List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/757306/publications.pdf Version: 2024-02-01

DETED HOOD

#	Article	IF	CITATIONS
1	Airborne survey of trace gases and aerosols over the Southern Baltic Sea: from clean marine boundary layer to shipping corridor effect. Tellus, Series B: Chemical and Physical Meteorology, 2022, 72, 1695349.	1.6	7
2	Redistribution of total reactive nitrogen in the lowermost Arctic stratosphere during the cold winter 2015/2016. Atmospheric Chemistry and Physics, 2022, 22, 3631-3654.	4.9	3
3	In situ observations of CH ₂ Cl ₂ and CHCl ₃ show efficient transport pathways for very short-lived species into the lower stratosphere via the Asian and the North American summer monsoon.	4.9	9
4	Contribution of Asian emissions to upper tropospheric CO over the remote Pacific. Atmospheric Chemistry and Physics, 2022, 22, 7193-7206.	4.9	2
5	Aircraft-based observation of meteoric material in lower-stratospheric aerosol particles between 15 and 68° N. Atmospheric Chemistry and Physics, 2021, 21, 989-1013.	4.9	18
6	SOUTHTRAC-GW: An Airborne Field Campaign to Explore Gravity Wave Dynamics at the World's Strongest Hotspot. Bulletin of the American Meteorological Society, 2021, 102, E871-E893.	3.3	36
7	Chemical composition and source attribution of sub-micrometre aerosol particles in the summertime Arctic lower troposphere. Atmospheric Chemistry and Physics, 2021, 21, 6509-6539.	4.9	5
8	On the occurrence of strong vertical wind shear in the tropopause region: a 10-year ERA5 northern hemispheric study. Weather and Climate Dynamics, 2021, 2, 631-651.	3.5	4
9	Organic and inorganic bromine measurements around the extratropical tropopause and lowermost stratosphere: insights into the transport pathways and total bromine. Atmospheric Chemistry and Physics, 2021, 21, 15375-15407.	4.9	6
10	Comparison of inorganic chlorine in the Antarctic and Arctic lowermost stratosphere by separate late winter aircraft measurements. Atmospheric Chemistry and Physics, 2021, 21, 17225-17241.	4.9	4
11	Vertical profiles of light absorption and scattering associated with black carbon particle fractions in the springtime Arctic above 79° N. Atmospheric Chemistry and Physics, 2020, 20, 10545-10563.	4.9	9
12	A convolution of observational and model data to estimate age of air spectra in the northern hemispheric lower stratosphere. Atmospheric Chemistry and Physics, 2020, 20, 8763-8785.	4.9	11
13	Chlorine partitioning in the lowermost Arctic vortex during the cold winter 2015/2016. Atmospheric Chemistry and Physics, 2019, 19, 10757-10772.	4.9	8
14	High Arctic aircraft measurements characterising black carbon vertical variability in spring and summer. Atmospheric Chemistry and Physics, 2019, 19, 2361-2384.	4.9	42
15	Concentrations, composition, and sources of ice-nucleating particles in the Canadian High Arctic during springÂ2016. Atmospheric Chemistry and Physics, 2019, 19, 3007-3024.	4.9	24
16	Composite analysis of the tropopause inversion layer in extratropical baroclinic waves. Atmospheric Chemistry and Physics, 2019, 19, 6621-6636.	4.9	6
17	Soil HONO emissions at high moisture content are driven by microbial nitrate reduction to nitrite: tackling the HONO puzzle. ISME Journal, 2019, 13, 1688-1699.	9.8	57
18	Overview paper: New insights into aerosol and climate in the Arctic. Atmospheric Chemistry and Physics, 2019, 19, 2527-2560.	4.9	134

