Coskun Kocabas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7579058/publications.pdf

Version: 2024-02-01

81900 54911 7,255 126 39 84 citations g-index h-index papers 131 131 131 8102 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Topological engineering of terahertz light using electrically tunable exceptional point singularities. Science, 2022, 376, 184-188.	12.6	27
2	Strong Coupling of Carbon Quantum Dots in Liquid Crystals. Journal of Physical Chemistry Letters, 2022, 13, 3562-3570.	4.6	7
3	Ultrafast THz Self-action Graphene Based Modulators. , 2021, , .		O
4	Multispectral graphene-based electro-optical surfaces with reversible tunability from visible to microwave wavelengths. Nature Photonics, 2021, 15, 493-498.	31.4	97
5	Topological plasmonic waveguides in triharmonic metal gratings. Journal of Physics Condensed Matter, 2021, 33, 265003.	1.8	2
6	Observation of Ultrafast THz Self-actions in Graphene Based Modulators. , 2021, , .		0
7	Electrically Controlled Thermal Radiation from Reduced Graphene Oxide Membranes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 27278-27283.	8.0	12
8	New practical device structure for graphen-based electrochromic devices. Optical Materials, 2021, 122, 111675.	3.6	1
9	Transition Metal Salt Promoted, Green, and Highâ€Yield Synthesis of Silver Nanowires for Flexible Transparent Conductive Electrodes. ChemistrySelect, 2021, 6, 12548-12554.	1.5	1
10	Hybrid J-Aggregate–Graphene Phototransistor. ACS Applied Nano Materials, 2020, 3, 409-417.	5 . 0	13
11	Graphene-based soft wearable antennas. Applied Materials Today, 2020, 20, 100727.	4.3	21
12	Multifunctional Biocomposites Based on Polyhydroxyalkanoate and Graphene/Carbon Nanofiber Hybrids for Electrical and Thermal Applications. ACS Applied Polymer Materials, 2020, 2, 3525-3534.	4.4	44
13	Video-Speed Graphene Modulator Arrays for Terahertz Imaging Applications. ACS Photonics, 2020, 7, 2374-2380.	6.6	31
14	Graphene-Enabled Adaptive Infrared Textiles. Nano Letters, 2020, 20, 5346-5352.	9.1	98
15	Hybrid Graphene/Carbon Nanofiber Wax Emulsion for Paperâ€Based Electronics and Thermal Management. Advanced Electronic Materials, 2020, 6, 2000232.	5.1	24
16	Large Rabi splitting of mixed plasmon–exciton states in small plasmonic moiré cavities. Optics Letters, 2020, 45, 5824.	3.3	2
17	Chemically addressed switching measurements in graphene electrode memristive devices using in situ XPS. Faraday Discussions, 2019, 213, 231-244.	3.2	7
18	Fourier transform plasmon resonance spectrometer using nanoslit-nanowire pair. Applied Physics Letters, 2019, 114, .	3.3	9

#	Article	IF	Citations
19	Modulation Behaviors, Conductivities, and Carrier Dynamics of Single and Multilayer Graphenes., 2019,,.		O
20	Ultra-lightweight Chemical Vapor Deposition grown multilayered graphene coatings on paper separator as interlayer in lithium-sulfur batteries. Journal of Alloys and Compounds, 2019, 777, 1017-1024.	5 . 5	17
21	Reversible Energy Transfer Between a Single Defect in hBN and Graphene. , 2019, , .		O
22	Graphene-Quantum Dot Hybrid Optoelectronics at Visible Wavelengths. ACS Photonics, 2018, 5, 2384-2390.	6.6	10
23	Graphene based terahertz phase modulators. 2D Materials, 2018, 5, 035018.	4.4	81
24	NLL-Assisted Multilayer Graphene Patterning. ACS Omega, 2018, 3, 1546-1554.	3.5	15
25	Electrically switchable metadevices via graphene. Science Advances, 2018, 4, eaao1749.	10.3	117
