Wenhan Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/757796/publications.pdf

Version: 2024-02-01

65 papers

3,798 citations

94433 37 h-index 60 g-index

66 all docs 66
docs citations

66 times ranked 3814 citing authors

#	Article	IF	CITATIONS
1	Calcium-sensing receptor and CPAP-induced neonatal airway hyperreactivity in mice. Pediatric Research, 2022, 91, 1391-1398.	2.3	5
2	Precise druggability of the PTH type 1 receptor. Nature Chemical Biology, 2022, 18, 272-280.	8.0	11
3	Impaired Mineral Ion Metabolism in a Mouse Model of Targeted Calcium-Sensing Receptor (CaSR) Deletion from Vascular Smooth Muscle Cells. Journal of the American Society of Nephrology: JASN, 2022, 33, 1323-1340.	6.1	7
4	Renal Dnase1 expression is regulated by FGF23 but loss of Dnase1 does not alter renal phosphate handling. Scientific Reports, 2021, 11, 6175.	3.3	0
5	Enhanced excitability of cortical neurons in low-divalent solutions is primarily mediated by altered voltage-dependence of voltage-gated sodium channels. ELife, 2021, 10, .	6.0	17
6	The mTORC2 Regulator Homer1 Modulates Protein Levels and Sub-Cellular Localization of the CaSR in Osteoblast-Lineage Cells. International Journal of Molecular Sciences, 2021, 22, 6509.	4.1	7
7	FBW7 couples structural integrity with functional output of primary cilia. Communications Biology, 2021, 4, 1066.	4.4	3
8	Spatial bias in cAMP generation determines biological responses to PTH type 1 receptor activation. Science Signaling, 2021, 14, eabc5944.	3.6	43
9	Calciumâ€Sensing Receptors in Chondrocytes and Osteoblasts Are Required for Callus Maturation and Fracture Healing in Mice. Journal of Bone and Mineral Research, 2020, 35, 143-154.	2.8	14
10	Biology of the extracellular calcium-sensing receptor. , 2020, , 539-571.		1
10	Biology of the extracellular calcium-sensing receptor., 2020, , 539-571. Calcium-sensing receptor-mediated NLRP3 inflammasome response to calciprotein particles drives inflammation in rheumatoid arthritis. Nature Communications, 2020, 11, 4243.	12.8	1 79
	Calcium-sensing receptor-mediated NLRP3 inflammasome response to calciprotein particles drives	12.8 11.9	
11	Calcium-sensing receptor-mediated NLRP3 inflammasome response to calciprotein particles drives inflammation in rheumatoid arthritis. Nature Communications, 2020, 11, 4243. PTH hypersecretion triggered by a GABAB1 and Ca2+-sensing receptor heterocomplex in		79
11 12	Calcium-sensing receptor-mediated NLRP3 inflammasome response to calciprotein particles drives inflammation in rheumatoid arthritis. Nature Communications, 2020, 11, 4243. PTH hypersecretion triggered by a GABAB1 and Ca2+-sensing receptor heterocomplex in hyperparathyroidism. Nature Metabolism, 2020, 2, 243-255.	11.9	79 27
11 12 13	Calcium-sensing receptor-mediated NLRP3 inflammasome response to calciprotein particles drives inflammation in rheumatoid arthritis. Nature Communications, 2020, 11, 4243. PTH hypersecretion triggered by a GABAB1 and Ca2+-sensing receptor heterocomplex in hyperparathyroidism. Nature Metabolism, 2020, 2, 243-255. Control of PTH secretion by the TRPC1 ion channel. JCl Insight, 2020, 5, . Glycerol-3-phosphate is an FGF23 regulator derived from the injured kidney. Journal of Clinical	11.9 5.0	79 27 6
11 12 13	Calcium-sensing receptor-mediated NLRP3 inflammasome response to calciprotein particles drives inflammation in rheumatoid arthritis. Nature Communications, 2020, 11, 4243. PTH hypersecretion triggered by a GABAB1 and Ca2+-sensing receptor heterocomplex in hyperparathyroidism. Nature Metabolism, 2020, 2, 243-255. Control of PTH secretion by the TRPC1 ion channel. JCI Insight, 2020, 5, . Glycerol-3-phosphate is an FGF23 regulator derived from the injured kidney. Journal of Clinical Investigation, 2020, 130, 1513-1526. Homer1 mediates CaSR-dependent activation of mTOR complex 2 and initiates a novel pathway for AKT-dependent β-catenin stabilization in osteoblasts. Journal of Biological Chemistry, 2019, 294,	11.9 5.0 8.2	79 27 6 75
11 12 13 14	Calcium-sensing receptor-mediated NLRP3 inflammasome response to calciprotein particles drives inflammation in rheumatoid arthritis. Nature Communications, 2020, 11, 4243. PTH hypersecretion triggered by a GABAB1 and Ca2+-sensing receptor heterocomplex in hyperparathyroidism. Nature Metabolism, 2020, 2, 243-255. Control of PTH secretion by the TRPC1 ion channel. JCl Insight, 2020, 5, . Glycerol-3-phosphate is an FGF23 regulator derived from the injured kidney. Journal of Clinical Investigation, 2020, 130, 1513-1526. Homer1 mediates CaSR-dependent activation of mTOR complex 2 and initiates a novel pathway for AKT-dependent i²-catenin stabilization in osteoblasts. Journal of Biological Chemistry, 2019, 294, 16337-16350. Phosphate acts directly on the calcium-sensing receptor to stimulate parathyroid hormone secretion.	11.9 5.0 8.2 3.4	79 27 6 75

