
William A Arnold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7570912/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anisotropic oxidative growth of goethite-coated sand particles in column reactors during 4-chloronitrobenzene reduction by Fe(<scp>ii</scp>)/goethite. Environmental Science: Nano, 2022, 9, 275-288.	2.2	3
2	Back to Campus and Looking Forward for AEESP. Environmental Engineering Science, 2022, 39, 1-2.	0.8	0
3	Encapsulation technology for decentralized brewery wastewater treatment: A small pilot experiment. Bioresource Technology, 2022, 347, 126435.	4.8	4
4	Tracking Fluorine during Aqueous Photolysis and Advanced UV Treatment of Fluorinated Phenols and Pharmaceuticals Using a Combined ¹⁹ F-NMR, Chromatography, and Mass Spectrometry Approach. ACS Environmental Au, 2022, 2, 242-252.	3.3	9
5	Seeking Balance. Environmental Engineering Science, 2022, 39, 195-196.	0.8	0
6	Organic Matter Inhibits Redox Activity and Impacts Heterogeneous Growth of Iron (Oxyhydr)oxides on Nano-Hematite. ACS Earth and Space Chemistry, 2022, 6, 847-860.	1.2	2
7	Identifying the spatiotemporal vulnerability of soils to antimicrobial contamination through land application of animal manure in Minnesota, United States. Science of the Total Environment, 2022, 832, 155050.	3.9	8
8	Encapsulation technology to improve biological resource recovery: recent advancements and research opportunities. Environmental Science: Water Research and Technology, 2021, 7, 16-23.	1.2	6
9	Photolysis of atrazine: Role of triplet dissolved organic matter and limitations of sensitizers and quenchers. Water Research, 2021, 190, 116659.	5.3	32
10	Neonicotinoid Insecticides in Surface Water, Groundwater, and Wastewater Across Landâ€Use Gradients and Potential Effects. Environmental Toxicology and Chemistry, 2021, 40, 1017-1033.	2.2	38
11	Iron filings application to reduce lake sediment phosphorus release. Lake and Reservoir Management, 2021, 37, 143-159.	0.4	5
12	<i>Environmental Science & amp; Technology Letters</i> Presents the 2020 Excellence in Review Awards. Environmental Science and Technology Letters, 2021, 8, 198-198.	3.9	0
13	Quantity, Quality, and Accessibility: Big Data Collection, Analysis, and Synthesis in Environmental Science and Technology. Environmental Science and Technology Letters, 2021, 8, 287-288.	3.9	3
14	Exploring the Utility of Compound-Specific Isotope Analysis for Assessing Ferrous Iron-Mediated Reduction of RDX in the Subsurface. Environmental Science & Technology, 2021, 55, 6752-6763.	4.6	10
15	Kinetics and Pathways of the Aqueous Photolysis of Pharmaceutical Pollutants: A Versatile Laboratory or Remote Learning Investigation. Journal of Chemical Education, 2021, 98, 2411-2418.	1.1	4
16	COVID-19 and Beyond: Our Selections for the Best ES&T Letters Papers in 2020. Environmental Science and Technology Letters, 2021, 8, 604-605.	3.9	0
17	Ice Cover Influences Redox Dynamics in Prairie Pothole Wetland Sediments. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006318.	1.3	2
18	Quantifying and predicting antimicrobials and antimicrobial resistance genes in waterbodies through a holistic approach: a study in Minnesota, United States. Scientific Reports, 2021, 11, 18747.	1.6	7

#	Article	IF	CITATIONS
19	Metabolite composition of sinking particles differs from surface suspended particles across a latitudinal transect in the South Atlantic. Limnology and Oceanography, 2020, 65, 111-127.	1.6	39
20	Our Selections for the Best ES&T Letters Papers of 2019. Environmental Science and Technology Letters, 2020, 7, 358-359.	3.9	0
21	Characterization of Antibiotic Resistance and Metal Homeostasis Genes in Midwest USA Agricultural Sediments. Water (Switzerland), 2020, 12, 2476.	1.2	2
22	Prediction of Photochemically Produced Reactive Intermediates in Surface Waters via Satellite Remote Sensing. Environmental Science & Technology, 2020, 54, 6671-6681.	4.6	38
23	In Situ Sequestration of Perfluoroalkyl Substances Using Polymer-Stabilized Powdered Activated Carbon. Environmental Science & Technology, 2020, 54, 6929-6936.	4.6	34
24	Increased Use of Quaternary Ammonium Compounds during the SARS-CoV-2 Pandemic and Beyond: Consideration of Environmental Implications. Environmental Science and Technology Letters, 2020, 7, 622-631.	3.9	236
25	Comprehensive screening of quaternary ammonium surfactants and ionic liquids in wastewater effluents and lake sediments. Environmental Sciences: Processes and Impacts, 2020, 22, 430-441.	1.7	48
