Jacqueline A Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7578771/publications.pdf

Version: 2024-02-01

112 2,218 25
papers citations h-index

114 114 2632 all docs docs citations times ranked citing authors

43

g-index

#	Article	IF	Citations
1	Thermal decomposition kinetic study of Fe5C2 nanoparticles. Journal of Physics and Chemistry of Solids, 2022, 161, 110436.	4.0	3
2	Antimony-modified soda-lime-silica glass: Towards low-cost radiation-resistant materials. Journal of Non-Crystalline Solids, 2022, 585, 121526.	3.1	3
3	Pulsed laser deposition and structural evolution of BaF2 nanolayers in Eu-doped BaF2/Al2O3 layered optical nanocomposite thin films. Thin Solid Films, 2022, , 139298.	1.8	O
4	The effect of annealing on optical transmittance and structure of ZLANI fluorozirconate glass thin films. Micron, 2021, 140, 102977.	2.2	2
5	Europiumâ€doped barium chloride storage phosphor plate synthesized by pulsed laser deposition. Journal of the American Ceramic Society, 2021, 104, 4568-4576.	3.8	0
6	Magnetic Particle Imaging: Current and Future Applications, Magnetic Nanoparticle Synthesis Methods and Safety Measures. International Journal of Molecular Sciences, 2021, 22, 7651.	4.1	55
7	$M\tilde{A}_{7}$ ssbauer spectroscopy of superparamagnetic Fe3O4 nanoparticles. Journal of Magnetism and Magnetic Materials, 2021, 539, 168382.	2.3	16
8	Magnetic properties of the MRI enhancement agent Feridex from M $\tilde{\text{A}}$ ¶ssbauer spectra. Hyperfine Interactions, 2021, 242, 1.	0.5	2
9	Optical properties of differing nanolayered structures of divalent europium doped barium fluoride thin films synthesized by pulsed laser deposition. Optical Materials, 2021, 122, 111796.	3.6	O
10	Scintillating glassâ€eeramic substrates for indirect flat panel detectors in digital radiography. Journal of the American Ceramic Society, 2020, 103, 6893-6900.	3.8	3
11	Composition-structure-property effects of antimony in soda-lime-silica glasses. Journal of Non-Crystalline Solids, 2020, 544, 120184.	3.1	8
12	The Correlation of Optical Transmittance with Structural Evolution in Fluorozirconate Glass (ZLANI) Thin Films as a Function of Thermal Annealing. Microscopy and Microanalysis, 2019, 25, 2070-2071.	0.4	1
13	Scintillator Glasses. Springer Handbooks, 2019, , 1555-1584.	0.6	3
14	The effect of trivalent iron on the properties of fluorochlorozirconate glass ceramics. Journal of Non-Crystalline Solids, 2018, 484, 8-13.	3.1	3
15	Pulsed laser deposition of transparent fluoride glass. Journal of Non-Crystalline Solids, 2018, 488, 19-23.	3.1	5
16	Magnetism and Mössbauer study of formation of multi-core \hat{I}^3 -Fe2O3 nanoparticles. Journal of Magnetism and Magnetic Materials, 2018, 451, 131-136.	2.3	11
17	Characterization of Luminescent Materials with 151Eu Mössbauer Spectroscopy. Materials, 2018, 11, 828.	2.9	9
18	Local structural variation with oxygen fugacity in Fe2SiO4+ fayalitic iron silicate melts. Geochimica Et Cosmochimica Acta, 2017, 203, 15-36.	3.9	31