26	Multilayer Graphene Broadband Terahertz Modulators with Flexible Substrate. Journal of Infrared, Millimeter, and Terahertz Waves, 2018, 39, 483-491.	2.2	16
27	In Situ XPS Reveals Voltage Driven Asymmetric Ion Movement of an Ionic Liquid through the Pores of a Multilayer Graphene Electrode. Journal of Physical Chemistry C, 2018, 122, 11883-11889.	3.1	24
28	Graphene-Based Adaptive Thermal Camouflage. Nano Letters, 2018, 18, 4541-4548.	9.1	252
29	Graphene mode-locked femtosecond Alexandrite laser. Optics Letters, 2018, 43, 3969.	3.3	30
30	XPS investigation of the vacuum interface of an ionic liquid under triangular electrical excitation for slow transients. Analytical Methods, 2018, 10, 4225-4228.	2.7	4
31	Femtosecond Pulse Generation with Voltage-Controlled Graphene Saturable Absorbers. , 2017, , 389-433.		2
32	Graphene-Based Optical Modulators. , 2017, , 435-456.		1
33	In-Situ XPS Monitoring and Characterization of Electrochemically Prepared Au Nanoparticles in an Ionic Liquid. ACS Omega, 2017, 2, 478-486.	3.5	34
34	Controlling phase of microwaves with active graphene surfaces. Applied Physics Letters, 2017, 110, .	3.3	23
35	Lyotropic Liquid-Crystalline Mesophase of Lithium Triflate–Nonionic Surfactant as Gel Electrolyte for Graphene Optical Modulator. Journal of Physical Chemistry C, 2017, 121, 11194-11200.	3.1	5
36	XPS-evidence for in-situ electrochemically-generated carbene formation. Electrochimica Acta, 2017, 234, 37-42.	5. 2	28

#	Article	IF	Citations
37	Graphene Nanoreactors: Photoreduction of Prussian Blue in Aqueous Solution. Journal of Physical Chemistry C, 2017, 121, 22225-22233.	3.1	12
38	Raman and X-Ray photoelectron spectroscopic studies of graphene devices for identification of doping. Applied Surface Science, 2017, 425, 1130-1137.	6.1	9
39	Generation of sub-20-fs pulses from a graphene mode-locked laser. Optics Express, 2017, 25, 2834.	3.4	30
40	Femtosecond pulse generation from a Ti^3+:sapphire laser near 800  nm with voltage reconfigurable graphene saturable absorbers. Optics Letters, 2017, 42, 1404.	3.3	11
41	Weighing graphene with QCM to monitor interfacial mass changes. Applied Physics Letters, 2016, 109 , .	3.3	10
42	X-ray photoelectron spectroscopy for identification of morphological defects and disorders in graphene devices. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, 041516.	2.1	1
43	Broadband THz modulators based on multilayer graphene on PVC. , 2016, , .		1
44	Organic electrolytes for graphene-based supercapacitor: Liquid, gel or solid. Materials Today Communications, 2016, 7, 155-160.	1.9	45
45	Enhanced tunability of V-shaped plasmonic structures using ionic liquid gating and graphene. Carbon, 2016, 108, 515-520.	10.3	11
46	Monitoring the operation of a graphene transistor in an integrated circuit by XPS. Organic Electronics, 2016, 37, 178-182.	2.6	7
47	Observation of Gate-Tunable Coherent Perfect Absorption of Terahertz Radiation in Graphene. ACS Photonics, 2016, 3, 1531-1535.	6.6	64
48	Comparison of Back and Top Gating Schemes with Tunable Graphene Fractal Metasurfaces. ACS Photonics, 2016, 3, 2303-2307.	6.6	21
49	Graphene as a Reversible and Spectrally Selective Fluorescence Quencher. Scientific Reports, 2016, 6, 33911.	3.3	23
50	Tunable Plexcitonic Nanoparticles: A Model System for Studying Plasmon–Exciton Interaction from the Weak to the Ultrastrong Coupling Regime. ACS Photonics, 2016, 3, 2010-2016.	6.6	62
