
Maurice A Tivey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7574038/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A New Middle to Late Jurassic Geomagnetic Polarity Time Scale (GPTS) From a Multiscale Marine Magnetic Anomaly Survey of the Pacific Jurassic Quiet Zone. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021136.	3.4	6
2	An intermittent detachment faulting system with a large sulfide deposit revealed by multi-scale magnetic surveys. Nature Communications, 2021, 12, 5642.	12.8	18
3	Geological and Thermal Control of the Hydrothermal System in Northern Yellowstone Lake: Inferences From Highâ€Resolution Magnetic Surveys. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019743.	3.4	12
4	Deep-ocean paleo-seafloor erosion in the northwestern Pacific identified by high-resolution seismic images. Marine Geology, 2020, 429, 106330.	2.1	1
5	Magnetic Mineral Populations in Lower Oceanic Crustal Gabbros (Atlantis Bank, SW Indian Ridge): Implications for Marine Magnetic Anomalies. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008847.	2.5	2
6	Complex subsurface hydrothermal fluid mixing at a submarine arc volcano supports distinct and highly diverse microbial communities. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32627-32638.	7.1	36
7	Heat Flow and Near‣eafloor Magnetic Anomalies Highlight Hydrothermal Circulation at Brothers Volcano Caldera, Southern Kermadec Arc, New Zealand. Geophysical Research Letters, 2019, 46, 8252-8260.	4.0	22
8	Dynamic Accretion Beneath a Slowâ€Spreading Ridge Segment: IODP Hole 1473A and the Atlantis Bank Oceanic Core Complex. Journal of Geophysical Research: Solid Earth, 2019, 124, 12631-12659.	3.4	53
9	Magnetic exploration of a low-temperature ultramafic-hosted hydrothermal site (Lost City, 30°N,) Tj ETQq1 1 C).784314 4.4	rgBŢ /Overlo
10	Multi-scale magnetic mapping of serpentinite carbonation. Nature Communications, 2017, 8, 1870.	12.8	20
11	Investigation of a marine magnetic polarity reversal boundary in cross section at the northern boundary of the Kane Megamullion, Midâ€Atlantic Ridge, 23°40′N. Journal of Geophysical Research: Solid Earth, 2016, 121, 3161-3176.	3.4	5
12	Reconstruction of the geology and structure of Lake Rotomahana and its hydrothermal systems from high-resolution multibeam mapping and seismic surveys: Effects of the 1886 Tarawera Rift eruption. Journal of Volcanology and Geothermal Research, 2016, 314, 57-83.	2.1	28
13	Characterization of the in situ magnetic architecture of oceanic crust (Hess Deep) using nearâ€source vector magnetic data. Journal of Geophysical Research: Solid Earth, 2016, 121, 4130-4146.	3.4	10
14	Crustal magnetization and the subseafloor structure of the ASHES vent field, Axial Seamount, Juan de Fuca Ridge: Implications for the investigation of hydrothermal sites. Geophysical Research Letters, 2016, 43, 6205-6211.	4.0	10
15	A novel heat flux study of a geothermally active lake — Lake Rotomahana, New Zealand. Journal of Volcanology and Geothermal Research, 2016, 314, 95-109.	2.1	21
16	Subaqueous cryptodome eruption, hydrothermal activity and related seafloor morphologies on the andesitic North Su volcano. Journal of Volcanology and Geothermal Research, 2016, 323, 80-96.	2.1	11
17	High-resolution water column survey to identify active sublacustrine hydrothermal discharge zones within Lake Rotomahana, North Island, New Zealand. Journal of Volcanology and Geothermal Research, 2016, 314, 142-155.	2.1	34
18	Interpretation of gravity and magnetic anomalies at Lake Rotomahana: Geological and hydrothermal implications. Journal of Volcanology and Geothermal Research, 2016, 314, 84-94.	2.1	33

#	Article	IF	CITATIONS
19	Nature of the Jurassic Magnetic Quiet Zone. Geophysical Research Letters, 2015, 42, 8367-8372.	4.0	15
