Christian Komusiewicz

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/7578156/publications.pdf
Version: 2024-02-01

1 Fixed-Parameter Algorithms forÂCluster Vertex Deletion. Theory of Computing Systems, 2010, 47, 196-217. 1.1

2 Cluster editing with locally bounded modifications. Discrete Applied Mathematics, 2012, 160, 2259-2270.
0.9

73
$3 \quad$ Graph-based data clustering with overlaps. Discrete Optimization, 2011, 8, 2-17.
0.9

58

Parameterized computational complexity of finding small-diameter subgraphs. Optimization Letters, 2012, 6, 883-891.

Parameterized Algorithmics for Finding Connected Motifs in Biological Networks. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 2011, 8, 1296-1308.
3.0

Isolation concepts for efficiently enumerating dense subgraphs. Theoretical Computer Science, 2009,
410, 3640-3654.
0.9

36

7 On Generating Triangle-Free Graphs. Electronic Notes in Discrete Mathematics, 2009, 32, 51-58.
0.4

33

Average parameterization and partial kernelization for computing medians. Journal of Computer and System Sciences, 2011, 77, 774-789.

A More Relaxed Model for Craph-Based Data Clustering: <i>s</i>-Plex Cluster Editing. SIAM Journal on
A More Relaxed Model for Graph-Based Data
Discrete Mathematics, 2010, 24, 1662-1683.

10 Multivariate Algorithmics for Finding Cohesive Subnetworks. Algorithms, 2016, 9, 21.
2.1

30

11 Parameterized Algorithms and Hardness Results for Some Graph Motif Problems. , 2008, , 31-43.

12 New Races in Parameterized Algorithmics. Lecture Notes in Computer Science, 2012, , 19-30.
1.3

26

13 A graph modification approach for finding coreâ€"periphery structures in protein interaction
networks. Algorithms for Molecular Biology, 2015, 10, 16.
$1.2 \quad 24$

Parameterized Algorithmics and Computational Experiments for Finding 2-Clubs. Journal of Graph Algorithms and Applications, 2015, 19, 155-190.
0.4

22

An algorithmic framework for fixed-cardinality optimization in sparse graphs applied to dense
15 An algorithmic framework for fixed-cardinality optimization in sparse grap $\begin{aligned} & \text { subgraph problems. Discrete Applied Mathematics, 2015, 193, 145-161. }\end{aligned}$
0.9

20

H-index manipulation by merging articles: Models, theory, and experiments. Artificial Intelligence, 2016,
240, 19-35.

Deconstructing intractabilityâ€"A multivariate complexity analysis of interval constrained coloring.
Journal of Discrete Algorithms, 2011, 9, 137-151.
0.7

17

Theory and experiments. Networks, 2017, 70, 262-278.

19	Measuring Indifference: Unit Interval Vertex Deletion. Lecture Notes in Computer Science, 2010, , 232-243.	1.3
20	Partitioning Biological Networks into Highly Connected Clusters with Maximum Edge Coverage. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014, 11, 455-467.	3.0
21	Matching cut: Kernelization, single-exponential time FPT, and exact exponential algorithms. Discrete Applied Mathematics, 2020, 283, 44-58.	0.9

22 Improved Algorithms for Bicluster Editing. , 2008, , 445-456.
14

23 Finding Dense Subgraphs of Sparse Graphs. Lecture Notes in Computer Science, 2012, , 242-251.
1.3

14

24 Editing Graphs into Disjoint Unions of Dense Clusters. Algorithmica, 2011, 61, 949-970.
1.3
25 On structural parameterizations for the 2-club problem. Discrete Applied Mathematics, 2015, 185, 79-92.
27 Isolation concepts for clique enumeration: Comparison and computational experiments. Theoretical
Computer Science, 2009, 410, 5384-5397.

.

