List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7573146/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Roomâ€Temperature, Highâ€6NR Upconversion Spectrometer in the 6–12µm Region. Laser and Photonics Reviews, 2021, 15, 2000443.	8.7	12
2	Non-Destructive Subsurface Inspection of Marine and Protective Coatings Using Near- and Mid-Infrared Optical Coherence Tomography. Coatings, 2021, 11, 877.	2.6	9
3	High-resolution mid-infrared optical coherence tomography with kHz line rate. Optics Letters, 2021, 46, 4558.	3.3	8
4	CW Direct Detection Lidar with a Large Dynamic Range of Wind Speed Sensing in a Remote and Spatially Confined Volume. Remote Sensing, 2021, 13, 3716.	4.0	2
5	Upconversion dark-field imaging with extended field of view at video frame rate. Applied Optics, 2020, 59, 2157.	1.8	4
6	Nonlinear optical vortex coronagraph. Optics Letters, 2020, 45, 1579.	3.3	6
7	Dual-band fluorosensor for discriminating non-eating from algae-eating zooplankton in aquatic environments. OSA Continuum, 2020, 3, 1730.	1.8	1
8	Investigation of autofluorescence in zooplankton for use in classification of larval salmon lice. Applied Optics, 2019, 58, 7022.	1.8	8
9	Parametric upconversion imaging and its applications. Advances in Optics and Photonics, 2019, 11, 952.	25.5	52
10	SHG (532  nm)-induced spontaneous parametric downconversion noise in 1064-nm-pumped IR upconversion detectors. Optics Letters, 2019, 44, 1670.	3.3	7
11	Upconversion detector for range-resolved DIAL measurement of atmospheric CH ₄ . Optics Express, 2018, 26, 3850.	3.4	24
12	Time-resolved infrared photoluminescence spectroscopy using parametric three-wave mixing with angle-tuned phase matching. Optics Letters, 2018, 43, 3001.	3.3	5
13	Mid-Infrared Imaging using Upconversion - Principles and Applications. , 2018, , .		1
14	Enhancing the detectivity of an upconversion single-photon detector by spatial filtering of upconverted parametric fluorescence. Optics Express, 2018, 26, 24712.	3.4	9
15	Point-Spread Function Engineering in Upconversion Imaging. , 2018, , .		1
16	S/N Ratio of an Upconversion Detector Dominated by Upconverted Spontaneous Parametric Down-conversion Noise. , 2018, , .		1
17	Investigation of Optical Signatures for Discriminating Salmon Lice from Other Species of Zooplankton. , 2018, , .		0
18	Investigation of mid-IR picosecond image upconversion. Proceedings of SPIE, 2017, , .	0.8	1

#	Article	IF	CITATIONS
19	Intracavity upconversion for IR absorption lidar: Comparison of linear and ring cavity designs. , 2017, ,		ο
20	GHz-bandwidth upconversion detector using a unidirectional ring cavity to reduce multilongitudinal mode pump effects. Optics Express, 2017, 25, 14783.	3.4	8
21	Upconversion imaging using short-wave infrared picosecond pulses. Optics Letters, 2017, 42, 579.	3.3	8
22	Upconversion Detector for Methane Atmospheric Sensor. , 2017, , .		0
23	Eye-safe diode laser Doppler lidar with a MEMS beam-scanner. Optics Express, 2016, 24, 1934.	3.4	24
24	Diode Laser Applications for Wind Energy. , 2016, , .		0
25	Development of semiconductor laser based Doppler lidars for wind-sensing applications. , 2015, , .		2
26	Impact of primary aberrations on coherent lidar performance. , 2014, , .		2
27	Influence of laser frequency noise on scanning Fabry-Perot interferometer based laser Doppler velocimetry. Proceedings of SPIE, 2014, , .	0.8	0
28	Diode laser lidar wind velocity sensor using a liquid-crystal retarder for non-mechanical beam-steering. Optics Express, 2014, 22, 26674.	3.4	9
29	Remote wind sensing with a CW diode laser lidar beyond the coherence regime. Optics Letters, 2014, 39, 4875.	3.3	6
30	Semiconductor Laser Lidar Wind Velocity Sensor for Turbine Control. , 2014, , .		0
31	Monostatic coaxial 15 μm laser Doppler velocimeter using a scanning Fabry-Perot interferometer. Optics Express, 2013, 21, 21105.	3.4	8
32	Investigation of spherical aberration effects on coherent lidar performance. Optics Express, 2013, 21, 25670.	3.4	10
33	Field performance of an all-semiconductor laser coherent Doppler lidar. Optics Letters, 2012, 37, 2277.	3.3	29
34	Comparative study of the performance of semiconductor laser based coherent Doppler lidars. Proceedings of SPIE, 2012, , .	0.8	4
35	Reduction of phase-induced intensity noise in a fiber-based coherent Doppler lidar using polarization control. Optics Express, 2010, 18, 5320.	3.4	16
36	Doppler wind lidar using a MOPA semiconductor laser at stable single-frequency operation. , 2009, , .		0