51	XPS enables visualization of electrode potential screening in an ionic liquid medium with temporaland lateral-resolution. Physical Chemistry Chemical Physics, 2016, 18, 28434-28440.	2.8	32
52	Graphene-Enabled Optoelectronics on Paper. ACS Photonics, 2016, 3, 964-971.	6.6	56
53	Graphene-gold supercapacitor as a voltage controlled saturable absorber for femtosecond pulse generation. Optics Letters, 2016, 41, 910.	3.3	13
54	Slow plasmons in grating cavities. Proceedings of SPIE, 2016, , .	0.8	0

#	Article	IF	CITATIONS
55	Dynamic tuning of plasmon resonance in the visible using graphene. Optics Letters, 2016, 41, 1241.	3.3	72
56	Synthesis of Large Area Graphene for High Performance in Flexible Optoelectronic Devices. Scientific Reports, $2015, 5, 16744$.	3.3	107
57	Broadband terahertz modulators using self-gated graphene capacitors: erratum. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 2548.	2.1	1
58	Synthesis of graphene on ultra-smooth copper foils for large area flexible electronics. , 2015, , .		1
59	One-step codoping of reduced graphene oxide using boric and nitric acid mixture and its use in metal-free electrocatalyst. Materials Letters, 2015, 143, 205-208.	2.6	10
60	Lasing in a Slow Plasmon Moiré Cavity. ACS Photonics, 2015, 2, 805-809.	6.6	10
61	Graphene-enabled electrically switchable radar-absorbing surfaces. Nature Communications, 2015, 6, 6628.	12.8	481
62	Graphene-enabled electrically controlled terahertz spatial light modulators. Optics Letters, 2015, 40, 1984.	3.3	40
63	Ultra hybrid plasmonics: strong coupling of plexcitons with plasmon polaritons. Optics Letters, 2015, 40, 3424.	3.3	34
64	Terahertz modulation using a bandpass filter combined with a graphene supercapacitor. , 2015, , .		0
65	Strong coupling between localized and propagating plasmon polaritons. Optics Letters, 2015, 40, 3177.	3.3	28
66	Broadband terahertz modulators using self-gated graphene capacitors. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 1861.	2.1	18
67	Graphene mode-locked Cr:LiSAF laser at 850  nm. Optics Letters, 2015, 40, 4110.	3. 3	9
68	Plasmonic band gap engineering of plasmon–exciton coupling. Optics Letters, 2014, 39, 5697.	3.3	8
69	Graphene Supercapacitor as a Voltage Controlled Saturable Absorber for Femtosecond Pulse Generation. , 2014, , .		1
70	Plexcitonic crystals: a tunable platform for light-matter interactions. Optics Express, 2014, 22, 21912.	3.4	12
71	Gate-Tunable Photoemission from Graphene Transistors. Nano Letters, 2014, 14, 2837-2842.	9.1	32
72	Graphene based flexible electrochromic devices. Scientific Reports, 2014, 4, 6484.	3.3	92

#	Article	IF	CITATIONS
73	Highly Proton Conductive Phosphoric Acid–Nonionic Surfactant Lyotropic Liquid Crystalline Mesophases and Application in Graphene Optical Modulators. ACS Nano, 2014, 8, 11007-11012.	14.6	37
74	Femtosecond pulse generation with voltage-controlled graphene saturable absorber. Optics Letters, 2014, 39, 5180.	3.3	35
75	Absorption enhancement of molecules in the weak plasmon–exciton coupling regime. Optics Letters, 2014, 39, 4994.	3.3	12
76	Probing ultrafast energy transfer between excitons and plasmons in the ultrastrong coupling regime. Applied Physics Letters, 2014, 105, 051105.	3.3	29
77	Probing Voltage Drop Variations in Graphene with Photoelectron Spectroscopy. Analytical Chemistry, 2013, 85, 4172-4177.	6.5	15
78	Broadband Optical Modulators Based on Graphene Supercapacitors. Nano Letters, 2013, 13, 5851-5857.	9.1	162
