Raja Ramachandran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7578559/publications.pdf

Version: 2024-02-01

98 papers

2,493 citations

30 h-index 233421 45 g-index

99 all docs 99 docs citations 99 times ranked 1127 citing authors

#	Article	IF	CITATIONS
1	Mixed Time-Delayed Nonlinear Multi-agent Dynamic Systems for Asymptotic Stability and Non-fragile Synchronization Criteria. Neural Processing Letters, 2022, 54, 43-74.	3.2	2
2	Globally asymptotic stability and synchronization analysis of uncertain multiâ€agent systems with multiple timeâ€varying delays and impulses. International Journal of Robust and Nonlinear Control, 2022, 32, 737-773.	3.7	4
3	Impact of strong determination and awareness on substance addictions: A mathematical modeling approach. Mathematical Methods in the Applied Sciences, 2022, 45, 4140-4160.	2.3	4
4	Improved Results on Finite-Time Passivity and Synchronization Problem for Fractional-Order Memristor-Based Competitive Neural Networks: Interval Matrix Approach. Fractal and Fractional, 2022, 6, 36.	3.3	10
5	Stability analysis and comparative study on different ecoâ€epidemiological models: Stage structure for prey and predator concerning impulsive control. Optimal Control Applications and Methods, 2022, 43, 842-866.	2.1	13
6	A Robust Non-Fragile Control Lag Synchronization for Fractional Order Multi-Weighted Complex Dynamic Networks with Coupling Delays. Neural Processing Letters, 2022, 54, 2919-2940.	3.2	5
7	Modeling and analysis of SEIRS epidemic models using homotopy perturbation method: A special outlook to 2019-nCoV in India. International Journal of Biomathematics, 2022, 15, .	2.9	2
8	An asymptotic state estimator design and synchronization criteria for fractional order timeâ€delayed genetic regulatory networks. Asian Journal of Control, 2022, 24, 3163-3174.	3.0	5
9	An Integrated Eco-Epidemiological Plant Pest Natural Enemy Differential Equation Model with Various Impulsive Strategies. Mathematical Problems in Engineering, 2022, 2022, 1-23.	1.1	4
10	$\$ (al O)($\{t^{-}\}$) - eta })) - Synchronization and Asymptotic Synchronization of Delayed Fractional Order Neural Networks. Acta Mathematica Scientia, 2022, 42, 1273-1292.	1.0	2
11	Exponential Synchronization of Nonlinear Multi-weighted Complex Dynamic Networks with Hybrid Time Varying Delays. Neural Processing Letters, 2021, 53, 1035-1063.	3.2	17
12	Controlling Wolbachia Transmission and Invasion Dynamics among Aedes Aegypti Population via Impulsive Control Strategy. Symmetry, 2021, 13, 434.	2.2	6
13	An LMI Approach-Based Mathematical Model to Control Aedes aegypti Mosquitoes Population via Biological Control. Mathematical Problems in Engineering, 2021, 2021, 1-18.	1.1	6
14	Existence, Uniqueness, and Exponential Stability of Uncertain Delayed Neural Networks with Inertial Term: Nonreduced Order Case. Mathematical Problems in Engineering, 2021, 2021, 1-15.	1.1	3
15	A Lyapunov–Krasovskii Functional Approach to Stability and Linear Feedback Synchronization Control for Nonlinear Multi-Agent Systems with Mixed Time Delays. Mathematical Problems in Engineering, 2021, 2021, 1-20.	1.1	5
16	Modified projective synchronization of distributive fractional order complex dynamic networks with model uncertainty via adaptive control. Chaos, Solitons and Fractals, 2021, 147, 110853.	5.1	26
17	Global projective lag synchronization of fractional order memristor based BAM neural networks with mixed time varying delays. Asian Journal of Control, 2020, 22, 570-583.	3.0	44
18	A delayâ€dependent asymptotic stability criteria for uncertain BAM neural networks with leakage and discrete timeâ€varying delays: A novel summation inequality. Asian Journal of Control, 2020, 22, 1880-1891.	3.0	10

