Geoffrey Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7573998/publications.pdf

Version: 2024-02-01

567281 526287 44 757 15 27 citations h-index g-index papers 44 44 44 911 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Synergistic growth inhibition of prostate cancer cells by $1\hat{l}\pm,25$ Dihydroxyvitamin D3 and its 19-nor-hexafluoride analogs in combination with either sodium butyrate or trichostatin A. Oncogene, 2001, 20, 1860-1872.	5.9	122
2	The Cytokine Flt3-Ligand in Normal and Malignant Hematopoiesis. International Journal of Molecular Sciences, 2017, 18, 1115.	4.1	91
3	Models of haematopoiesis: seeing the wood for the trees. Nature Reviews Immunology, 2009, 9, 293-300.	22.7	88
4	Selective Expression of Flt3 within the Mouse Hematopoietic Stem Cell Compartment. International Journal of Molecular Sciences, 2017, 18, 1037.	4.1	41
5	Versatility of stem and progenitor cells and the instructive actions of cytokines on hematopoiesis. Critical Reviews in Clinical Laboratory Sciences, 2015, 52, 168-79.	6.1	40
6	Retinoid-mediated stimulation of steroid sulfatase activity in myeloid leukemic cell lines requires RARÎ \pm and RXR and involves the phosphoinositide 3-kinase and ERK-MAP kinase pathways. Journal of Cellular Biochemistry, 2006, 97, 327-350.	2.6	25
7	Retinoid Differentiation Therapy for Common Types of Acute Myeloid Leukemia. Leukemia Research and Treatment, 2012, 2012, 1-11.	2.0	25
8	The Use of $1\hat{l}_{\pm}$,25-Dihydroxyvitamin D3 as an Anticancer Agent. International Journal of Molecular Sciences, 2016, 17, 729.	4.1	25
9	Regulation of vitamin D receptor expression by retinoic acid receptor alpha in acute myeloid leukemia cells. Journal of Steroid Biochemistry and Molecular Biology, 2016, 159, 121-130.	2.5	25
10	The changing face of hematopoiesis: a spectrum of options is available to stem cells. Immunology and Cell Biology, 2018, 96, 898-911.	2.3	23
11	Modeling the Hematopoietic Landscape. Frontiers in Cell and Developmental Biology, 2019, 7, 104.	3.7	21
12	Vitamins D: Relationship between Structure and Biological Activity. International Journal of Molecular Sciences, 2018, 19, 2119.	4.1	20
13	Retinoic acid receptor \hat{I}^3 is a therapeutically targetable driver of growth and survival in prostate cancer. Cancer Reports, 2020, 3, e1284.	1.4	19
14	$1\hat{1}\pm,25$ -Dihydroxyvitamin D3 promotes monocytopoiesis and suppresses granulocytopoiesis in cultures of normal human myeloid blast cells. Journal of Leukocyte Biology, 1994, 56, 124-132.	3.3	17
15	Down-regulation but not phosphorylation of stathmin is associated with induction of HL60 cell growth arrest and differentiation by physiological agents. FEBS Letters, 1995, 364, 309-313.	2.8	17
16	Antagonizing Retinoic Acid Receptors Increases Myeloid Cell Production by Cultured Human Hematopoietic Stem Cells. Archivum Immunologiae Et Therapiae Experimentalis, 2017, 65, 69-81.	2.3	17
17	Recycling of memory B cells between germinal center and lymph node subcapsular sinus supports affinity maturation to antigenic drift. Nature Communications, 2022, 13, 2460.	12.8	16
18	The Development and Growth of Tissues Derived from Cranial Neural Crest and Primitive Mesoderm Is Dependent on the Ligation Status of Retinoic Acid Receptor \hat{I}^3 : Evidence That Retinoic Acid Receptor \hat{I}^3 Functions to Maintain Stem/Progenitor Cells in the Absence of Retinoic Acid. Stem Cells and Development, 2015, 24, 507-519.	2.1	13