79	Graphene mode-locked multipass-cavity femtosecond Cr^4+: forsterite laser. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 1270.	2.1	13
80	Femtosecond Pulse Generation from an Extended Cavity Cr4+:forsterite Laser using Graphene on YAG., 2013,,.		0
81	Plasmon interferometers for high-throughput sensing. Optics Letters, 2012, 37, 3396.	3.3	17
82	Probing molecular interactions on carbon nanotube surfaces using surface plasmon resonance sensors. Applied Physics Letters, 2012, 101, .	3.3	15
83	Electrically unbiased driven airborne capacitive micromachined ultrasonic transducer design. , 2012, , .		1
84	Tuning surface plasmon-exciton coupling via thickness dependent plasmon damping. Physical Review B, 2012, 86, .	3.2	63
85	Passivation of type II InAs/GaSb superlattice photodetectors with atomic layer deposited Al ₂ 0 ₃ . Proceedings of SPIE, 2012, , .	0.8	7
86	An improved lumped element nonlinear circuit model for a circular CMUT cell. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 1791-1799.	3.0	78
87	High frequency performance of individual and arrays of single-walled carbon nanotubes. Nanotechnology, 2012, 23, 245202.	2.6	6
88	Atomic layer deposited Al2O3 passivation of type II InAs/GaSb superlattice photodetectors. Journal of Applied Physics, 2012, 111, .	2.5	42
89	Nonlinear equivalent circuit model for circular CMUTs in uncollapsed and collapsed mode. , 2012, , .		1
90	Rapid thermal annealing of graphene-metal contact. Applied Physics Letters, 2012, 101, .	3.3	75

#	Article	IF	Citations
91	Plasmon-polaritons on graphene-metal surface and their use in biosensors. Applied Physics Letters, 2012, 100, .	3.3	169
92	Critical coupling in plasmonic resonator arrays. Optics Letters, 2011, 36, 2770.	3.3	17
93	Direct imaging of localized surface plasmon polaritons. Optics Letters, 2011, 36, 3401.	3.3	17
94	A microfluidic based differential plasmon resonance sensor. Sensors and Actuators B: Chemical, 2011, 160, 670-676.	7.8	6
95	Synthesis of graphene on gold. Applied Physics Letters, 2011, 98, .	3.3	145
96	Localization of surface plasmon polaritons in hexagonal arrays of Moir \tilde{A} © cavities. Applied Physics Letters, 2011, 98, 031101.	3.3	21
97	Coupled Plasmonic Cavities on Moire Surfaces. Plasmonics, 2010, 5, 429-436.	3.4	24
98	Investigation of high frequency performance limit of graphene field effect transistors. Applied Physics Letters, 2010, 97, .	3.3	17
99	Slowing surface plasmon polaritons on plasmonic coupled cavities by tuning grating grooves. Applied Physics Letters, 2010, 97, 131103.	3.3	22
100	Alignment Controlled Growth of Single-Walled Carbon Nanotubes on Quartz Substrates. Nano Letters, 2009, 9, 4311-4319.	9.1	125
101	High-Frequency Performance of Submicrometer Transistors That Use Aligned Arrays of Single-Walled Carbon Nanotubes. Nano Letters, 2009, 9, 1937-1943.	9.1	132
102	Aligned carbon nanotubes as polarization-sensitive, molecular near-field detectors. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2495-2499.	7.1	33
103	Single–Walled Carbon Nanotubes for High Performance Thin Film Electronics. Integrated Circuits and Systems, 2009, , 211-246.	0.2	3
104	Molecular Scale Buckling Mechanics in Individual Aligned Single-Wall Carbon Nanotubes on Elastomeric Substrates. Nano Letters, 2008, 8, 124-130.	9.1	180
105	A 500 MHz carbon nanotube transistor oscillator. Applied Physics Letters, 2008, 93, 123506.	3.3	29