20	The Trans-Atlantic Geotraverse hydrothermal field: A hydrothermal system on an active detachment fault. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 121, 8-16.	1.4	32
21	Rescue of long-tail data from the ocean bottom to the Moon: IEDA Data Rescue Mini-Awards. GeoResJ, 2015, 6, 108-114.	1.4	6
22	Geologic setting of PACManus hydrothermal area — High resolution mapping and in situ observations. Marine Geology, 2014, 355, 98-114.	2.1	27
23	Highâ€resolution nearâ€bottom vector magnetic anomalies over Raven Hydrothermal Field, Endeavour Segment, Juan de Fuca Ridge. Journal of Geophysical Research: Solid Earth, 2014, 119, 7389-7403.	3.4	17
24	Quantitative estimate of heat flow from a midâ€ocean ridge axial valley, Raven field, Juan de Fuca Ridge: Observations and inferences. Journal of Geophysical Research: Solid Earth, 2014, 119, 6841-6854.	3.4	11
25	Mylonitic deformation at the Kane oceanic core complex: Implications for the rheological behavior of oceanic detachment faults. Geochemistry, Geophysics, Geosystems, 2013, 14, 3085-3108.	2.5	56
26	Waning magmatic activity along the Southern Explorer Ridge revealed through fault restoration of rift topography. Geochemistry, Geophysics, Geosystems, 2013, 14, 1609-1625.	2.5	6
27	Dynamics and navigation of autonomous underwater vehicles for submarine gravity surveying. Geophysics, 2013, 78, G55-G68.	2.6	12
28	Recent volcanic accretion at 9 [°] N–10 [°] N East Pacific Rise as resolved by combined geochemical and geological observations. Geochemistry, Geophysics, Geosystems, 2013, 14, 2547-2574.	2.5	19
29	Crustal Magnetization of Brothers Volcano, New Zealand, Measured by Autonomous Underwater Vehicles: Geophysical Expression of a Submarine Hydrothermal System. Economic Geology, 2012, 107, 1571-1581.	3.8	56
30	Multiple expressions of plumeâ€ridge interaction in the Galápagos: Volcanic lineaments and ridge jumps. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	35
31	3â€D focused inversion of nearâ€seafloor magnetic data with application to the Brothers volcano hydrothermal system, Southern Pacific Ocean, New Zealand. Journal of Geophysical Research, 2012, 117,	3.3	45
32	Deep-sea mining of seafloor massive sulfides. Marine Policy, 2010, 34, 728-732.	3.2	136
33	A reduced crustal magnetization zone near the first observed active hydrothermal vent field on the Southwest Indian Ridge. Geophysical Research Letters, 2010, 37, .	4.0	47
34	Hydrothermal circulation within the Endeavour Segment, Juan de Fuca Ridge. Geochemistry, Geophysics, Geosystems, 2010, 11, .	2.5	31
35	Structure and development of an axial volcanic ridge: Mid-Atlantic Ridge, 45°N. Earth and Planetary Science Letters, 2010, 299, 228-241.	4.4	64
36	The magnetic signature of hydrothermal systems in slow spreading environments. Geophysical Monograph Series, 2010, , 43-66.	0.1	47

#	Article	IF	CITATIONS
37	Central Anomaly Magnetization High documentation of crustal accretion along the East Pacific Rise (9°55′–9°25′N). Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	5
38	Plutonic foundation of a slowâ€spreading ridge segment: Oceanic core complex at Kane Megamullion, 23°30′N, 45°20′W. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	207
39	Deepâ€ŧow magnetic anomaly study of the Pacific Jurassic Quiet Zone and implications for the geomagnetic polarity reversal timescale and geomagnetic field behavior. Journal of Geophysical Research, 2008, 113, .	3.3	43
40	Toward high-spatial resolution gravity surveying of the mid-ocean ridges with autonomous underwater vehicles. , 2008, , .		8
41	Quantitative study of the deformation at Southern Explorer Ridge using high-resolution bathymetric data. Earth and Planetary Science Letters, 2007, 259, 1-17.	4.4	18
42	Submeter bathymetric mapping of volcanic and hydrothermal features on the East Pacific Rise crest at 9°50′N. Geochemistry, Geophysics, Geosystems, 2007, 8, n/a-n/a.	2.5	40