#	Article	IF	CITATIONS
19	The effects of sodium fluoride content on the properties of fluorochlorozirconate glassâ€ceramic storage phosphors. Journal of the American Ceramic Society, 2017, 100, 1551-1560.	3.8	6
20	Iron K-edge X-ray absorption near-edge structure spectroscopy of aerodynamically levitated silicate melts and glasses. Chemical Geology, 2017, 453, 169-185.	3.3	44
21	Concentration-dependent luminescence and energy transfer in <mml:math altimg="si0034.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><m< td=""><td>าใ:mn>3<td>26 nml:mn><n< td=""></n<></td></td></m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	าใ:mn>3 <td>26 nml:mn><n< td=""></n<></td>	26 nml:mn> <n< td=""></n<>
22	Oxygen Insertion Reactions within the One-Dimensional Channels of Phases Related to FeSb ₂ O ₄ . Inorganic Chemistry, 2017, 56, 594-607.	4.0	14
23	Topotactic Fluorine Insertion into the Channels of FeSb ₂ O ₄ -Related Materials. Inorganic Chemistry, 2017, 56, 10078-10089.	4.0	12
24	Chapter 3 Glass–Ceramic Scintillator., 2017, , 79-106.		0
25	The magnetic and crystal structures of Sr _{1â^Î} FeO _{2â^x} F _x , a new oxyfluoride. Chemical Communications, 2016, 52, 2386-2389.	4.1	4
26	A Zinc Oxide Carbon Nanotube Based Sensor for In Situ Monitoring of Hydrogen Peroxide in Swimming Pools. Electroanalysis, 2015, 27, 2552-2558.	2.9	18
27	Evaluation of a Fluorochlorozirconate Glassâ€Ceramic Storage Phosphor Plate for Gammaâ€Ray Computed Radiography. Journal of the American Ceramic Society, 2015, 98, 2541-2547.	3.8	11
28	Temperatureâ€dependent luminescence of Tb ³⁺ and Eu ³⁺ singleâ€doped glasses for LED applications. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 1359-1364.	0.8	7
29	Structural and Kinetic Analysis of BaCl ₂ Nanocrystals in Fluorochlorozirconate Glassâ€Ceramics. Journal of the American Ceramic Society, 2015, 98, 1099-1104.	3.8	9
30	Opportunities for Fluorochlorozirconate and Other Glass-Ceramic Detectors in Medical Imaging Devices. Journal of Biomedical Technology and Research, 2015, 02, .	0.2	1
31	Magnetic Resonance-Guided Laser Induced Thermal Therapy for Glioblastoma Multiforme: A Review. BioMed Research International, 2014, 2014, 1-9.	1.9	78
32	Line Narrowing in Mössbauer Spectra of Superparamagnetic Fe ₃ O ₄ Nanoparticles. Journal of Physics: Conference Series, 2014, 548, 012021.	0.4	1
33	The reaction mechanism of FeSb2 as anode for sodium-ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 9538.	2.8	65
34	Mössbauer spectra and superparamagnetism of europium sulfide nanoparticles. Journal Physics D: Applied Physics, 2014, 47, 075001.	2.8	5
35	Probing the Mechanism of Sodium Ion Insertion into Copper Antimony Cu ₂ Sb Anodes. Journal of Physical Chemistry C, 2014, 118, 7856-7864.	3.1	64
36	Mössbauer spectroscopy of europium-containing glasses: optical activator study for x-ray image plates. Hyperfine Interactions, 2014, 226, 797-801.	0.5	1