#	Article	IF	CITATIONS
19	Finite-Time Mittag-Leffler Stability of Fractional-Order Quaternion-Valued Memristive Neural Networks with Impulses. Neural Processing Letters, 2020, 51, 1485-1526.	3.2	84
20	Finiteâ€time reliable dissipative control of neutralâ€type switched artificial neural networks with nonâ€tinear fault inputs and randomly occurring uncertainties. Asian Journal of Control, 2020, 22, 2487-2499.	3.0	18
21	Impulsive effects on stability and passivity analysis of memristor-based fractional-order competitive neural networks. Neurocomputing, 2020, 417, 290-301.	5.9	118
22	Controllability criteria of fractional differential dynamical systems with non-instantaneous impulses. IMA Journal of Mathematical Control and Information, 2020, 37, 777-793.	1.7	5
23	Finite-time synchronization criterion of graph theory perspective fractional-order coupled discontinuous neural networks. Advances in Difference Equations, 2020, 2020, .	3.5	27
24	Time-Varying Delayed Hâ^ž Control Problem for Nonlinear Systems: A Finite Time Study Using Quadratic Convex Approach. Symmetry, 2020, 12, 713.	2.2	3
25	Multi-weighted Complex Structure on Fractional Order Coupled Neural Networks with Linear Coupling Delay: A Robust Synchronization Problem. Neural Processing Letters, 2020, 51, 2453-2479.	3.2	20
26	Robust Dissipativity Analysis of Hopfield-Type Complex-Valued Neural Networks with Time-Varying Delays and Linear Fractional Uncertainties. Mathematics, 2020, 8, 595.	2.2	36
27	Mittagâ€Leffler stability and adaptive impulsive synchronization of fractional order neural networks in quaternion field. Mathematical Methods in the Applied Sciences, 2020, 43, 6223-6253.	2.3	68
28	Robust Stability of Complex-Valued Stochastic Neural Networks with Time-Varying Delays and Parameter Uncertainties. Mathematics, 2020, 8, 742.	2.2	56
29	Impulsive effects on competitive neural networks with mixed delays: Existence and exponential stability analysis. Mathematics and Computers in Simulation, 2019, 155, 290-302.	4.4	22
30	Hybrid Control Scheme for Projective Lag Synchronization of Riemann–Liouville Sense Fractional Order Memristive BAM NeuralNetworks with Mixed Delays. Mathematics, 2019, 7, 759.	2.2	114
31	Passivity Analysis for Uncertain BAM Neural Networks with Leakage, Discrete and Distributed Delays Using Novel Summation Inequality. International Journal of Control, Automation and Systems, 2019, 17, 2114-2124.	2.7	16
32	Existence, Uniqueness and Exponential Stability of Periodic Solution for Discrete-Time Delayed BAM Neural Networks Based on Coincidence Degree Theory and Graph Theoretic Method. Mathematics, 2019, 7, 1055.	2.2	40
33	Stability analysis and robust synchronization of fractionalâ€order competitive neural networks with different time scales and impulsive perturbations. International Journal of Adaptive Control and Signal Processing, 2019, 33, 1635-1660.	4.1	26
34	Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations. Applied Mathematics and Computation, 2019, 359, 241-260.	2.2	40
35	Mittagâ€Leffler state estimator design and synchronization analysis for fractionalâ€order BAM neural networks with time delays. International Journal of Adaptive Control and Signal Processing, 2019, 33, 855-874.	4.1	32
36	Traffic assignment: Methods and simulations for an alternative formulation of the fixed demand problem. Mathematics and Computers in Simulation, 2019, 155, 360-373.	4.4	5

