
## **Geoffrey Brown**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7573998/publications.pdf Version: 2024-02-01



CENEEDEN ROWN

| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Oncogenes and the Origins of Leukemias. International Journal of Molecular Sciences, 2022, 23, 2293.                                                                                      | 4.1  | 4         |
| 2  | Antagonizing RARÎ <sup>3</sup> Drives Necroptosis of Cancer Stem Cells. International Journal of Molecular<br>Sciences, 2022, 23, 4814.                                                   | 4.1  | 5         |
| 3  | The Social Norm of Hematopoietic Stem Cells and Dysregulation in Leukemia. International Journal of<br>Molecular Sciences, 2022, 23, 5063.                                                | 4.1  | 3         |
| 4  | Recycling of memory B cells between germinal center and lymph node subcapsular sinus supports affinity maturation to antigenic drift. Nature Communications, 2022, 13, 2460.              | 12.8 | 16        |
| 5  | Novel Strategies in the Development of New Therapies, Drug Substances, and Drug Carriers Volume I.<br>International Journal of Molecular Sciences, 2022, 23, 6635.                        | 4.1  | 0         |
| 6  | In Silico Prediction of the Metabolic Resistance of Vitamin D Analogs against CYP3A4 Metabolizing<br>Enzyme. International Journal of Molecular Sciences, 2022, 23, 7845.                 | 4.1  | 2         |
| 7  | The RARÎ <sup>3</sup> Oncogene: An Achilles Heel for Some Cancers. International Journal of Molecular Sciences, 2021, 22, 3632.                                                           | 4.1  | 12        |
| 8  | Hematopoietic Stem Cells: Nature and Niche Nurture. Bioengineering, 2021, 8, 67.                                                                                                          | 3.5  | 2         |
| 9  | Oncogenes, Proto-Oncogenes, and Lineage Restriction of Cancer Stem Cells. International Journal of<br>Molecular Sciences, 2021, 22, 9667.                                                 | 4.1  | 12        |
| 10 | Introduction and Classification of Leukemias. Methods in Molecular Biology, 2021, 2185, 3-23.                                                                                             | 0.9  | 2         |
| 11 | Retinoic acid receptor γ is a therapeutically targetable driver of growth and survival in prostate cancer. Cancer Reports, 2020, 3, e1284.                                                | 1.4  | 19        |
| 12 | Vitamin D and Haematopoiesis. Current Tissue Microenvironment Reports, 2020, 1, 1-11.                                                                                                     | 3.2  | 0         |
| 13 | Modeling the Hematopoietic Landscape. Frontiers in Cell and Developmental Biology, 2019, 7, 104.                                                                                          | 3.7  | 21        |
| 14 | The changing face of hematopoiesis: a spectrum of options is available to stem cells. Immunology and<br>Cell Biology, 2018, 96, 898-911.                                                  | 2.3  | 23        |
| 15 | Cell Lineage Choice during Haematopoiesis: In Honour of Professor Antonius Rolink. International<br>Journal of Molecular Sciences, 2018, 19, 2798.                                        | 4.1  | 0         |
| 16 | The Making of Hematopoiesis: Developmental Ancestry and Environmental Nurture. International<br>Journal of Molecular Sciences, 2018, 19, 2122.                                            | 4.1  | 9         |
| 17 | Vitamins D: Relationship between Structure and Biological Activity. International Journal of<br>Molecular Sciences, 2018, 19, 2119.                                                       | 4.1  | 20        |
| 18 | Antagonizing Retinoic Acid Receptors Increases Myeloid Cell Production by Cultured Human<br>Hematopoietic Stem Cells. Archivum Immunologiae Et Therapiae Experimentalis, 2017, 65, 69-81. | 2.3  | 17        |