#	Article	IF	CITATIONS
19	The RARÎ ³ Oncogene: An Achilles Heel for Some Cancers. International Journal of Molecular Sciences, 2021, 22, 3632.	4.1	12
20	Oncogenes, Proto-Oncogenes, and Lineage Restriction of Cancer Stem Cells. International Journal of Molecular Sciences, 2021, 22, 9667.	4.1	12
21	A Case of AML Characterized by a Novel t(4;15)(q31;q22) Translocation That Confers a Growth-Stimulatory Response to Retinoid-Based Therapy. International Journal of Molecular Sciences, 2017, 18, 1492.	4.1	10
22	The Making of Hematopoiesis: Developmental Ancestry and Environmental Nurture. International Journal of Molecular Sciences, 2018, 19, 2122.	4.1	9
23	Is lineage decision-making restricted during tumoral reprograming of haematopoietic stem cells?. Oncotarget, 2015, 6, 43326-43341.	1.8	9
24	Expression of a nuclear envelope protein recognized by the monoclonal antibody BU31 in lung tumours: Relationship to Ki-67 antigen expression. Journal of Pathology, 1994, 173, 89-96.	4.5	6
25	The versatility of haematopoietic stem cells: implications for leukaemia. Critical Reviews in Clinical Laboratory Sciences, 2010, 47, 171-180.	6.1	6
26	Versatility and nuances of the architecture of haematopoiesis $\hat{a} \in \text{``Implications}$ for the nature of leukaemia. Leukemia Research, 2012, 36, 14-22.	0.8	6
27	Maintenance of granulocyte-monocyte progenitor cells in liquid cultures of human foetal liver. Journal of Cellular Physiology, 1984, 119, 227-233.	4.1	5
28	Acute Myeloid Leukaemia: New Targets and Therapies. International Journal of Molecular Sciences, 2017, 18, 2577.	4.1	5
29	Antagonizing RARÎ ³ Drives Necroptosis of Cancer Stem Cells. International Journal of Molecular Sciences, 2022, 23, 4814.	4.1	5
30	Therapeutic use of selective synthetic ligands for retinoic acid receptors: a patent review. Expert Opinion on Therapeutic Patents, 2016, 26, 957-971.	5.0	4
31	Oncogenes and the Origins of Leukemias. International Journal of Molecular Sciences, 2022, 23, 2293.	4.1	4
32	Protein phosphorylation events and changes in inositol metabolism during HL60 cell differentiation. Biochemical Society Transactions, 1991, 19, 315-320.	3.4	3
33	Inositol Lipids and Phosphates in the Proliferation and Differentiation of Lymphocytes and Myeloid Cells. Novartis Foundation Symposium, 1992, 164, 2-16.	1.1	3
34	The Social Norm of Hematopoietic Stem Cells and Dysregulation in Leukemia. International Journal of Molecular Sciences, 2022, 23, 5063.	4.1	3
35	The versatile landscape of haematopoiesis: Are leukaemia stem cells as versatile?. Critical Reviews in Clinical Laboratory Sciences, 2012, 49, 232-240.	6.1	2
36	Hematopoietic Stem Cells: Nature and Niche Nurture. Bioengineering, 2021, 8, 67.	3.5	2

#	Article	IF	CITATIONS
37	Detecting Gene Expression in Lymphoid Microenvironments by Laser Microdissection and Quantitative RT-PCR. Methods in Molecular Biology, 2017, 1623, 21-36.	0.9	2
38	Introduction and Classification of Leukemias. Methods in Molecular Biology, 2021, 2185, 3-23.	0.9	2
39	In Silico Prediction of the Metabolic Resistance of Vitamin D Analogs against CYP3A4 Metabolizing Enzyme. International Journal of Molecular Sciences, 2022, 23, 7845.	4.1	2
40	STATHMIN EXPRESSION IS ASSOCIATED WITH THE ABILITY OF CELLS TO PROGRESS THROUGH THE CELL CYCLE. Biochemical Society Transactions, 1996, 24, 512S-512S.	3.4	0
41	The physiology and pharmacology of vitamin D. NursePrescribing, 2013, 11, 344-352.	0.1	O
42	Cell Lineage Choice during Haematopoiesis: In Honour of Professor Antonius Rolink. International Journal of Molecular Sciences, 2018, 19, 2798.	4.1	0
43	Vitamin D and Haematopoiesis. Current Tissue Microenvironment Reports, 2020, 1, 1-11.	3.2	O
44	Novel Strategies in the Development of New Therapies, Drug Substances, and Drug Carriers Volume I. International Journal of Molecular Sciences, 2022, 23, 6635.	4.1	0