Florence Baudin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7571652/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vault RNA1–1 riboregulates the autophagic function of p62 by binding to lysine 7 and arginine 21, both of which are critical for p62 oligomerization. Rna, 2022, 28, 742-755.	3.5	9
2	Structural snapshots of La Crosse virus polymerase reveal the mechanisms underlying Peribunyaviridae replication and transcription. Nature Communications, 2022, 13, 902.	12.8	23
3	Mechanism of RNA polymerase I selection by transcription factor UAF. Science Advances, 2022, 8, eabn5725.	10.3	9
4	Cryo-EM structures of human RNA polymerase III in its unbound and transcribing states. Nature Structural and Molecular Biology, 2021, 28, 210-219.	8.2	59
5	Cryo-EM structures of human RNA polymerase I. Nature Structural and Molecular Biology, 2021, 28, 997-1008.	8.2	28
6	Structure of the TFIIIC subcomplex τA provides insights into RNA polymerase III pre-initiation complex formation. Nature Communications, 2020, 11, 4905.	12.8	16
7	Structural basis for RNA polymerase III transcription repression by Maf1. Nature Structural and Molecular Biology, 2020, 27, 229-232.	8.2	37
8	Molecular insight into RNA polymerase I promoter recognition and promoter melting. Nature Communications, 2019, 10, 5543.	12.8	33
9	Pervasive Protein Thermal Stability Variation during the Cell Cycle. Cell, 2018, 173, 1495-1507.e18.	28.9	183
10	Structural basis for tRNA modification by Elp3 from Dehalococcoides mccartyi. Nature Structural and Molecular Biology, 2016, 23, 794-802.	8.2	59
11	Complex Interdependence Regulates Heterotypic Transcription Factor Distribution and Coordinates Cardiogenesis. Cell, 2016, 164, 999-1014.	28.9	179
12	Influenza Polymerase Can Adopt an Alternative Configuration Involving a Radical Repacking of PB2 Domains. Molecular Cell, 2016, 61, 125-137.	9.7	123
13	Bacterial Expression, Purification, and Crystallization of Tyrosine Phosphorylated STAT Proteins. Methods in Molecular Biology, 2013, 967, 301-317.	0.9	3
14	Monomeric Nucleoprotein of Influenza A Virus. PLoS Pathogens, 2013, 9, e1003275.	4.7	89
15	RNA polymerase III-specific general transcription factor IIIC contains a heterodimer resembling TFIIF Rap30/Rap74. Nucleic Acids Research, 2013, 41, 9183-9196.	14.5	23
16	HMGB1 Protein Binds to Influenza Virus Nucleoprotein and Promotes Viral Replication. Journal of Virology, 2012, 86, 9122-9133.	3.4	94
17	Structure-based design of NS2 mutants for attenuated influenza A virus vaccines. Virus Research, 2011, 155, 240-248.	2.2	20
18	Human importin alpha and RNA do not compete for binding to influenza A virus nucleoprotein. Virology, 2011, 409, 84-90.	2.4	27