#	Article	IF	CITATIONS
37	The reaction mechanism of SnSb and Sb thin film anodes for Na-ion batteries studied by X-ray diffraction, 119Sn and 121Sb MA¶ssbauer spectroscopies. Journal of Power Sources, 2014, 267, 329-336.	7.8	109
38	Crystallization studies on rare-earth co-doped fluorozirconate-based glasses. Journal of Non-Crystalline Solids, 2013, 371-372, 33-36.	3.1	9
39	Nanocrystallization in Fluorochlorozirconate Glass eramics. Journal of the American Ceramic Society, 2013, 96, 3617-3621.	3.8	13
40	Optical diagnostic and therapy applications of femtosecond laser radiation using lens-axicon focusing., 2013, 2013, 374-7.		0
41	Rare earth doped downshifting glass ceramics for photovoltaic applications. Journal of Non-Crystalline Solids, 2013, 366, 1-5.	3.1	18
42	Mössbauer spectroscopy of europium-doped fluorochlorozirconate glasses and glass ceramics: optimization of storage phosphors in computed radiography. Journal of Physics Condensed Matter, 2013, 25, 205402.	1.8	5
43	Protective coatings for enhanced performance in biomedical applications. Surface Engineering, 2012, 28, 473-479.	2.2	3
44	Antifog coating for bronchoscope lens. Surface Engineering, 2012, 28, 468-472.	2.2	15
45	Fifty years of Mössbauer spectroscopy: from alloys and oxides to glasses and nanoparticles. Hyperfine Interactions, 2012, 204, 47-55.	0.5	1
46	Influence of rare-earth ions on SiO ₂ 6="RE ₂ 0 ₃ glass structure. Journal of Physics Condensed Matter, 2011, 23, 065404.	1.8	18
47	The oxidation state of europium in halide glasses. Journal of Physics Condensed Matter, 2011, 23, 495402.	1.8	10
48	Crystallization behavior of rare-earth doped fluorochlorozirconate glasses. Journal of Non-Crystalline Solids, 2011, 357, 2450-2452.	3.1	9
49	Timeâ€resolved investigations of erbium ions in ZBLANâ€based glasses and glass ceramics. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2649-2652.	0.8	7
50	Structural properties of fluorozirconate-based glass ceramics doped with multivalent europium. Journal of Applied Physics, 2011, 110, 113527-1135275.	2.5	7
51	Progress on up- and down-converted fluorescence in rare-doped fluorozirconate-based glass ceramics for high efficiency solar cells. Proceedings of SPIE, 2010, , .	0.8	3
52	Multi-functionality of fluorescent nanocrystals in glass ceramics. Radiation Measurements, 2010, 45, 485-489.	1.4	21
53	In situ TEM studies of tribo-induced bonding modifications in near-frictionless carbon films. Carbon, 2010, 48, 587-591.	10.3	82
54	Advances in up- and down-converted fluorescence for high efficiency solar cells using rare-earth doped fluorozirconate-based glasses and glass ceramics. Proceedings of SPIE, 2010, , .	0.8	5

#	Article	lF	CITATIONS
55	XANES Studies on Eu-doped Fluorozirconate Based Glass Ceramics. Materials Research Society Symposia Proceedings, 2010, 1262, 7956536.	0.1	0
56	Saturation effects in the upconversion efficiency of Er-doped fluorozirconate glasses. Journal of Physics Condensed Matter, 2010, 22, 155107.	1.8	15
57	Scanning translucent glass-ceramic x-ray storage phosphors. Proceedings of SPIE, 2010, 7622, 76223W.	0.8	3
58	Differential scanning calorimetry investigations on Eu-doped fluorozirconate-based glass ceramics. Journal of Non-Crystalline Solids, 2010, 356, 3085-3089.	3.1	11
59	Eu oxidation state in fluorozirconate-based glass ceramics. Journal of Applied Physics, 2009, 106, 113501.	2.5	19
60	A neutron diffraction study of nano-crystalline graphite oxide. Carbon, 2009, 47, 2239-2243.	10.3	26
61	Erbium- and chlorine-doped fluorozirconate-based glasses for up-converted fluorescence. Journal of Non-Crystalline Solids, 2009, 355, 1916-1918.	3.1	7
62	Crystallization in heat-treated fluorochlorozirconate glasses. Journal of Physics Condensed Matter, 2009, 21, 375103.	1.8	10
63	Structural and optical investigations of Nd-doped fluorozirconate-based glass ceramics for enhanced upconverted fluorescence. Applied Physics Letters, 2008, 92, .	3.3	38
64	Carbon-hydrogen bonding in near-frictionless carbon. Applied Physics Letters, 2008, 93, .	3.3	11
65	display="inline"> <mml:mrow><mml:mmultiscripts><mml:mtext>E</mml:mtext><mml:mprescripts></mml:mprescripts><mml:none></mml:none><mml:mrow><mml:mn>151</mml:mn></mml:mrow></mml:mmultiscripts><mml:mtext>u</mml:mtext><td>l:mrow><!--</td--><td>mml:math</td></td></mml:mrow>	l:mrow> </td <td>mml:math</td>	mml:math
66	display="inline"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mtext> CaF</mml:mtext> </mml:mrow> <mml:mn> Enhanced up-converted fluorescence in fluorozirconate based glass ceramics for high efficiency solar cells., 2008,,.</mml:mn></mml:msub></mml:mrow>		nn>
67	Complementary neutron and x-ray reflectivity studies of "near-frictionless―carbon films. Journal of Applied Physics, 2007, 101, 103538.	2.5	6
68	Complementary neutron and x-ray reflectivity studies of "near-frictionless―carbon films. Journal of Applied Physics, 2007, 101, 123516.	2.5	0
69	Fluorozirconate-based glass-ceramic storage phosphors for digital mammography. , 2007, , .		1
70	Strontium environment transition in tin silicate glasses by neutron and X-ray diffraction. Journal of Non-Crystalline Solids, 2007, 353, 4084-4092.	3.1	9
71	Top-surface characterization of a near frictionless carbon film. Diamond and Related Materials, 2007, 16, 209-215.	3.9	39
72	Oxidation and removal mechanisms during chemical–mechanical planarization. Wear, 2007, 263, 1477-1483.	3.1	22