#	Article	IF	CITATIONS
19	Evidence of small-scale quasi-isentropic mixing in ridges of extratropical baroclinic waves. Atmospheric Chemistry and Physics, 2019, 19, 12607-12630.	4.9	23
20	Characterization of transport regimes and the polar dome during Arctic spring and summer using in situ aircraft measurements. Atmospheric Chemistry and Physics, 2019, 19, 15049-15071.	4.9	25
21	The Arctic Cloud Puzzle: Using ACLOUD/PASCAL Multiplatform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification. Bulletin of the American Meteorological Society, 2019, 100, 841-871.	3.3	145
22	Water vapor increase in the lower stratosphere of the Northern Hemisphere due to the Asian monsoon anticyclone observed during the TACTS/ESMVal campaigns. Atmospheric Chemistry and Physics, 2018, 18, 2973-2983.	4.9	22
23	Mixing and ageing in the polar lower stratosphere in winter 2015–2016. Atmospheric Chemistry and Physics, 2018, 18, 6057-6073.	4.9	17
24	Evidence for marine biogenic influence on summertime Arctic aerosol. Geophysical Research Letters, 2017, 44, 6460-6470.	4.0	56
25	Depletion of ozone and reservoir species of chlorine and nitrogen oxide in the lower Antarctic polar vortex measured from aircraft. Geophysical Research Letters, 2017, 44, 6440-6449.	4.0	12
26	Trace gas composition in the Asian summer monsoon anticyclone: a case study based on aircraft observations and model simulations. Atmospheric Chemistry and Physics, 2017, 17, 6091-6111.	4.9	12
27	Particulate trimethylamine in the summertime Canadian high Arctic lower troposphere. Atmospheric Chemistry and Physics, 2017, 17, 13747-13766.	4.9	49
28	Observed versus simulated mountain waves over Scandinavia – improvement of vertical winds, energy and momentum fluxes by enhanced model resolution?. Atmospheric Chemistry and Physics, 2017, 17, 4031-4052.	4.9	29
29	Summertime observations of elevated levels of ultrafine particles in the high Arctic marine boundary layer. Atmospheric Chemistry and Physics, 2017, 17, 5515-5535.	4.9	62
30	Investigation of the mixing layer height derived from ceilometer measurements in the Kathmandu Valley and implications for local air quality. Atmospheric Chemistry and Physics, 2017, 17, 8157-8176.	4.9	46
31	The novel HALO mini-DOAS instrument: inferring trace gas concentrations from airborne UV/visible limb spectroscopy under all skies using the scaling method. Atmospheric Measurement Techniques, 2017, 10, 4209-4234.	3.1	13
32	A tandem approach for collocated measurements of microphysical and radiative cirrus properties. Atmospheric Measurement Techniques, 2017, 10, 3485-3498.	3.1	2
33	Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmospheric Research, 2016, 182, 346-376.	4.1	609
34	Effects of 20–100â€ ⁻ nm particles on liquid clouds in the clean summertime Arctic. Atmospheric Chemistry and Physics, 2016, 16, 11107-11124.	4.9	94
35	Ship emissions measurement in the Arctic by plume intercepts of the Canadian Coast Guard icebreaker <i>Amundsen</i> from the <i>Polar 6</i> aircraft platform. Atmospheric Chemistry and Physics, 2016, 16, 7899-7916.	4.9	32
36	Long-range transport pathways of tropospheric source gases originating in Asia into the northern lower stratosphere during the Asian monsoon season 2012. Atmospheric Chemistry and Physics, 2016, 16, 15301-15325.	4.9	57

#	Article	IF	CITATIONS
37	Impact of the Asian monsoon on the extratropical lower stratosphere: trace gas observations during TACTS over Europe 2012. Atmospheric Chemistry and Physics, 2016, 16, 10573-10589.	4.9	34
38	Chemical and meteorological influences on the lifetime of NO ₃ at a semi-rural mountain site during PARADE. Atmospheric Chemistry and Physics, 2016, 16, 4867-4883.	4.9	51
39	The tropopause inversion layer in baroclinic life-cycle experiments: the role of diabatic processes. Atmospheric Chemistry and Physics, 2016, 16, 541-560.	4.9	19
40	Airborne observation of mixing across the entrainment zone during PARADE 2011. Atmospheric Chemistry and Physics, 2016, 16, 6011-6025.	4.9	11
41	Growth of nucleation mode particles in the summertime Arctic: a case study. Atmospheric Chemistry and Physics, 2016, 16, 7663-7679.	4.9	111
42	Transport of Antarctic stratospheric strongly dehydrated air into the troposphere observed during the HALO-ESMVal campaign 2012. Atmospheric Chemistry and Physics, 2015, 15, 9143-9158.	4.9	14
43	The impact of overshooting deep convection on local transport and mixing in the tropical upper troposphere/lower stratosphere (UTLS). Atmospheric Chemistry and Physics, 2015, 15, 6467-6486.	4.9	38
44	In situ detection of stratosphereâ€ŧroposphere exchange of cirrus particles in the midlatitudes. Geophysical Research Letters, 2015, 42, 949-955.	4.0	23
45	Tropical troposphere to stratosphere transport of carbon monoxide and long-lived trace species in the Chemical Lagrangian Model of the Stratosphere (CLaMS). Geoscientific Model Development, 2014, 7, 2895-2916.	3.6	104
46	Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) scientific objectives. Atmospheric Measurement Techniques, 2014, 7, 1915-1928.	3.1	85
47	Can inertiaâ€gravity waves persistently alter the tropopause inversion layer?. Geophysical Research Letters, 2014, 41, 7822-7829.	4.0	22
48	Pollution patterns in the upper troposphere over Europe and Asia observed by CARIBIC. Atmospheric Environment, 2014, 96, 245-256.	4.1	4
49	A quantitative analysis of stratospheric HCl, HNO ₃ , and O ₃ in the tropopause region near the subtropical jet. Geophysical Research Letters, 2014, 41, 3315-3321.	4.0	18
50	Fast transport from Southeast Asia boundary layer sources to northern Europe: rapid uplift in typhoons and eastward eddy shedding of the Asian monsoon anticyclone. Atmospheric Chemistry and Physics, 2014, 14, 12745-12762.	4.9	97
51	Profile information on CO from SCIAMACHY observations using cloud slicing and comparison with model simulations. Atmospheric Chemistry and Physics, 2014, 14, 1717-1732.	4.9	9
52	Technical Note: Temporal change in averaging kernels as a source of uncertainty in trend estimates of carbon monoxide retrieved from MOPITT. Atmospheric Chemistry and Physics, 2013, 13, 11307-11316.	4.9	18
53	THE EXTRATROPICAL UPPER TROPOSPHERE AND LOWER STRATOSPHERE. Reviews of Geophysics, 2011, 49, .	23.0	284
54	On the structural changes in the Brewer-Dobson circulation after 2000. Atmospheric Chemistry and Physics, 2011, 11, 3937-3948.	4.9	92