#	Article	IF	CITATIONS
37	Stability and synchronization criteria for fractional order competitive neural networks with time delays: An asymptotic expansion of Mittag Leffler function. Journal of the Franklin Institute, 2019, 356, 2212-2239.	3.4	77
38	Global Robust Synchronization of Fractional Order Complex Valued Neural Networks with Mixed Time Varying Delays and Impulses. International Journal of Control, Automation and Systems, 2019, 17, 509-520.	2.7	57
39	Further mean-square asymptotic stability of impulsive discrete-time stochastic BAM neural networks with Markovian jumping and multiple time-varying delays. Journal of the Franklin Institute, 2019, 356, 561-591.	3.4	63
40	Fractional delay segments method on time-delayed recurrent neural networks with impulsive and stochastic effects: An exponential stability approach. Neurocomputing, 2019, 323, 277-298.	5.9	19
41	Nonlinear integro-differential equations with small unknown parameters: A controllability analysis problem. Mathematics and Computers in Simulation, 2019, 155, 15-26.	4.4	10
42	Dissipative analysis for aircraft flight control systems with randomly occurring uncertainties via non-fragile sampled-data control. Mathematics and Computers in Simulation, 2019, 155, 217-226.	4.4	18
43	Impulsive discrete-time GRNs with probabilistic time delays, distributed and leakage delays: an asymptotic stability issue. IMA Journal of Mathematical Control and Information, 2019, 36, 79-100.	1.7	12
44	Stabilization of Switched Stochastic Genetic Regulatory Networks with Leakage and Impulsive Effects. Neural Processing Letters, 2019, 49, 593-610.	3.2	23
45	Dissipativity analysis of stochastic fuzzy neural networks with randomly occurring uncertainties using delay dividing approach. Nonlinear Analysis: Modelling and Control, 2019, 24, .	1.6	1
46	Discrete-time stochastic impulsive BAM neural networks with leakage and mixed time delays: An exponential stability problem. Journal of the Franklin Institute, 2018, 355, 4404-4435.	3.4	31
47	Robust generalized Mittag-Leffler synchronization of fractional order neural networks with discontinuous activation and impulses. Neural Networks, 2018, 103, 128-141.	5.9	60
48	A New Global Robust Exponential Stability Criterion for Hâ^ž Control of Uncertain Stochastic Neutral-type Neural Networks with Both Timevarying Delays. International Journal of Control, Automation and Systems, 2018, 16, 726-738.	2.7	13
49	Controllability Analysis of Nonlinear Neutral-type Fractional-order Differential Systems with State Delay and Impulsive Effects. International Journal of Control, Automation and Systems, 2018, 16, 659-669.	2.7	33
50	LMI-based results on exponential stability of BAM-type neural networks with leakage and both time-varying delays: A non-fragile state estimation approach. Applied Mathematics and Computation, 2018, 326, 33-55.	2.2	36
51	A state estimation Hâ^ž issue for discrete-time stochastic impulsive genetic regulatory networks in the presence of leakage, multiple delays and Markovian jumping parameters. Journal of the Franklin Institute, 2018, 355, 2735-2761.	3.4	23
52	Impulsive discrete-time BAM neural networks with random parameter uncertainties and time-varying leakage delays: an asymptotic stability analysis. Nonlinear Dynamics, 2018, 91, 2571-2592.	5.2	13
53	Approximation of state variables for discrete-time stochastic genetic regulatory networks with leakage, distributed, and probabilistic measurement delays: a robust stability problem. Advances in Difference Equations, 2018, 2018, 123.	3.5	14
54	Novel global robust exponential stability criterion for uncertain inertial-type BAM neural networks with discrete and distributed time-varying delays via Lagrange sense. Journal of the Franklin Institute, 2018, 355, 4727-4754.	3.4	62