#	Article	IF	CITATIONS
73	Deformation behavior and joining of a MgF2 optical ceramic. Journal of the European Ceramic Society, 2007, 27, 3371-3376.	5.7	5
74	Zr and Ba edge phenomena in the scintillation intensity of fluorozirconate-based glass-ceramic X-ray detectors. Journal of Synchrotron Radiation, 2007, 14, 252-256.	2.4	4
75	A Glass-Ceramic Plate for Mammography. Journal of the American Ceramic Society, 2007, 90, 693-698.	3.8	39
76	Fluorozirconate-based glass ceramic X-ray detectors for digital radiography. Radiation Measurements, 2007, 42, 632-637.	1.4	21
77	Structures and visco-elastic properties of potassium tellurite: glass versus melt. Journal of Physics Condensed Matter, 2006, 18, 903-914.	1.8	2
78	Energy-dependent scintillation intensity of fluorozirconate-based glass-ceramic x-ray detectors. , 2006, , .		4
79	Fluorozirconate-based nanophase glass ceramics for high-resolution medical X-ray imaging. Journal of Non-Crystalline Solids, 2006, 352, 610-614.	3.1	25
80	Transparent BaCl 2:Eu2+glass-ceramic scintillator., 2006, 6142, 994.		8
81	Insights into phase formation in fluorochlorozirconate glass-ceramic storage phosphors. Applied Physics Letters, 2006, 88, 191915.	3.3	13
82	Deposition, characterization, and tribological applications of near-frictionless carbon films on glass and ceramic substrates. Journal of Physics Condensed Matter, 2006, 18, S1751-S1762.	1.8	15
83	Temperature Dependence of Diamondlike Carbon Film Tribological Characteristics. Journal of the American Ceramic Society, 2005, 88, 3110-3115.	3.8	4
84	Interpretation of the Raman spectra of ultrananocrystalline diamond. Diamond and Related Materials, 2005, 14, 86-92.	3.9	237
85	Mössbauer spectroscopy as a probe of silicate glasses. Journal of Physics Condensed Matter, 2005, 17, R381-R412.	1.8	18
86	Thermal and mechanical properties of rare earth aluminate and low-silica aluminosilicate optical glasses. Journal of Non-Crystalline Solids, 2005, 351, 650-655.	3.1	52
87	ZBLAN-based x-ray storage phosphors and scintillators for digital x-ray imaging., 2005,,.		9
88	Insights into "near-frictionless carbon films― Journal of Applied Physics, 2004, 95, 7765-7771.	2.5	40
89	X-Ray Studies of Near-Frictionless Carbon Films Materials Research Society Symposia Proceedings, 2004, 843, 271.	0.1	3
90	Fluctuation Microscopy Studies of Medium-range Order Structures of Near Frictionless Carbon Films. Microscopy and Microanalysis, 2004, 10, 798-799.	0.4	0

