><td>t;3&lt;/inf&g</td></inf&g<>	t; 3& lt;/inf&g
32	Photoluminescence properties of Ba <inf>x</inf> Sr <inf>y</inf> Li <inf>z</inf> SiO <inf>4</inf> :Ce <sup& Mn²⁺ phosphors for NUV-LED lighting. , 2011, , .</sup& 	.gt;3&	;# x 002B;<
33	BaTiO <inf>3</inf> piezoelectric microfiber composites for mechanical energy harvesting., 2011,,.		3
34	Structure and multiferroic properties of Y-doped BiFeO3 ceramics. Science Bulletin, 2010, 55, 452-456.	1.7	34
35	Ferroelectric and electromechanical property characterization of single Pb(ZrTi)O3 fiber resonator. Journal of Applied Physics, 2010, 107, .	2.5	4
36	The structure and dielectric tunable properties of $\tilde{a} \in 001\tilde{a} \in \infty$ preferred oriented BST ceramics prepared by templated grain growth method. Journal of Alloys and Compounds, 2009, 467, 338-341.	5.5	15

#	Article	IF	CITATIONS
37	Dielectric properties and current–voltage nonlinear behavior of Ca1ⰒxSrxCu3Ti4O12 ceramics. Journal of Alloys and Compounds, 2009, 482, L14-L17.	5.5	41
38	Preparation and characterization of lead zirconate titanate ceramic fibers with alkoxide-based sol-gel route. Journal of Physics: Conference Series, 2009, 152, 012077.	0.4	9
39	The Structure and Dielectric Tunable Properties of Fine-Grained Ba0.6Sr0.4TiO3Ceramics Prepared by Spark Plasma Sintering. Journal of the American Ceramic Society, 2007, 90, 2653-2656.	3.8	16
40	Structure and Multiferroic Properties of Bi _{0.9} Y ₃ -PbTiO _{-PbTiO&l}}	b& gt ;3	0