#	Article	IF	Citations
19	Prevention of Injury-Induced Osteoarthritis in Rodent Temporomandibular Joint by Targeting Chondrocyte CaSR. Journal of Bone and Mineral Research, 2019, 34, 726-738.	2.8	24
20	Calcimimetic R568 inhibits tetrodotoxin-sensitive colonic electrolyte secretion and reduces c-fos expression in myenteric neurons. Life Sciences, 2018, 194, 49-58.	4.3	8
21	Cartilage to bone transformation during fracture healing is coordinated by the invading vasculature and induction of the core pluripotency genes. Development (Cambridge), 2017, 144, 221-234.	2.5	171
22	Calcium Sensing Receptor Function Supports Osteoblast Survival and Acts as a Coâ€Factor in PTH Anabolic Actions in Bone. Journal of Cellular Biochemistry, 2016, 117, 1556-1567.	2.6	25
23	Interplay between CaSR and PTH1R signaling in skeletal development and osteoanabolism. Seminars in Cell and Developmental Biology, 2016, 49, 11-23.	5.0	46
24	Sprouty2 regulates endochondral bone formation by modulation of RTK and BMP signaling. Bone, 2016, 88, 170-179.	2.9	9
25	Calcium-Sensing Receptor Promotes Breast Cancer by Stimulating Intracrine Actions of Parathyroid Hormone–Related Protein. Cancer Research, 2016, 76, 5348-5360.	0.9	56
26	Claude D Arnaud, Jr, MD (1929–2016): ASBMR Loses a Founding Father. Journal of Bone and Mineral Research, 2016, 31, 2067-2068.	2.8	0
27	Osteoblast-Specific Loss of IGF1R Signaling Results in Impaired Endochondral Bone Formation During Fracture Healing. Journal of Bone and Mineral Research, 2015, 30, 1572-1584.	2.8	48
28	Calcium-sensing receptor antagonists abrogate airway hyperresponsiveness and inflammation in allergic asthma. Science Translational Medicine, 2015, 7, 284ra60.	12.4	142
29	The calcium-sensing receptor suppresses epithelial-to-mesenchymal transition and stem cell- like phenotype in the colon. Molecular Cancer, 2015, 14, 61.	19.2	30
30	Calcium-sensing receptor stimulates Cl ^{â^'} - and SCFA-dependent but inhibits cAMP-dependent HCO ₃ ^{â^'} secretion in colon. American Journal of Physiology - Renal Physiology, 2015, 308, G874-G883.	3.4	35
31	Role of IGF-I signaling in muscle bone interactions. Bone, 2015, 80, 79-88.	2.9	122
32	Disrupted Bone Remodeling Leads to Cochlear Overgrowth and Hearing Loss in a Mouse Model of Fibrous Dysplasia. PLoS ONE, 2014, 9, e94989.	2.5	18
33	Ephrin B2/EphB4 Mediates the Actions of IGF-I Signaling in Regulating Endochondral Bone Formation. Journal of Bone and Mineral Research, 2014, 29, 1900-1913.	2.8	47
34	Calciumâ€sensing receptor (CaSR) as a novel target for ischemic neuroprotection. Annals of Clinical and Translational Neurology, 2014, 1, 851-866.	3.7	46
35	Mammary-Specific Ablation of the Calcium-Sensing Receptor During Lactation Alters Maternal Calcium Metabolism, Milk Calcium Transport, and Neonatal Calcium Accrual. Endocrinology, 2013, 154, 3031-3042.	2.8	56
36	Hypothermia and Pharmacological Regimens that Prevent Overexpression and Overactivity of the Extracellular Calcium-Sensing Receptor Protect Neurons against Traumatic Brain Injury. Journal of Neurotrauma, 2013, 30, 1170-1176.	3.4	26

