Ulrich Bogdahn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7576740/publications.pdf

Version: 2024-02-01

1040056 1281871 13 643 9 11 citations h-index g-index papers 13 13 13 957 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Safe and Effective Cynomolgus Monkey GLP—Tox Study with Repetitive Intrathecal Application of a TGFBR2 Targeting LNA-Gapmer Antisense Oligonucleotide as Treatment Candidate for Neurodegenerative Disorders. Pharmaceutics, 2022, 14, 200.	4.5	2
2	Targeting TGF-ß in the Central Nervous System: Assessment of Cynomolgus Monkey—Toxicity and Pharmacokinetics for an LNA-Antisense Oligonucleotide. Applied Sciences (Switzerland), 2022, 12, 973.	2.5	0
3	Reconditioning the Neurogenic Niche of Adult Non-human Primates by Antisense Oligonucleotide-Mediated Attenuation of TGFÎ ² Signaling. Neurotherapeutics, 2021, 18, 1963-1979.	4.4	4
4	Antisense Oligonucleotide in LNA-Gapmer Design Targeting TGFBR2—A Key Single Gene Target for Safe and Effective Inhibition of TGFβ Signaling. International Journal of Molecular Sciences, 2020, 21, 1952.	4.1	19
5	TGF- \hat{l}^2 Signaling: A Therapeutic Target to Reinstate Regenerative Plasticity in Vascular Dementia?. , 2020, 11, 828.		46
6	Value of fluidâ€attenuated inversion recovery MRI data analyzed by the lesion segmentation toolbox in amyotrophic lateral sclerosis. Journal of Magnetic Resonance Imaging, 2019, 50, 552-559.	3.4	10
7	The TGF-Î ² System As a Potential Pathogenic Player in Disease Modulation of Amyotrophic Lateral Sclerosis. Frontiers in Neurology, 2017, 8, 669.	2.4	42
8	Reduction in Subventricular Zone-Derived Olfactory Bulb Neurogenesis in a Rat Model of Huntington's Disease Is Accompanied by Striatal Invasion of Neuroblasts. PLoS ONE, 2015, 10, e0116069.	2.5	34
9	TGFâ€beta signalling in the adult neurogenic niche promotes stem cell quiescence as well as generation of new neurons. Journal of Cellular and Molecular Medicine, 2014, 18, 1444-1459.	3.6	118
10	Transforming Growth Factor-Beta Signaling in the Neural Stem Cell Niche: A Therapeutic Target for Huntington's Disease. Neurology Research International, 2011, 2011, 1-13.	1.3	38
11	Stem Cell Quiescence in the Hippocampal Neurogenic Niche Is Associated With Elevated Transforming Growth Factor-Î ² Signaling in an Animal Model of Huntington Disease. Journal of Neuropathology and Experimental Neurology, 2010, 69, 717-728.	1.7	86
12	TGF-beta in neural stem cells and in tumors of the central nervous system. Cell and Tissue Research, 2008, 331, 225-241.	2.9	91
13	Transforming Growth Factor- $\hat{l}^2 1$ is a Negative Modulator of Adult Neurogenesis. Journal of Neuropathology and Experimental Neurology, 2006, 65, 358-370.	1.7	153