Polynomial-Time Data Reduction for the Subset Interconnection Design Problem. SIAM Journal on
Discrete Mathematics, 2015, 29, 1-25.
29 Fixed-Parameter Algorithms for Cluster Vertex Deletion. , 2008, , 711-722.
Deconstructing Intractability: A Case Study for IntervalÂConstrainedÂColoring. Lecture Notes in
30 Computer Science, 2009, , 207-220.1.311
Parameterized Algorithmics and Computational Experiments for Finding 2-Clubs. Lecture Notes in 1.3 11
Parameterized Algorithmics and Com
Computer Science, 2012, , 231-241.A Fixed-Parameter Algorithm for Minimum Common String Partition with Few Duplications. Lecture1.311
33 On making directed graphs transitive. Journal of Computer and System Sciences, 2012, 78, 559-574. 1.2 9
Partitioning into Colorful Components by Minimum Edge Deletions. Lecture Notes in Computer
Science, 2012, ,56-69.

On Structural Parameterizations for the 2-Club Problem. Lecture Notes in Computer Science, 2013, , 233-243.

39 Finding Highly Connected Subgraphs. Lecture Notes in Computer Science, 2015, , 254-265.
1.3

Parameterizing Edge Modification Problems Above Lower Bounds. Theory of Computing Systems, 2018, 62, 739-770.

41 On the Relation of Strong Triadic Closure and ClusterÂDeletion. Algorithmica, 2020, 82, 853-880.
1.3
1.3
1.3

On the Relation of Strong Triadic Closure and Cluster Deletion. Lecture Notes in Computer Science, 2018, , 239-251.

When Can Graph Hyperbolicity Be Computed in Linear Time?. Lecture Notes in Computer Science, 2017, 397-408.

Tight Running Time Lower Bounds for Vertex Deletion Problems. ACM Transactions on Computation Theory, 2018, 10, 1-18.

Exact algorithms for finding well-connected 2-clubs in sparse real-world graphs: Theory and experiments. European Journal of Operational Research, 2019, 275, 846-864.

A More Relaxed Model for Graph-Based Data Clustering: s-Plex Editing. Lecture Notes in Computer Science, 2009, , 226-239.

An Analytical Approach to Network Motif Detection in Samples of Networks with Pairwise Different
Vertex Labels. Computational and Mathematical Methods in Medicine, 2012, 2012, 1-12.

50 Parameterized complexity of critical node cuts. Theoretical Computer Science, 2016, 651, 62-75.
0.9

Enumerating Isolated Cliques in Synthetic and Financial Networks. Lecture Notes in Computer Science, 2008, , 405-416.

Alternative Parameterizations for Cluster Editing. Lecture Notes in Computer Science, 2011, , 344-355.
1.3
1.3

71-82.

```
5 5 ~ A s s e s s i n g ~ t h e ~ c o m p u t a t i o n a l ~ c o m p l e x i t y ~ o f ~ m u l t i l a y e r ~ s u b g r a p h ~ d e t e c t i o n . ~ N e t w o r k ~ S c i e n c e , ~ 2 0 1 9 , ~ 7 , ~
215-241.
```

Refined notions of parameterized enumeration kernels with applications to matching cut enumeration. Journal of Computer and System Sciences, 2022, 123, 76-102.

57 Finding Supported Paths in Heterogeneous Networks. Algorithms, 2015, 8, 810-831.
2.1

3

58 Twins in Subdivision Drawings of Hypergraphs. Lecture Notes in Computer Science, 2016, , 67-80.
1.3
(Prefix) reversal distance for (signed) strings with few blocks or small alphabets. Journal of Discrete
Algorithms, 2016, 37, 44-55.

Parameterized algorithms for recognizing monopolar and 2-subcolorable graphs. Journal of
Computer and System Sciences, 2018, 92, 22-47.

61 Sorting by Multi-Cut Rearrangements. Algorithms, 2021, 14, 169.

Effective and Efficient Data Reduction for the Subset Interconnection Design Problem. Lecture Notes
in Computer Science, 2013, , 361-371.