FLORENCE BAUDIN

#	Article	IF	CITATIONS
19	Chromatin-modifying Complex Component Nurf55/p55 Associates with Histones H3 and H4 and Polycomb Repressive Complex 2 Subunit Su(z)12 through Partially Overlapping Binding Sites. Journal of Biological Chemistry, 2011, 286, 23388-23396.	3.4	61
20	Human initiation factor elF3 subunit b interacts with HCV IRES RNA through its Nâ€ŧerminal RNA recognition motif. FEBS Letters, 2009, 583, 70-74.	2.8	14
21	The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature, 2009, 458, 914-918.	27.8	630
22	Nuclear traffic of influenza virus proteins and ribonucleoprotein complexes. Virus Research, 2007, 124, 12-21.	2.2	197
23	Structure and nuclear import function of the C-terminal domain of influenza virus polymerase PB2 subunit. Nature Structural and Molecular Biology, 2007, 14, 229-233.	8.2	275
24	Structural Basis of Lytic Cycle Activation by the Epstein-Barr Virus ZEBRA Protein. Molecular Cell, 2006, 21, 565-572.	9.7	82
25	Interaction of influenza virus proteins with nucleosomes. Virology, 2005, 332, 329-336.	2.4	54
26	Structure of a knockout mutant of influenza virus M1 protein that has altered activities in membrane binding, oligomerisation and binding to NEP (NS2). Virus Research, 2004, 99, 115-119.	2.2	24
27	Architecture of CRM1/Exportin1 Suggests How Cooperativity Is Achieved during Formation of a Nuclear Export Complex. Molecular Cell, 2004, 16, 761-775.	9.7	119
28	Crystal structure of the M1 protein-binding domain of the influenza A virus nuclear export protein (NEP/NS2). EMBO Journal, 2003, 22, 4646-4655.	7.8	174
29	Chemical modification of nucleotide bases and mRNA editing depend on hexamer or nucleoprotein phase in Sendai virus nucleocapsids. Rna, 2002, 8, 1056-1067.	3.5	51
30	Functional determinants of the Epstein-Barr virus protease. Journal of Molecular Biology, 2001, 311, 217-228.	4.2	23
31	Role of influenza virus M1 protein in the viral budding process. International Congress Series, 2001, 1219, 397-404.	0.2	11
32	Structure of the RNA inside influenza virus RNPs. International Congress Series, 2001, 1219, 451-456.	0.2	1
33	Combined Results from Solution Studies on Intact Influenza Virus M1 Protein and from a New Crystal Form of Its N-Terminal Domain Show That M1 Is an Elongated Monomer. Virology, 2001, 279, 439-446.	2.4	112
34	In Vitro Dissection of the Membrane and RNP Binding Activities of Influenza Virus M1 Protein. Virology, 2001, 281, 102-108.	2.4	141
35	Structure of the RNA inside the vesicular stomatitis virus nucleocapsid. Rna, 2000, 6, 270-281.	3.5	55
36	Functional Sites in the 5′ Region of Human Immunodeficiency Virus Type 1 RNA Form Defined Structural Domains. Journal of Molecular Biology, 1993, 229, 382-397.	4.2	326

FLORENCE BAUDIN

#	Article	IF	CITATIONS
37	Mutations in 5S DNA and 5S RNA have different effects on the binding of Xenopus transcription factor IIIA. Biochemistry, 1991, 30, 2495-2500.	2.5	68
38	Structural studies on site-directed mutants of domain 3 of Xenopus laevis oocyte 5 S ribosomal RNA. Journal of Molecular Biology, 1991, 219, 243-255.	4.2	22
39	Involvement of "hinge―nucleotides of Xenopus laevis 5 S rRNA in the RNA structural organization and in the binding of transcription factor TFIIIA. Journal of Molecular Biology, 1991, 218, 69-81.	4.2	41
40	Dimerization of human immunodeficiency virus (type 1) RNA: stimulation by cations and possible mechanism. Nucleic Acids Research, 1991, 19, 2349-2357.	14.5	202
41	Use of Lead(II) to Probe the Structure of Large RNA's. Conformation of the 3′ Terminal Domain ofE. coli16S rRNA and its Involvement in Building the tRNA Binding Sites. Journal of Biomolecular Structure and Dynamics, 1989, 6, 971-984.	3.5	94
42	A difference in the importance of bulged nucleotides and their parent base pairs in the binding of transcription factor IIIA toXenopus5S RNA and 5S RNA genes. Nucleic Acids Research, 1989, 17, 2043-2056.	14.5	41
43	Crosslinking of transcription factor TFIIIA to ribosomal 5S RNA fromX.laevisbytrans-diamminedichloroplatinum (II). Nucleic Acids Research, 1989, 17, 10035-10046.	14.5	20
44	Higher-order structure of domain III in Escherichia coli 16S ribosomal RNA, 30S subunit and 70S ribosome. Biochimie, 1987, 69, 1081-1096.	2.6	50
45	Probing the structure of RNAs in solution. Nucleic Acids Research, 1987, 15, 9109-9128.	14.5	751