#	Article	IF	Citations
37	The extracellular calcium-sensing receptor, CaSR, in fetal development. Best Practice and Research in Clinical Endocrinology and Metabolism, 2013, 27, 443-453.	4.7	35
38	Sex and age modify biochemical and skeletal manifestations of chronic hyperparathyroidism by altering target organ responses to Ca2+ and parathyroid hormone in mice. Journal of Bone and Mineral Research, 2013, 28, 1087-1100.	2.8	28
39	Autocrine and Paracrine Actions of IGF-I Signaling in Skeletal Development. Bone Research, 2013, 1, 249-259.	11.4	52
40	Negative Cross-talk between Calcium-sensing Receptor and \hat{l}^2 -Catenin Signaling Systems in Colonic Epithelium. Journal of Biological Chemistry, 2012, 287, 1158-1167.	3.4	63
41	Ablation of the Calcium-Sensing Receptor in Keratinocytes Impairs Epidermal Differentiation and Barrier Function. Journal of Investigative Dermatology, 2012, 132, 2350-2359.	0.7	7 3
42	Mild Hypothermia Suppresses Calcium-Sensing Receptor (CaSR) Induction Following Forebrain Ischemia While Increasing GABA-B Receptor 1 (GABA-B-R1) Expression. Translational Stroke Research, 2011, 2, 195-201.	4.2	47
43	IGF-1R signaling in chondrocytes modulates growth plate development by interacting with the PTHrP/lhh pathway. Journal of Bone and Mineral Research, 2011, 26, 1437-1446.	2.8	105
44	Osteoblast extracellular Ca2+-sensing receptor regulates bone development, mineralization, and turnover. Journal of Bone and Mineral Research, 2011, 26, 2935-2947.	2.8	83
45	Assessing Constitutive Activity of Extracellular Calcium-Sensing Receptors In Vitro and in Bone. Methods in Enzymology, 2010, 484, 253-266.	1.0	6
46	Naturally-Occurring Mutation in the Calcium-Sensing Receptor Reveals the Significance of Extracellular Domain Loop III Region for Class C G-Protein-Coupled Receptor Function. Journal of Clinical Endocrinology and Metabolism, 2010, 95, E245-E252.	3.6	5
47	Inactivation of the Calcium Sensing Receptor Inhibits E-cadherin-mediated Cell-Cell Adhesion and Calcium-induced Differentiation in Human Epidermal Keratinocytes. Journal of Biological Chemistry, 2008, 283, 3519-3528.	3.4	109
48	The Extracellular Calcium-Sensing Receptor (CaSR) Is a Critical Modulator of Skeletal Development. Science Signaling, 2008, 1, ra1.	3.6	232
49	Complex Formation with the Type B \hat{I}^3 -Aminobutyric Acid Receptor Affects the Expression and Signal Transduction of the Extracellular Calcium-sensing Receptor. Journal of Biological Chemistry, 2007, 282, 25030-25040.	3.4	7 3
50	Type B Î ³ -Aminobutyric Acid Receptors Modulate the Function of the Extracellular Ca2+-Sensing Receptor and Cell Differentiation in Murine Growth Plate Chondrocytes. Endocrinology, 2007, 148, 4984-4992.	2.8	35
51	Constitutive Activity of the Osteoblast Ca2+-Sensing Receptor Promotes Loss of Cancellous Bone. Endocrinology, 2007, 148, 3156-3163.	2.8	67
52	The Role of the Calcium Sensing Receptor in Regulating Intracellular Calcium Handling in Human Epidermal Keratinocytes. Journal of Investigative Dermatology, 2007, 127, 1074-1083.	0.7	74
53	Insulin-Like Growth Factor-I Is Essential for Embryonic Bone Development. Endocrinology, 2006, 147, 4753-4761.	2.8	114
54	Expression and Functional Assessment of an Alternatively Spliced Extracellular Ca2+-Sensing Receptor in Growth Plate Chondrocytes. Endocrinology, 2005, 146, 5294-5303.	2.8	66