3

#	Article	IF	CITATIONS
37	Optical microassembly platform for constructing reconfigurable microenvironments for biomedical studies. Optics Express, 2009, 17, 6578.	3.4	108
38	Optically controlled three-dimensional assembly of microfabricated building blocks. Proceedings of SPIE, 2009, , .	0.8	1
39	Accurate quantitative phase imaging using generalized phase contrast. Optics Express, 2008, 16, 2740.	3.4	25
40	Photon-efficient grey-level image projection by the generalized phase contrast method. New Journal of Physics, 2007, 9, 132-132.	2.9	15
41	Three-dimensional intensity distribution of helico-conical optical beams. , 2007, , .		8
42	Encoding arbitrary grey-level optical landscapes for trapping and manipulation using GPC. Proceedings of SPIE, 2007, , .	0.8	0
43	Track and trap in 3D. , 2007, , .		Ο
44	Single-SLM 3D interactive micromanipulation based on the generalized phase contrast (GPC) approach. , 2007, , .		0
45	Vision feedback driven automated assembly of photopolymerized structures by parallel optical trapping and manipulation. Proceedings of SPIE, 2007, , .	0.8	Ο
46	Laser projection using generalized phase contrast. Optics Letters, 2007, 32, 3281.	3.3	25
47	Computerized "drag-and-drop―alignment of GPC-based optical micromanipulation system. Optics Express, 2007, 15, 1923.	3.4	14
48	Fully automated beam-alignment and single stroke guided manual alignment of counter-propagating multi-beam based optical micromanipulation systems. Optics Express, 2007, 15, 7968.	3.4	21
49	2D optical manipulation and assembly of shape-complementary planar microstructures. Optics Express, 2007, 15, 9009.	3.4	60
50	Generalized phase contrast matched to Gaussian illumination. Optics Express, 2007, 15, 11971.	3.4	31
51	High-speed phase modulation using the RPC method with a digital micromirror-array device. Optics Express, 2006, 14, 5588.	3.4	10
52	Three-dimensional forces in GPC-based counterpropagating-beam traps. Optics Express, 2006, 14, 5812.	3.4	51
53	Autonomous and 3D real-time multi-beam manipulation in a microfluidic environment. Optics Express, 2006, 14, 12199.	3.4	45
54	GPC-based optical micromanipulation in 3D real-time using a single spatial light modulator. Optics Express, 2006, 14, 13107.	3.4	37