Editing Graphs Into Few Cliques: Complexity, Approximation, and Kernelization Schemes. Lecture Notes
in Computer Science, 2015, , 410-421.

64 The Parameterized Complexity of the Rainbow Subgraph Problem. Algorithms, 2015, 8, 60-81.

Towards an algorithmic guide to Spiral Galaxies. Theoretical Computer Science, 2015, 586, 26-39.

Parameterizing Edge Modification Problems Above Lower Bounds. Lecture Notes in Computer Science,
2016, , 57-72.

Enumerating Connected Induced Subgraphs: Improved Delay and Experimental Comparison. Lecture
Notes in Computer Science, 2019, , 272-284.

When Can Graph Hyperbolicity be Computed in Linear Time?. Algorithmica, 2019, 81, 2016-2045.
1.3

2

69 Parameterized algorithms for Module Map problems. Discrete Applied Mathematics, 2020, 283, 396-416. 2

Finding Connected Subgraphs of Fixed Minimum Density: Implementation and Experiments. Lecture
Notes in Computer Science, 2015, , 82-93.

Assessing the Computational Complexity of Multi-layer Subgraph Detection. Lecture Notes in
Computer Science, 2017, , 128-139.
1.3

Parameterized Algorithmics for Graph Modification Problems: On Interactions with Heuristics.
Lecture Notes in Computer Science, 2016, , 3-15.

73	<i>h</i>-Index manipulation by undoing merges. Quantitative Science Studies, 2020, 1, 1529-1552.	3.3
74	Partitioning Biological Networks into Highly Connected Clusters with Maximum Edge Coverage. Lecture Notes in Computer Science, 2013, , 99-111.	1.3

On explaining integer vectors by few homogeneous segments. Journal of Computer and System
Sciences, 2015, 81, 766-782.
Parameterized Algorithmics for Finding Exact Solutions of NP-Hard Biological Problems. Methods in
Molecular Biology, 2017, 1526, 363-402.
77 Sorting by Multi-cut Rearrangements. Lecture Notes in Computer Science, 2021, 593-607. $\quad 1.3$

Your rugby mates don't need to know your colleagues: Triadic closure with edge colors. Journal of
Computer and System Sciences, 2021, 120, 75-96.
$1.2 \quad 1$
79 Editing Graphs into Disjoint Unions of Dense Clusters. Lecture Notes in Computer Science, 2009, ,
583-593.
80 On the Parameterized Complexity of Consensus Clustering. Lecture Notes in Computer Science, 2011, ,
$624-633$.
81 Kernelization, Partially Polynomial Kernels. , 2014, , 1-4. 1
82 Reversal Distances for Strings with Few Blocks or Small Alphabets. Lecture Notes in Computer
Science, 2014, ,50-59.
376-388.
$1.3 \quad 1$
$83 \begin{aligned} & \text { Parameterized Algorithms for Module Map Problems. Lecture Notes in Computer Science, 2018, , } \\ & 376-388 .\end{aligned}$
Matching algorithms for assigning orthologs after genome duplication events. Computational Biology and Chemistry, 2018, 74, 379-390.
2.3
0
85 Solving Partition Problems Almost Always Requires Pushing Many Vertices Around. SIAM Journal on
Discrete Mathematics, 2020, 34, 640-681.
0.8

0

86 FixCon: A Generic Solver for Fixed-Cardinality Subgraph Problems. , 2020, , 12-26.
0

```
87 Can Local Optimality Be Used forÂEfficient Data Reduction?. Lecture Notes in Computer Science, 2021, ,
    354-366.
```

Local Search for String Problems: Brute Force Is Essentially Optimal. Lecture Notes in Computer Science, 2013, , 130-141.

On Explaining Integer Vectors by Few Homogenous Segments. Lecture Notes in Computer Science, 2013,