#	Article	IF	CITATIONS
55	Global exponential stability of antiperiodic solutions for impulsive discreteâ€time Markovian jumping stochastic BAM neural networks with additive timeâ€varying delays and leakage delay. International Journal of Adaptive Control and Signal Processing, 2018, 32, 908-936.	4.1	9
56	Impulsive Cohen–Grossberg BAM neural networks with mixed time-delays: An exponential stability analysis issue. Neurocomputing, 2018, 275, 2588-2602.	5.9	61
57	Robust finite-time non-fragile sampled-data control for T-S fuzzy flexible spacecraft model with stochastic actuator faults. Applied Mathematics and Computation, 2018, 321, 483-497.	2.2	57
58	Novel results on passivity and exponential passivity for multiple discrete delayed neutral-type neural networks with leakage and distributed time-delays. Chaos, Solitons and Fractals, 2018, 115, 268-282.	5.1	33
59	Enhanced result on stability analysis of randomly occurring uncertain parameters, leakage, and impulsive BAM neural networks with timeâ€varying delays: Discreteâ€time case. International Journal of Adaptive Control and Signal Processing, 2018, 32, 1010-1039.	4.1	11
60	Global exponential stability of Markovian jumping stochastic impulsive uncertain BAM neural networks with leakage, mixed time delays, and \hat{l}_{\pm} -inverse Hölder activation functions. Advances in Difference Equations, 2018, 2018, 113.	3.5	17
61	Further synchronization in finite time analysis for time-varying delayed fractional order memristive competitive neural networks with leakage delay. Neurocomputing, 2018, 317, 110-126.	5.9	73
62	An advanced delay-dependent approach of impulsive genetic regulatory networks besides the distributed delays, parameter uncertainties and time-varying delays. Nonlinear Analysis: Modelling and Control, 2018, 23, 803-829.	1.6	5
63	Effects of leakage delays and impulsive control in dissipativity analysis of Takagi–Sugeno fuzzy neural networks with randomly occurring uncertainties. Journal of the Franklin Institute, 2017, 354, 3574-3593.	3.4	18
64	Stability analysis of uncertain neutral systems with discrete and distributed delays via the delay partition approach. International Journal of Control, Automation and Systems, 2017, 15, 2149-2160.	2.7	9
65	Improved Results on Delay-Dependent \$\$H_infty \$\$ H â^ž Control for Uncertain Systems with Time-Varying Delays. Circuits, Systems, and Signal Processing, 2017, 36, 1836-1859.	2.0	4
66	Enhanced robust finite-time passivity for Markovian jumping discrete-time BAM neural networks with leakage delay. Advances in Difference Equations, 2017, 2017, 318.	3.5	36
67	Mo1428 Can Development of Acute Kidney Injury in Acute Pancreatitis Be Predicted?. Gastroenterology, 2016, 150, S710.	1.3	O
68	Delay-dependent asymptotic stability criteria for genetic regulatory networks with impulsive perturbations. Neurocomputing, 2016, 214, 981-990.	5.9	27
69	New global asymptotic stability of discrete-time recurrent neural networks with multiple time-varying delays in the leakage term and impulsive effects. Neurocomputing, 2016, 214, 420-429.	5.9	22
70	Delay-interval-dependent passivity analysis of stochastic neural networks with Markovian jumping parameters and time delay in the leakage term. Nonlinear Analysis: Hybrid Systems, 2016, 22, 262-275.	3.5	22
71	New delay-interval-dependent stability criteria for static neural networks with time-varying delays. Neurocomputing, 2016, 186, 1-7.	5.9	20
72	Robust passivity analysis for neutral-type neural networks with mixed and leakage delays. Neurocomputing, 2016, 175, 635-643.	5.9	18

