Lyubov A Frolova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7571888/publications.pdf

Version: 2024-02-01

50 papers

1,930 citations

236925 25 h-index 254184 43 g-index

50 all docs

50 docs citations

50 times ranked

2999 citing authors

#	Article	IF	CITATIONS
1	Molecular Engineering of Polytriarylamine-Based Hole-Transport Materials for p–i–n Perovskite Solar Cells: Methyl Groups Matter. ACS Applied Energy Materials, 2022, 5, 5388-5394.	5.1	6
2	Design Principles for Organic Small Molecule Hole-Transport Materials for Perovskite Solar Cells: Film Morphology Matters. ACS Applied Energy Materials, 2022, 5, 5395-5403.	5.1	11
3	Nanoscale Visualization of Photodegradation Dynamics of MAPbl ₃ Perovskite Films. Journal of Physical Chemistry Letters, 2022, 13, 2744-2749.	4.6	11
4	Improving stability of perovskite solar cells using fullerene-polymer composite electron transport layer. Synthetic Metals, 2022, 286, 117028.	3.9	9
5	Novel benzodithiophene-TTBTBTT copolymers: synthesis and investigation in organic and perovskite solar cells. Sustainable Energy and Fuels, 2022, 6, 3542-3550.	4.9	3
6	Oxidative polymerization of triarylamines: a promising route to low-cost hole transport materials for efficient perovskite solar cells. Sustainable Energy and Fuels, 2022, 6, 3485-3489.	4.9	2
7	Novel functionalized indigo derivatives for organic electronics. Dyes and Pigments, 2021, 186, 108966.	3.7	14
8	XPS spectra as a tool for studying photochemical and thermal degradation in APbX3 hybrid halide perovskites. Nano Energy, 2021, 79, 105421.	16.0	50
9	Spectacular Enhancement of the Thermal and Photochemical Stability of MAPbI3 Perovskite Films Using Functionalized Tetraazaadamantane as a Molecular Modifier. Energies, 2021, 14, 669.	3.1	7
10	Reversible Pb ²⁺ /Pb ⁰ and I ^{â^'} /I ₃ ^{â^'} Redox Chemistry Drives the Lightâ€Induced Phase Segregation in Allâ€Inorganic Mixed Halide Perovskites. Advanced Energy Materials, 2021, 11, 2002934.	19.5	56
11	When iodide meets bromide: Halide mixing facilitates the light-induced decomposition of perovskite absorber films. Nano Energy, 2021, 86, 106082.	16.0	12
12	Temperature Dynamics of MAPbI3 and PbI2 Photolysis: Revealing the Interplay between Light and Heat, Two Enemies of Perovskite Photovoltaics. Journal of Physical Chemistry Letters, 2021, 12, 4362-4367.	4.6	10
13	Influence of Oxygen Ion Migration from Substrates on Photochemical Degradation of CH3NH3PbI3 Hybrid Perovskite. Energies, 2021, 14, 5062.	3.1	1
14	Exploring CsPbI3 – FAI alloys: Introducing low-dimensional Cs2FAPb2I7 absorber for efficient and stable perovskite solar cells. Chemical Engineering Journal, 2021, 426, 131754.	12.7	8
15	Partial Substitution of Pb ²⁺ in CsPbl ₃ as an Efficient Strategy To Design Fairly Stable All-Inorganic Perovskite Formulations. ACS Applied Materials & Samp; Interfaces, 2021, 13, 5184-5194.	8.0	21
16	Conjugated push-pull type oligomer as a new electron transport material for improved stability p-i-n perovskite solar cells. Synthetic Metals, 2021, 281, 116921.	3.9	1
17	Light or Heat: What Is Killing Lead Halide Perovskites under Solar Cell Operation Conditions?. Journal of Physical Chemistry Letters, 2020, 11, 333-339.	4.6	85
18	Efficient and Stable MAPbl ₃ -Based Perovskite Solar Cells Using Polyvinylcarbazole Passivation. Journal of Physical Chemistry Letters, 2020, 11, 6772-6778.	4.6	48