106	Radio frequency analog electronics based on carbon nanotube transistors. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1405-1409.	7.1	185
107	Experimental and Theoretical Studies of Transport through Large Scale, Partially Aligned Arrays of Single-Walled Carbon Nanotubes in Thin Film Type Transistors. Nano Letters, 2007, 7, 1195-1202.	9.1	267
108	Gate capacitance coupling of singled-walled carbon nanotube thin-film transistors. Applied Physics Letters, 2007, 90, 023516.	3.3	159

#	Article	IF	Citations
109	Limits of Performance Gain of Aligned CNT Over Randomized Network: Theoretical Predictions and Experimental Validation. IEEE Electron Device Letters, 2007, 28, 593-595.	3.9	63
110	Improved Synthesis of Aligned Arrays of Single-Walled Carbon Nanotubes and Their Implementation in Thin Film Type Transistorsâ€. Journal of Physical Chemistry C, 2007, 111, 17879-17886.	3.1	135
111	Printed Multilayer Superstructures of Aligned Single-Walled Carbon Nanotubes for Electronic Applications. Nano Letters, 2007, 7, 3343-3348.	9.1	204
112	High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature Nanotechnology, 2007, 2, 230-236.	31.5	985
113	Spatially Selective Guided Growth of High-Coverage Arrays and Random Networks of Single-Walled Carbon Nanotubes and Their Integration into Electronic Devices. Journal of the American Chemical Society, 2006, 128, 4540-4541.	13.7	143
114	Guided Growth of Large-Scale, Horizontally Aligned Arrays of Single-Walled Carbon Nanotubes and Their Use in Thin-Film Transistors. Small, 2005, 1, 1110-1116.	10.0	353
115	Printed thin-film transistors and complementary logic gates that use polymer-coated single-walled carbon nanotube networks. Journal of Applied Physics, 2005, 98, 114302.	2.5	81
116	Design and analysis of an integrated optical sensor for scanning force microscopies. IEEE Sensors Journal, 2005, 5, 411-418.	4.7	15
117	Nanotransfer printing by use of noncovalent surface forces: Applications to thin-film transistors that use single-walled carbon nanotube networks and semiconducting polymers. Applied Physics Letters, 2004, 85, 5730-5732.	3 . 3	187
118	Integrated micro ring resonator displacement sensor for scanning probe microscopies. Journal of Micromechanics and Microengineering, 2004, 14, 374-381.	2.6	40
119	Integrated Optical Asymmetric Coupler Pressure Sensor. AIP Conference Proceedings, 2004, , .	0.4	0
120	Prism coupling technique investigation of elasto-optical properties of thin polymer films. Journal of Applied Physics, 2004, 96, 7147-7153.	2.5	50
121	Aligned Arrays of Single-Walled Carbon Nanotubes Generated from Random Networks by Orientationally Selective Laser Ablation. Nano Letters, 2004, 4, 2421-2426.	9.1	67
122	p-Channel, n-Channel Thin Film Transistors and pâ^'n Diodes Based on Single Wall Carbon Nanotube Networks. Nano Letters, 2004, 4, 2031-2035.	9.1	284
123	Anharmonicity of Zone-Center Optical Phonons: Raman Scattering Spectra of GaSe0.5S0.5Layered Crystal. Physica Scripta, 2002, 65, 534-538.	2.5	6
124	Temperature-dependent Raman scattering spectra of Îμ-GaSe layered crystal. Materials Research Bulletin, 2002, 37, 169-176.	5.2	24
125	Temperature dependence of the first-order Raman scattering in GaS layered crystals. Solid State Communications, 2000, 116, 147-151.	1.9	39
126	Preparation and Evaluation of the Polyethylene Film Deposited With a Multilayer Graphene Membrane for Tensile Properties. Applied Composite Materials, 0 , 1 .	2.5	0