#	Article	IF	CITATIONS
55	In situ measurements of tropical cloud properties in the West African Monsoon: upper tropospheric ice clouds, Mesoscale Convective System outflow, and subvisual cirrus. Atmospheric Chemistry and Physics, 2011, 11, 5569-5590.	4.9	59
56	Application of SCIAMACHY and MOPITT CO total column measurements to evaluate model results over biomass burning regions and Eastern China. Atmospheric Chemistry and Physics, 2011, 11, 6083-6114.	4.9	37
57	Radiative forcing due to changes in ozone and methane caused by the transport sector. Atmospheric Environment, 2011, 45, 387-394.	4.1	87
58	A quasi chemistry-transport model mode for EMAC. Geoscientific Model Development, 2011, 4, 195-206.	3.6	47
59	Assessing the effect of marine isoprene and ship emissions on ozone, using modelling and measurements from the South Atlantic Ocean. Environmental Chemistry, 2010, 7, 171.	1.5	26
60	Transport timescales and tracer properties in the extratropical UTLS. Atmospheric Chemistry and Physics, 2010, 10, 7929-7944.	4.9	44
61	Transport impacts on atmosphere and climate: Land transport. Atmospheric Environment, 2010, 44, 4772-4816.	4.1	285
62	On the attribution of contributions of atmospheric trace gases to emissions in atmospheric model applications. Geoscientific Model Development, 2010, 3, 487-499.	3.6	65
63	An aircraftâ€based upper troposphere lower stratosphere O ₃ , CO, and H ₂ O climatology for the Northern Hemisphere. Journal of Geophysical Research, 2010, 115, .	3.3	46
64	Multimodel assessment of the upper troposphere and lower stratosphere: Extratropics. Journal of Geophysical Research, 2010, 115, .	3.3	67
65	Correction to "An aircraft-based upper troposphere lower stratosphere O3, CO, and H2O climatology for the Northern Hemisphereâ€: Journal of Geophysical Research, 2010, 115, .	3.3	3
66	Severe ozone air pollution in the Persian Gulf region. Atmospheric Chemistry and Physics, 2009, 9, 1393-1406.	4.9	105
67	The impact of traffic emissions on atmospheric ozone and OH: results from QUANTIFY. Atmospheric Chemistry and Physics, 2009, 9, 3113-3136.	4.9	143
68	Satellite measurements of formaldehyde linked to shipping emissions. Atmospheric Chemistry and Physics, 2009, 9, 8223-8234.	4.9	36
69	Quantifying transport into the lowermost stratosphere using simultaneous in-situ measurements of SF ₆ and CO ₂ . Atmospheric Chemistry and Physics, 2009, 9, 5905-5919.	4.9	94
70	Ship emitted NO ₂ in the Indian Ocean: comparison of model results with satellite data. Atmospheric Chemistry and Physics, 2009, 9, 7289-7301.	4.9	47
71	Model evaluation of CO ₂ and SF ₆ in the extratropical UT/LS region. Journal of Geophysical Research, 2008, 113, .	3.3	21
72	Airborne in-situ measurements of vertical, seasonal and latitudinal distributions of carbon dioxide over Europe. Atmospheric Chemistry and Physics, 2008, 8, 6395-6403.	4.9	32