#	Article	IF	CITATIONS
73	New stability criterion of neural networks with leakage delays and impulses: a piecewise delay method. Cognitive Neurodynamics, 2016, 10, 85-98.	4.0	17
74	Exponential passivity analysis of stochastic neural networks with leakage, distributed delays and Markovian jumping parameters. Neurocomputing, 2016, 175, 401-410.	5.9	32
75	New delay-interval-dependent stability analysis of neutral type BAM neural networks with successive time delay components. Neurocomputing, 2016, 171, 1265-1280.	5.9	19
76	Improved stability analysis of uncertain neutral type neural networks with leakage delays and impulsive effects. Applied Mathematics and Computation, 2015, 266, 1050-1069.	2.2	49
77	Improved stochastic dissipativity of uncertain discrete-time neural networks with multiple delays and impulses. International Journal of Machine Learning and Cybernetics, 2015, 6, 289-305.	3.6	13
78	Dynamics of Neural Networks and Applications in Optimization. Mathematical Problems in Engineering, 2014, 2014, 1-2.	1.1	1
79	Passivity analysis for uncertain discrete-time stochastic BAM neural networks with time-varying delays. Neural Computing and Applications, 2014, 25, 751-766.	5.6	22
80	Dynamic analysis of discrete-time BAM neural networks with stochastic perturbations and impulses. International Journal of Machine Learning and Cybernetics, 2014, 5, 39-50.	3.6	12
81	Exponential Stability for Delayed Stochastic Bidirectional Associative Memory Neural Networks with Markovian Jumping and Impulses. Journal of Optimization Theory and Applications, 2013, 158, 251-273.	1.5	11
82	Exponential stability for stochastic delayed recurrent neural networks with mixed time-varying delays and impulses: the continuous-time case. Physica Scripta, 2013, 87, 055802.	2.5	8
83	Dissipativity of discrete-time BAM stochastic neural networks with Markovian switching and impulses. Journal of the Franklin Institute, 2013, 350, 3217-3247.	3.4	40
84	Linear matrix inequality approach to stochastic stability of uncertain delayed BAM neural networks. IMA Journal of Applied Mathematics, 2013, 78, 1156-1178.	1.6	19
85	New delay dependent robust asymptotic stability for uncertain stochastic recurrent neural networks with multiple time varying delays. Journal of the Franklin Institute, 2012, 349, 2108-2123.	3.4	36
86	Exponential Stability for Delayed Stochastic Bidirectional Associative Memory Neural Networks with Markovian Jumping and Impulses. Journal of Optimization Theory and Applications, 2011, 150, 166-187.	1.5	48
87	Global exponential stability of BAM neural networks with time-varying delays: The discrete-time case. Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 613-622.	3.3	47
88	Stability of impulsive Hopfield neural networks with Markovian switching and time-varying delays. International Journal of Applied Mathematics and Computer Science, 2011, 21, 127-135.	1.5	23
89	Exponential Stability for Discrete-Time Stochastic BAM Neural Networks with Discrete and Distributed Delays., 2011, 2011, 1-23.		0
90	Stability analysis for discrete-time stochastic neural networks with mixed time delays and impulsive effects. Canadian Journal of Physics, 2010, 88, 885-898.	1.1	23

#	Article	IF	CITATIONS
91	Asymptotic stability of delayed stochastic genetic regulatory networks with impulses. Physica Scripta, 2010, 82, 055009.	2.5	46
92	Renal Disease Is a Prodrome of Multiple Myeloma: An Analysis of 50 Patients from Eastern India. Renal Failure, 2009, 31, 267-271.	2.1	13
93	Decreasing incidence of renal cortical necrosis in patients with acute renal failure in developing countries: a single-centre experience of 22 years from Eastern India. Nephrology Dialysis Transplantation, 2007, 22, 1213-1217.	0.7	96
94	Performance evaluation through simulation modeling in a cotton spinning system. Simulation Modelling Practice and Theory, 2007, 15, 1163-1172.	3.8	3
95	Passivity analysis of uncertain stochastic neural network with leakage and distributed delays under impulsive perturbations. Kybernetika, 0, , 3-29.	0.0	2
96	Robust nonâ€fragile Mittagâ€Leffler synchronization of fractional order nonâ€linear complex dynamical networks with constant and infinite distributed delays. Mathematical Methods in the Applied Sciences, 0, , .	2.3	6
97	Global exponential stability results for the hostâ€parasitoid model of sugarcane borer in stochastic environment with impulsive effects via nonâ€fragile control: An LMI approach. Optimal Control Applications and Methods, 0, , .	2.1	1
98	Asymptotic synchronization of fractionalâ€order nonâ€identical complex dynamical networks with parameter uncertainties. Mathematical Methods in the Applied Sciences, 0, , .	2.3	1