43	Interplay between faults and lava flows in construction of the upper oceanic crust: The East Pacific Rise crest 9°25′-9°58′N. Geochemistry, Geophysics, Geosystems, 2007, 8, n/a-n/a.	2.5	54
44	Mid-Ocean Ridge Exploration with an Autonomous Underwater Vehicle. Oceanography, 2007, 20, 52-61.	1.0	15
45	Autonomous and Remotely Operated Vehicle Technology for Hydrothermal Vent Discovery, Exploration, and Sampling. Oceanography, 2007, 20, 152-161.	1.0	62
46	The Cleft revealed: Geologic, magnetic, and morphologic evidence for construction of upper oceanic crust along the southern Juan de Fuca Ridge. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	2.5	48
47	Origin of the Pacific Jurassic quiet zone. Geology, 2006, 34, 789.	4.4	48
48	Downhole magnetic measurements of ODP Hole 801C: Implications for Pacific oceanic crust and magnetic field behavior in the Middle Jurassic. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	2.5	19
49	Channelized lava flows at the East Pacific Rise crest 9°-10°N: The importance of off-axis lava transport in developing the architecture of young oceanic crust. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	2.5	80
50	Temporal and spatial variability in the composition of lavas exposed along the Western Blanco Transform Fault. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	2.5	10
51	Crustal magnetization and accretion at the Southwest Indian Ridge near the Atlantis II fracture zone, 0-25 Ma. Journal of Geophysical Research, 2003, 108, .	3.3	60
52	A near-bottom magnetic survey of the Mid-Atlantic Ridge axis at 26°N: Implications for the tectonic evolution of the TAG segment. Journal of Geophysical Research, 2003, 108, .	3.3	78
53	Crustal magnetization reveals subsurface structure of Juan de Fuca Ridge hydrothermal vent fields. Geology, 2002, 30, 979.	4.4	107
54	Survey studies hydrothermal circulation on the Northern Juan de Fuca Ridge. Eos, 2002, 83, 73.	0.1	14

#	Article	IF	CITATIONS
55	Internal structure of uppermost oceanic crust along the Western Blanco Transform Scarp: Implications for subaxial accretion and deformation at the Juan de Fuca Ridge. Journal of Geophysical Research, 2002, 107, EPM 1-1-EPM 1-24.	3.3	43
56	Magnetic polarity structure of the lower oceanic crust. Geophysical Research Letters, 2001, 28, 423-426.	4.0	32
57	Magnetic anomalies at the Puna Ridge, a submarine extension of Kilauea Volcano: Implications for lava deposition. Journal of Geophysical Research, 2001, 106, 16047-16060.	3.3	11
58	Seafloor slopes at mid-ocean ridges from submersible observations and implications for interpreting geology from seafloor topography. Earth and Planetary Science Letters, 2000, 183, 543-555.	4.4	41
59	Density and porosity of the upper oceanic crust from seafloor gravity measurements. Geophysical Research Letters, 2000, 27, 1053-1056.	4.0	22
60	Central anomaly magnetization high: constraints on the volcanic construction and architecture of seismic layer 2A at a fast-spreading mid-ocean ridge, the EPR at 9°30′–50′N. Earth and Planetary Science Letters, 1999, 169, 37-50.	2 4.4	70
61	Locating the spreading axis along 80 km of the Mid-Atlantic Ridge south of the Atlantis Transform. Journal of Geophysical Research, 1999, 104, 7599-7612.	3.3	24
62	Continuous near-bottom gravity measurements made with a BGM-3 gravimeter in DSVAlvinon the East Pacific Rise crest near 9°31′N and 9°50′N. Journal of Geophysical Research, 1999, 104, 10841-10861.	3.3	44
63	Title is missing!. Marine Geophysical Researches, 1998, 20, 195-218.	1.2	9
64	Geomagnetic polarity reversal model of deep-tow profiles from the Pacific Jurassic Quiet Zone. Journal of Geophysical Research, 1998, 103, 5269-5286.	3.3	48
65	Thickness of a submarine lava flow determined from near-bottom magnetic field mapping by autonomous underwater vehicle. Geophysical Research Letters, 1998, 25, 805-808.	4.0	56