**GEOFFREY BROWN** 

| #  | Article                                                                                                                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The Cytokine Flt3-Ligand in Normal and Malignant Hematopoiesis. International Journal of Molecular<br>Sciences, 2017, 18, 1115.                                                                                                                                                                                                                                        | 4.1  | 91        |
| 20 | A Case of AML Characterized by a Novel t(4;15)(q31;q22) Translocation That Confers a<br>Growth-Stimulatory Response to Retinoid-Based Therapy. International Journal of Molecular Sciences,<br>2017, 18, 1492.                                                                                                                                                         | 4.1  | 10        |
| 21 | Acute Myeloid Leukaemia: New Targets and Therapies. International Journal of Molecular Sciences, 2017, 18, 2577.                                                                                                                                                                                                                                                       | 4.1  | 5         |
| 22 | Selective Expression of Flt3 within the Mouse Hematopoietic Stem Cell Compartment. International<br>Journal of Molecular Sciences, 2017, 18, 1037.                                                                                                                                                                                                                     | 4.1  | 41        |
| 23 | Detecting Gene Expression in Lymphoid Microenvironments by Laser Microdissection and Quantitative<br>RT-PCR. Methods in Molecular Biology, 2017, 1623, 21-36.                                                                                                                                                                                                          | 0.9  | 2         |
| 24 | The Use of 1α,25-Dihydroxyvitamin D3 as an Anticancer Agent. International Journal of Molecular<br>Sciences, 2016, 17, 729.                                                                                                                                                                                                                                            | 4.1  | 25        |
| 25 | Therapeutic use of selective synthetic ligands for retinoic acid receptors: a patent review. Expert<br>Opinion on Therapeutic Patents, 2016, 26, 957-971.                                                                                                                                                                                                              | 5.0  | 4         |
| 26 | Regulation of vitamin D receptor expression by retinoic acid receptor alpha in acute myeloid leukemia cells. Journal of Steroid Biochemistry and Molecular Biology, 2016, 159, 121-130.                                                                                                                                                                                | 2.5  | 25        |
| 27 | The Development and Growth of Tissues Derived from Cranial Neural Crest and Primitive Mesoderm Is<br>Dependent on the Ligation Status of Retinoic Acid Receptor Î <sup>3</sup> : Evidence That Retinoic Acid Receptor Î <sup>3</sup><br>Functions to Maintain Stem/Progenitor Cells in the Absence of Retinoic Acid. Stem Cells and<br>Development, 2015, 24, 507-519. | 2.1  | 13        |
| 28 | Is lineage decision-making restricted during tumoral reprograming of haematopoietic stem cells?.<br>Oncotarget, 2015, 6, 43326-43341.                                                                                                                                                                                                                                  | 1.8  | 9         |
| 29 | Versatility of stem and progenitor cells and the instructive actions of cytokines on hematopoiesis.<br>Critical Reviews in Clinical Laboratory Sciences, 2015, 52, 168-79.                                                                                                                                                                                             | 6.1  | 40        |
| 30 | The physiology and pharmacology of vitamin D. NursePrescribing, 2013, 11, 344-352.                                                                                                                                                                                                                                                                                     | 0.1  | 0         |
| 31 | The versatile landscape of haematopoiesis: Are leukaemia stem cells as versatile?. Critical Reviews in<br>Clinical Laboratory Sciences, 2012, 49, 232-240.                                                                                                                                                                                                             | 6.1  | 2         |
| 32 | Retinoid Differentiation Therapy for Common Types of Acute Myeloid Leukemia. Leukemia Research and<br>Treatment, 2012, 2012, 1-11.                                                                                                                                                                                                                                     | 2.0  | 25        |
| 33 | Versatility and nuances of the architecture of haematopoiesis – Implications for the nature of<br>leukaemia. Leukemia Research, 2012, 36, 14-22.                                                                                                                                                                                                                       | 0.8  | 6         |
| 34 | The versatility of haematopoietic stem cells: implications for leukaemia. Critical Reviews in Clinical<br>Laboratory Sciences, 2010, 47, 171-180.                                                                                                                                                                                                                      | 6.1  | 6         |
| 35 | Models of haematopoiesis: seeing the wood for the trees. Nature Reviews Immunology, 2009, 9, 293-300.                                                                                                                                                                                                                                                                  | 22.7 | 88        |
| 36 | Retinoid-mediated stimulation of steroid sulfatase activity in myeloid leukemic cell lines requires RARα<br>and RXR and involves the phosphoinositide 3-kinase and ERK-MAP kinase pathways. Journal of Cellular<br>Biochemistry, 2006, 97, 327-350.                                                                                                                    | 2.6  | 25        |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Synergistic growth inhibition of prostate cancer cells by 1α,25 Dihydroxyvitamin D3 and its<br>19-nor-hexafluoride analogs in combination with either sodium butyrate or trichostatin A. Oncogene,<br>2001, 20, 1860-1872. | 5.9 | 122       |
| 38 | STATHMIN EXPRESSION IS ASSOCIATED WITH THE ABILITY OF CELLS TO PROGRESS THROUGH THE CELL CYCLE. Biochemical Society Transactions, 1996, 24, 512S-512S.                                                                     | 3.4 | 0         |
| 39 | Down-regulation but not phosphorylation of stathmin is associated with induction of HL60 cell growth arrest and differentiation by physiological agents. FEBS Letters, 1995, 364, 309-313.                                 | 2.8 | 17        |
| 40 | Expression of a nuclear envelope protein recognized by the monoclonal antibody BU31 in lung tumours: Relationship to Ki-67 antigen expression. Journal of Pathology, 1994, 173, 89-96.                                     | 4.5 | 6         |
| 41 | 1α,25-Dihydroxyvitamin D3 promotes monocytopoiesis and suppresses granulocytopoiesis in cultures of normal human myeloid blast cells. Journal of Leukocyte Biology, 1994, 56, 124-132.                                     | 3.3 | 17        |
| 42 | Inositol Lipids and Phosphates in the Proliferation and Differentiation of Lymphocytes and Myeloid<br>Cells. Novartis Foundation Symposium, 1992, 164, 2-16.                                                               | 1.1 | 3         |
| 43 | Protein phosphorylation events and changes in inositol metabolism during HL60 cell differentiation.<br>Biochemical Society Transactions, 1991, 19, 315-320.                                                                | 3.4 | 3         |
| 44 | Maintenance of granulocyte-monocyte progenitor cells in liquid cultures of human foetal liver.<br>Journal of Cellular Physiology, 1984, 119, 227-233.                                                                      | 4.1 | 5         |