#	Article	IF	Citations
91	Cation coordination in oxychloride glasses. Journal of Physics Condensed Matter, 2003, 15, 755-764.	1.8	4
92	Structure of oxychloride glasses by neutron and x-ray Âdifference and x-ray photoelectron spectroscopy. Journal of Physics Condensed Matter, 2003, 15, 4679-4693.	1.8	2
93	Near-surface characterization of amorphous carbon films by neutron reflectivity. Applied Physics Letters, 2003, 83, 452-454.	3.3	21
94	Site symmetry in binary and ternary tin silicate glassesâ€"29Si and119Sn nuclear magnetic resonance. Journal of Physics Condensed Matter, 2003, 15, S2457-S2472.	1.8	13
95	Tin germanate glasses. Journal of Non-Crystalline Solids, 2001, 293-295, 175-181.	3.1	12
96	Thermally poled silica samples are structurally heterogeneous: Electron diffraction evidence of partial crystallization. Applied Physics Letters, 2001, 78, 1991-1993.	3.3	18
97	Ternary alkali stannosilicate glasses: a Mössbauer and neutron diffraction study. Journal of Physics Condensed Matter, 2000, 12, 213-230.	1.8	12
98	Magneto-optic Kerr effect investigation of cobalt and permalloy nanoscale dot arrays: Shape effects on magnetization reversal. Applied Physics Letters, 2000, 77, 4410-4412.	3.3	28
99	Oxidation of Aqueous Polyselenide Solutions. A Mechanistic Pulse Radiolysis Study. Journal of Physical Chemistry A, 2000, 104, 4011-4016.	2.5	11
100	Transition metal ions in ternary sodium silicate glasses: a Mössbauer and neutron study. Journal of Non-Crystalline Solids, 1999, 246, 104-114.	3.1	43
101	The structure of sodium iron silicate glass – a multi-technique approach. Journal of Non-Crystalline Solids, 1999, 253, 192-202.	3.1	76
102	On the Constituents of Aqueous Polyselenide Electrolytes: A Combined Theoretical and Raman Spectroscopic Study. Journal of the American Chemical Society, 1999, 121, 4461-4467.	13.7	28
103	Selenium Nanoparticles: A Small-Angle Neutron Scattering Study. Journal of Physical Chemistry B, 1999, 103, 59-63.	2.6	134
104	Characterization of tin at the surface of float glass. Journal of Non-Crystalline Solids, 1998, 242, 183-188.	3.1	45
105	Atomic structure of solid and liquid polyethylene oxide. Journal of Chemical Physics, 1998, 109, 7005-7010.	3.0	52
106	Determination of the sign of the quadrupole coupling constant of in silicate glasses by Mössbauer spectroscopy. Journal of Physics Condensed Matter, 1997, 9, 7477-7483.	1.8	4
107	Tin oxidation state, depth profiles of Sn2+ and Sn4+ and oxygen diffusivity in float glass by Mössbauer spectroscopy. Journal of Non-Crystalline Solids, 1997, 211, 164-172.	3.1	65
108	Mössbauer spectra of tin in float glass. Hyperfine Interactions, 1995, 95, 41-51.	0.5	24

#	ARTICLE	IF	CITATIONS
109	Mossbauer spectra of tin in binary Si-Sn oxide glasses. Journal of Physics Condensed Matter, 1995, 7, 9485-9497.	1.8	26
110	Magnetic behaviour of the doped antiferromagnet K2Fe1-xGaxF5. Journal of Physics Condensed Matter, 1989, 1, 6731-6744.	1.8	5
111	Phase transitions in doped antiferromagnets. Hyperfine Interactions, 1988, 42, 1039-1042.	0.5	O
112	A Mossbauer effect study of the magnetic phase diagram and spin wave excitations in the antiferromagnet Cs2FeCl5.H2O. Journal of Physics C: Solid State Physics, 1987, 20, 91-109.	1.5	13