66	Direct measurement of magnetic reversal polarity boundaries in a cross-section of oceanic crust. Geophysical Research Letters, 1998, 25, 3631-3634.	4.0	34
67	Magnetization of 0-29 Ma ocean crust on the Mid-Atlantic Ridge, 25°30′ to 27°10′N. Journal of Geophysical Research, 1998, 103, 17807-17826.	3.3	45
68	Fast rift propagation at a slow-spreading ridge. Geology, 1997, 25, 639.	4.4	22
69	Autonomous underwater vehicle maps seafloor. Eos, 1997, 78, 229.	0.1	17
70	Segmentation and crustal structure of the western Mid-Atlantic Ridge flank, 25°25′-27°10′N and 0-29 m.y Journal of Geophysical Research, 1997, 102, 10203-10223.	3.3	122
71	Reduced crustal magnetization beneath Relict Hydrothermal Mounds: TAG Hydrothermal Field, Mid-Atlantic Ridge, 26°N. Geophysical Research Letters, 1996, 23, 3511-3514.	4.0	28
72	Vertical magnetic structure of ocean crust determined from near-bottom magnetic field measurements. Journal of Geophysical Research, 1996, 101, 20275-20296.	3.3	51

#	Article	IF	CITATIONS
73	Near-bottom magnetic survey of the Mid-Atlantic Ridge axis, 24°-24°40′N: Implications for crustal accretion at slow spreading ridges. Journal of Geophysical Research, 1996, 101, 22051-22069.	3.3	31
74	Fine-scale crustal magnetization variations and segmentation of the East Pacific Rise, 9°10′-9°50′N. Journal of Geophysical Research, 1996, 101, 22033-22050.	3.3	16
75	A submersible study in the western Blanco fracture Zone, N.E. Pacific: Structure and evolution during the last 1.6 Ma. Marine Geophysical Researches, 1995, 17, 399-430.	1.2	35
76	Magnetic properties of zero-age oceanic crust; A new submarine lava flow on the Juan de Fuca Ridge. Geophysical Research Letters, 1995, 22, 175-178.	4.0	31
77	Alvin magnetic survey of zero-age crust: CoAxial Segment Eruption, Juan de Fuca Ridge 1993. Geophysical Research Letters, 1995, 22, 171-174.	4.0	13
78	Geomagnetic polarity reversal rate for the Phanerozoic. Geophysical Research Letters, 1995, 22, 231-234.	4.0	45
79	Direct inversion of potential fields from an uneven track with application to the Mid-Atlantic Ridge. Geophysical Research Letters, 1995, 22, 3131-3134.	4.0	31
80	Observation of sections of oceanic crust and mantle cropping out on the southern wall of Kane FZ (N. Atlantic). Terra Nova, 1994, 6, 143-148.	2.1	39
81	Fine-scale magnetic anomaly field over the southern Juan de Fuca Ridge: Axial magnetization low and implications for crustal structure. Journal of Geophysical Research, 1994, 99, 4833-4855.	3.3	33
82	Reduced crustal magnetization beneath the active sulfide mound, TAG hydrothermal field, Mid-Atlantic Ridge at 26°N. Earth and Planetary Science Letters, 1993, 115, 101-115.	4.4	82
83	Variations in oceanic crustal structure and implications for the fineâ€scale magnetic anomaly signal. Geophysical Research Letters, 1993, 20, 1879-1882.	4.0	28
84	Magnetic modeling near selected areas of hydrothermal activity on the Midâ€Atlantic and Gorda Ridges. Journal of Geophysical Research, 1992, 97, 10911-10926.	3.3	24
85	The magnetic structure of Axial Seamount, Juan de Fuca Ridge. Journal of Geophysical Research, 1990, 95, 12735-12750.	3.3	23
86	The central anomaly magnetic high: Implications for ocean crust construction and evolution. Journal of Geophysical Research, 1987, 92, 12685-12694.	3.3	74
87	The characterization of viscous remanent magnetization in large and small magnetite particles. Journal of Geophysical Research, 1984, 89, 543-552.	3.3	34
88	Characterization of viscous remanent magnetization in single―and multiâ€domain magnetite grains. Geophysical Research Letters, 1981, 8, 217-220.	4.0	37
89	Submarine Lava Flow Emplacement at the East Pacific Rise 9°50´N: Implications for Uppermost Ocean Crust Stratigraphy and Hydrothermal Fluid Circulation. Geophysical Monograph Series, 0, , 187-217.	0.1	57