#	Article	IF	CITATIONS
19	Film Deposition Techniques Impact the Defect Density and Photostability of MAPbl ₃ Perovskite Films. Journal of Physical Chemistry C, 2020, 124, 21378-21385.	3.1	22
20	Incorporation of Vanadium(V) Oxide in Hybrid Hole Transport Layer Enables Long-term Operational Stability of Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2020, 11, 5563-5568.	4.6	28
21	Unravelling the Material Composition Effects on the Gamma Ray Stability of Lead Halide Perovskite Solar Cells: MAPbl ₃ Breaks the Records. Journal of Physical Chemistry Letters, 2020, 11, 2630-2636.	4.6	35
22	Memory devices based on novel alkyl viologen halobismuthate(<scp>iii</scp>) complexes. Chemical Communications, 2020, 56, 9162-9165.	4.1	13
23	Intrinsic thermal decomposition pathways of lead halide perovskites APbX3. Solar Energy Materials and Solar Cells, 2020, 213, 110559.	6.2	45
24	A new polytriarylamine derivative for dopant-free high-efficiency perovskite solar cells. Sustainable Energy and Fuels, 2019, 3, 2627-2632.	4.9	32
25	Polymeric iodobismuthates {[Bi ₃ 1 ₁₀]} and {[Bil ₄]} with N-heterocyclic cations: promising perovskite-like photoactive materials for electronic devices. Journal of Materials Chemistry A, 2019, 7, 5957-5966.	10.3	53
26	Molecular structure–electrical performance relationship for OFET-based memory elements comprising unsymmetrical photochromic diarylethenes. Journal of Materials Chemistry C, 2019, 7, 6889-6894.	5.5	21
27	Efficient and stable all-inorganic perovskite solar cells based on nonstoichiometric Cs _x Pbl ₂ Br _x (<i>x</i> > 1) alloys. Journal of Materials Chemistry C, 2019, 7, 5314-5323.	5.5	30
28	Hybrid Solar Cells: Antimony (V) Complex Halides: Leadâ€Free Perovskiteâ€Like Materials for Hybrid Solar Cells (Adv. Energy Mater. 6/2018). Advanced Energy Materials, 2018, 8, 1870026.	19.5	1
29	Antimony (V) Complex Halides: Leadâ€Free Perovskiteâ€Like Materials for Hybrid Solar Cells. Advanced Energy Materials, 2018, 8, 1701140.	19.5	72
30	Probing the Intrinsic Thermal and Photochemical Stability of Hybrid and Inorganic Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2017, 8, 1211-1218.	4.6	216
31	Reversible and Irreversible Electric Field Induced Morphological and Interfacial Transformations of Hybrid Lead Iodide Perovskites. ACS Applied Materials & Samp; Interfaces, 2017, 9, 33478-33483.	8.0	27
32	Effect of Electronâ€Transport Material on Lightâ€Induced Degradation of Inverted Planar Junction Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700476.	19.5	103
33	Exploring the Photovoltaic Performance of All-Inorganic Ag ₂ Pbl ₄ /Pbl ₂ Blends. Journal of Physical Chemistry Letters, 2017, 8, 1651-1656.	4.6	25
34	Unprecedented thermal condensation of tetracyanocyclopropanes to triazaphenalenes: a facile route for the design of novel materials for electronic applications. Chemical Communications, 2017, 53, 4830-4833.	4.1	1
35	Dibenzoindigo: A Natureâ€Inspired Biocompatible Semiconductor Material for Sustainable Organic Electronics. Advanced Optical Materials, 2017, 5, 1601033.	7.3	9
36	Highly Efficient All-Inorganic Planar Heterojunction Perovskite Solar Cells Produced by Thermal Coevaporation of CsI and PbI ₂ . Journal of Physical Chemistry Letters, 2017, 8, 67-72.	4.6	269

#	Article	IF	CITATIONS
37	Spatially-resolved nanoscale measurements of grain boundary enhanced photocurrent in inorganic CsPbBr3 perovskite films. Solar Energy Materials and Solar Cells, 2017, 171, 205-212.	6.2	38
38	OFETâ€Based Memory Devices Operating via Optically and Electrically Modulated Charge Separation between the Semiconductor and 1,2â€bis(Hetaryl)ethene Dielectric Layers. Advanced Electronic Materials, 2016, 2, 1500219.	5.1	28
39	Hydrazinium-loaded perovskite solar cells with enhanced performance and stability. Journal of Materials Chemistry A, 2016, 4, 18378-18382.	10.3	34
40	Exploring the Effects of the Pb ²⁺ Substitution in MAPbI ₃ on the Photovoltaic Performance of the Hybrid Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 4353-4357.	4.6	79
41	Design of optical memory elements based on n-type organic field-effect transistors comprising a light-sensitive spirooxazine layer. Mendeleev Communications, 2016, 26, 26-28.	1.6	10
42	Photoswitchable organic field-effect transistors and memory elements comprising an interfacial photochromic layer. Chemical Communications, 2015, 51, 6130-6132.	4.1	60
43	Design of (X-DADAD) < sub > <i>n < /i> < /sub > Type Copolymers for Efficient Bulk Heterojunction Organic Solar Cells. Macromolecules, 2015, 48, 2013-2021.</i>	4.8	33
44	Design of rewritable and read-only non-volatile optical memory elements using photochromic spiropyran-based salts as light-sensitive materials. Journal of Materials Chemistry C, 2015, 3, 11675-11680.	5.5	68
45	The chemical origin of the p-type and n-type doping effects in the hybrid methylammonium–lead iodide (MAPbI ₃) perovskite solar cells. Chemical Communications, 2015, 51, 14917-14920.	4.1	122
46	ESR spectroscopy for monitoring the photochemical and thermal degradation of conjugated polymers used as electron donor materials in organic bulk heterojunction solar cells. Chemical Communications, 2015, 51, 2242-2244.	4.1	54
47	ESR spectroscopy as a powerful tool for probing the quality of conjugated polymers designed for photovoltaic applications. Chemical Communications, 2015, 51, 2239-2241.	4.1	35
48	Surface Passivation for Efficient Bifacial HTL-free Perovskite Solar Cells with SWCNT Top Electrodes. ACS Applied Energy Materials, 0, , .	5.1	8
49	Chasing Stable Interfaces for pâ€'iâ€'n Perovskite Solar Cells. , 0, , .		0
50	Enhanced photostability of CsPbI ₂ Br-based perovskite solar cells through suppression of phase segregation using a zwitterionic additive. Sustainable Energy and Fuels, 0, , .	4.9	4