#	Article	IF	CITATIONS
73	Validation of ACE-FTS satellite data in the upper troposphere/lower stratosphere (UTLS) using non-coincident measurements. Atmospheric Chemistry and Physics, 2008, 8, 1483-1499.	4.9	57
74	Stratospheric dryness: model simulations and satellite observations. Atmospheric Chemistry and Physics, 2007, 7, 1313-1332.	4.9	109
75	Observationally derived transport diagnostics for the lowermost stratosphere and their application to the GMI chemistry and transport model. Atmospheric Chemistry and Physics, 2007, 7, 2435-2445.	4.9	167
76	Measurements of NO, NO _y , N ₂ O, and O ₃ during SPURT: implications for transport and chemistry in the lowermost stratosphere. Atmospheric Chemistry and Physics, 2006, 6, 1331-1350.	4.9	89
77	The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere. Atmospheric Chemistry and Physics, 2006, 6, 5067-5104.	4.9	528
78	Highly resolved observations of trace gases in the lowermost stratosphere and upper troposphere from the Spurt project: an overview. Atmospheric Chemistry and Physics, 2006, 6, 283-301.	4.9	86
79	Model simulations and aircraft measurements of vertical, seasonal and latitudinal O ₃ and CO distributions over Europe. Atmospheric Chemistry and Physics, 2006, 6, 339-348.	4.9	25
80	Tropical and extratropical tropospheric air in the lowermost stratosphere over Europe: A CO-based budget. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	53
81	Determination of eddy diffusivity in the lowermost stratosphere. Geophysical Research Letters, 2005, 32, .	4.0	17
82	Seasonality and extent of extratropical TST derived from in-situ CO measurements during SPURT. Atmospheric Chemistry and Physics, 2004, 4, 1427-1442.	4.9	152
83	Tracing troposphere-to-stratosphere transport above a mid-latitude deep convective system. Atmospheric Chemistry and Physics, 2004, 4, 741-756.	4.9	68
84	Evolution of aerosol properties over the rain forest in Surinam, South America, observed from aircraft during the LBA-CLAIRE 98 experiment. Journal of Geophysical Research, 2003, 108, .	3.3	42
85	Reactive organic species in the northern extratropical lowermost stratosphere: Seasonal variability and implications for OH. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	12
86	Seasonal variations of a mixing layer in the lowermost stratosphere as identified by the CO-O3correlation from in situ measurements. Journal of Geophysical Research, 2002, 107, ACL 1-1-ACL 1-11.	3.3	169
87	Synoptic tracer gradients in the upper troposphere over central Canada during the Stratosphere-Troposphere Experiments by Aircraft Measurements 1998 summer campaign. Journal of Geophysical Research, 2002, 107, ACH 5-1.	3.3	20
88	Detection of lightning-produced NO in the midlatitude upper troposphere during STREAM 1998. Journal of Geophysical Research, 2001, 106, 27777-27785.	3.3	19
89	Transport of biomass burning smoke to the upper troposphere by deep convection in the equatorial region. Geophysical Research Letters, 2001, 28, 951-954.	4.0	234
90	Title is missing!. Journal of Atmospheric Chemistry, 2001, 38, 167-185.	3.2	111

#	Article	IF	CITATIONS
91	Title is missing!. Journal of Atmospheric Chemistry, 2001, 38, 115-132.	3.2	53
92	The influence of the tropical rainforest on atmospheric CO and CO2 as measured by aircraft over Surinam, South America. Chemosphere, 2001, 3, 157-170.	1.2	14
93	High spatial and temporal resolution measurements of primary organics and their oxidation products over the tropical forests of Surinam. Atmospheric Environment, 2000, 34, 1161-1165.	4.1	111
94	Variability-lifetime relationship for organic trace gases: A novel aid to compound identification and estimation of HO concentrations. Journal of Geophysical Research, 2000, 105, 20473-20486.	3.3	42
95	Aircraft measurements of tracer correlations in the Arctic subvortex region during the Polar Stratospheric Aerosol Experiment (POLSTAR). Journal of Geophysical Research, 2000, 105, 24305-24313.	3.3	11
96	Tracer correlations in the northern high latitude lowermost stratosphere: Influence of cross-tropopause mass exchange. Geophysical Research Letters, 2000, 27, 97-100.	4.0	138
97	TDLAS Trace Gas Measurements within Mountain Waves Over Northern Scandinavia during the POLSTAR Campaign in Early 1997. Geophysical Research Letters, 1999, 26, 303-306.	4.0	12
98	The temporal evolution of the ratio HNO3/NOyin the Arctic lower stratosphere from January to March 1997. Geophysical Research Letters, 1999, 26, 1125-1128.	4.0	18
99	Particle production in the lowermost stratosphere by convective lifting of the tropopause. Journal of Geophysical Research, 1999, 104, 23935-23940.	3.3	23
100	<title>Intercomparison of airborne N<formula><inf><roman>2</roman></inf></formula>O measurements using tunable diode laser absorption spectroscopy and in-situ gas chromatography</title> ., 1999, 3758, 109.		2
101	TRISTAR - a tracer in situ TDLAS for atmospheric research. Applied Physics B: Lasers and Optics, 1998, 67, 411-417.	2.2	79