#	Article	IF	CITATIONS
55	Optically driven microtools fabricated by UV lithography and RIE. , 2006, 6131, 77.		ο
56	Manipulation of yeast cells in a microfluidic channel using the GPC-based optical trapping system. , 2006, , .		0
57	GPC-based counterpropagating-beam traps with unequally sized intensity profiles. , 2006, , .		0
58	Sorting particles in a microfluidic system using SLM-reconfigurable intensity patterns. , 2006, , .		2
59	Optical 3D Manipulation and Observation in Real-Time. Journal of Robotics and Mechatronics, 2006, 18, 692-697.	1.0	7
60	Optical micromanipulation of mixed yeast cell populations for analyzing growth behavior. , 2005, , .		0
61	Four-dimensional multi-beam optical manipulation based on the Generalized Phase Contrast method. Proceedings of SPIE, 2005, 5736, 30.	0.8	0
62	Interactive optical trapping shows that confinement is a determinant of growth in a mixed yeast culture. FEMS Microbiology Letters, 2005, 245, 155-159.	1.8	86
63	Four-dimensional optical manipulation of colloidal particles. Applied Physics Letters, 2005, 86, 074103.	3.3	96
64	Dynamically reconfigurable optical lattices. Optics Express, 2005, 13, 1384.	3.4	49
65	Helico-conical optical beams: a product of helical and conical phase fronts. Optics Express, 2005, 13, 1749.	3.4	108
66	Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes. Optics Express, 2005, 13, 2852.	3.4	59
67	Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps. Optics Express, 2005, 13, 6899.	3.4	112
68	Biophotonics. Optics and Photonics News, 2005, 16, 18.	0.5	4
69	Dynamic array of dark optical traps. Applied Physics Letters, 2004, 84, 323-325.	3.3	94
70	Phase-only optical decryption in a planar integrated micro-optics system. Optical Engineering, 2004, 43, 2223.	1.0	20
71	Decrypting binary phase patterns by amplitude. Optical Engineering, 2004, 43, 2250.	1.0	5
72	Programmable complex field coupling to high-order guided modes of micro-structured fibres. Optics Communications, 2004, 232, 229-237.	2.1	12

#	Article	IF	CITATIONS
73	Dynamic formation of optically trapped microstructure arrays for biosensor applications. Biosensors and Bioelectronics, 2004, 19, 1439-1444.	10.1	27
74	Real-time interactive optical micromanipulation of a mixture of high- and low-index particles. Optics Express, 2004, 12, 1417.	3.4	76
75	Real-time three-dimensional optical micromanipulation of multiple particles and living cells. Optics Letters, 2004, 29, 2270.	3.3	127
76	Biophotonics. Optics and Photonics News, 2004, 15, 19.	0.5	1
77	State of the art in generalized phase-contrast-driven optical micromanipulation. , 2004, , .		Ο
78	Far-field technique for tunable coupling to high-order guided modes of photonic crystal fibers. , 2004, , .		0
79	Multiple doughnut beams for trapping and dynamic manipulation of low-index microstructures. , 2004, , .		Ο
80	Array of optical tweezers with individual beam-steering and polarization control. , 2004, , .		1
81	Integrated miniaturized laboratories using dynamic multiple-beam optical manipulators. , 2004, 5514, 48.		Ο
82	Multiple dual-beam traps for three-dimensional position control of particles. , 2004, , .		0
83	Dynamic 3D particle position control in generalized phase contrast-based optical trap arrays. , 2004, , .		О
84	Computer-controlled orientation of multiple optically-trapped microscopic particles. Microelectronic Engineering, 2003, 67-68, 872-878.	2.4	14
85	Spatial light modulator-controlled alignment and spinning of birefringent particles optically trapped in an array. Applied Optics, 2003, 42, 5107.	2.1	19
86	Comment on Interferometric phase-only optical encryption system that uses a reference wave. Optics Letters, 2003, 28, 1075.	3.3	6
87	Microscopy: Dispersion-Free Ultrahigh-Resolution Optical Coherence. Optics and Photonics News, 2003, 14, 20.	0.5	3
88	Shack-Hartmann multiple-beam optical tweezers. Optics Express, 2003, 11, 208.	3.4	36
89	Controllable coupling to the second-order mode of a photonic crystal fiber. , 2003, 5260, 261.		0
90	Interactive light-powered lab-on-a-chip: simultaneous actuation of microstructures by optical		2

manipulation., 2003,,.

#	Article	IF	CITATIONS
91	Vision-guided manipulation of colloidal structures. , 2003, 5106, 46.		0
92	Formation and dynamic manipulation of an assembly of micro- and nano-scale particles. , 2002, , .		0
93	Direction-sensitive subwavelength displacement measurements at diffraction-limited spatial resolution. Optics Letters, 2002, 27, 25.	3.3	3
94	Interactive light-driven and parallel manipulation of inhomogeneous particles. Optics Express, 2002, 10, 1550.	3.4	122
95	Optical-feedback semiconductor laser Michelson interferometer for displacement measurements with directional discrimination. Applied Optics, 2001, 40, 506.	2.1	13