#	Article	IF	CITATIONS
55	Extracellular Calcium and Parathyroid Hormone-Related Peptide Signaling Modulate the Pace of Growth Plate Chondrocyte Differentiation. Endocrinology, 2005, 146, 4597-4608.	2.8	38
56	Extracellular Ca2+-sensing receptorsâ€"an overview. Cell Calcium, 2004, 35, 183-196.	2.4	109
57	Extracellular Ca2+-Sensing Receptors Modulate Matrix Production and Mineralization in Chondrogenic RCJ3.1C5.18 Cells. Endocrinology, 2002, 143, 1467-1474.	2.8	66
58	Parathyroid cells express dihydropyridine-sensitive cation currents and L-type calcium channel subunits. American Journal of Physiology - Endocrinology and Metabolism, 2001, 281, E180-E189.	3.5	11
59	Amino Acids in the Cytoplasmic C Terminus of the Parathyroid Ca2+-sensing Receptor Mediate Efficient Cell-surface Expression and Phospholipase C Activation. Journal of Biological Chemistry, 2001, 276, 44129-44136.	3.4	45
60	The Calcium Sensing Receptor and Its Alternatively Spliced Form in Murine Epidermal Differentiation. Journal of Biological Chemistry, 2000, 275, 1183-1190.	3.4	101
61	Amino Acids in the Second and Third Intracellular Loops of the Parathyroid Ca2+-sensing Receptor Mediate Efficient Coupling to Phospholipase C. Journal of Biological Chemistry, 2000, 275, 19955-19963.	3.4	80
62	Calcium Sensing in Cultured Chondrogenic RCJ3.1C5.18 Cells*. Endocrinology, 1999, 140, 1911-1919.	2.8	68
63	Expression and Signal Transduction of Calcium-Sensing Receptors in Cartilage and Bone1. Endocrinology, 1999, 140, 5883-5893.	2.8	204
64	Expression and Signal Transduction of Calcium-Sensing Receptors in Cartilage and Bone. Endocrinology, 1999, 140, 5883-5893.	2.8	81
65	Coupling of Calcium Receptors to Inositol Phosphate and Cyclic AMP Generation in Mammalian Cells and Xenopus laevis Oocytes and Immunodetection of Receptor Protein by Region-Specific Antipeptide Antisera. Journal of Bone and Mineral Research, 1998, 13, 570-580.	2.8	84