26	Determination of Hydroxyl Radical Production from Sulfide Oxidation Relevant to Sulfidic Porewaters. ACS Earth and Space Chemistry, 2020, 4, 261-271.	1.2	12
27	Assessment of 2,4-Dinitroanisole Transformation Using Compound-Specific Isotope Analysis after <i>In Situ</i> Chemical Reduction of Iron Oxides. Environmental Science & Technology, 2020, 54, 5520-5531.	4.6	17
28	Photochemical fate of quaternary ammonium compounds in river water. Environmental Sciences: Processes and Impacts, 2020, 22, 1368-1381.	1.7	18
29	Effects of encapsulation on the chemical inhibition of anaerobic hydrogen- and methane-producing microbial cells. Bioresource Technology Reports, 2020, 11, 100451.	1.5	8
30	Quantitative Dissolution of Environmentally Accessible Iron Residing in Iron-Rich Minerals: A Review. ACS Earth and Space Chemistry, 2019, 3, 1371-1392.	1.2	25
31	Assessment of the chlorine demand and disinfection byproduct formation potential of surface waters via satellite remote sensing. Water Research, 2019, 165, 115001.	5.3	15
32	Efficient Water Pollution Abatement. Industrial & Engineering Chemistry Research, 2019, 58, 22483-22487.	1.8	7
33	Modeling alginate encapsulation system for biological hydrogen production. Biotechnology and Bioengineering, 2019, 116, 3189-3199.	1.7	4
34	Enhanced adsorption of perfluoro alkyl substances for <i>in situ</i> remediation. Environmental Science: Water Research and Technology, 2019, 5, 1867-1875.	1.2	30
35	Mineral identity, natural organic matter, and repeated contaminant exposures do not affect the carbon and nitrogen isotope fractionation of 2,4-dinitroanisole during abiotic reduction. Environmental Sciences: Processes and Impacts, 2019, 21, 51-62.	1.7	4
36	Photodegradation of pharmaceutical compounds in partially nitritated wastewater during UV irradiation. Environmental Science: Water Research and Technology, 2019, 5, 897-909.	1.2	21

#	Article	IF	CITATIONS
37	Quantifying photo-production of triplet excited states and singlet oxygen from effluent organic matter. Water Research, 2019, 156, 23-33.	5.3	53
38	Iron influence on dissolved color in lakes of the Upper Great Lakes States. PLoS ONE, 2019, 14, e0211979.	1.1	14
39	Editor's Choice for the Best Papers Published in ES&T Letters in 2018. Environmental Science and Technology Letters, 2019, 6, 197-198.	3.9	0
40	Color, chlorophyll <i>a</i> , and suspended solids effects on Secchi depth in lakes: implications for trophic state assessment. Ecological Applications, 2019, 29, e01871.	1.8	50
41	Awards for the Best Papers in ES&T Letters in 2017!. Environmental Science and Technology Letters, 2018, 5, 194-195.	3.9	Ο
42	Sedimentary record of antibiotic accumulation in Minnesota Lakes. Science of the Total Environment, 2018, 621, 970-979.	3.9	39
43	High Pressure Size Exclusion Chromatography (HPSEC) Determination of Dissolved Organic Matter Molecular Weight Revisited: Accounting for Changes in Stationary Phases, Analytical Standards, and Isolation Methods. Environmental Science & Technology, 2018, 52, 722-730.	4.6	33
44	Multiple linear regression models to predict the formation efficiency of triplet excited states of dissolved organic matter in temperate wetlands. Limnology and Oceanography, 2018, 63, 1992-2014.	1.6	18
45	Redox-induced nucleation and growth of goethite on synthetic hematite nanoparticles. American Mineralogist, 2018, 103, 1021-1029.	0.9	13
46	Mineralogy and buffer identity effects on RDX kinetics and intermediates during reaction with natural and synthetic magnetite. Chemosphere, 2018, 213, 602-609.	4.2	5
47	The relative roles of sorption and biodegradation in the removal of contaminants of emerging concern (CECs) in GAC-sand biofilters. Water Research, 2018, 146, 67-76.	5.3	36
48	Neonicotinoid insecticide hydrolysis and photolysis: Rates and residual toxicity. Environmental Toxicology and Chemistry, 2018, 37, 2797-2809.	2.2	68
49	PFOA and PFOS Are Generated from Zwitterionic and Cationic Precursor Compounds During Water Disinfection with Chlorine or Ozone. Environmental Science and Technology Letters, 2018, 5, 382-388.	3.9	71
50	In Situ Remediation Method for Enhanced Sorption of Perfluoro-Alkyl Substances onto Ottawa Sand. Journal of Environmental Engineering, ASCE, 2018, 144, .	0.7	28
51	Small and large-scale distribution of four classes of antibiotics in sediment: association with metals and antibiotic resistance genes. Environmental Sciences: Processes and Impacts, 2018, 20, 1167-1179.	1.7	15
52	Singlet Oxygen Phosphorescence as a Probe for Triplet-State Dissolved Organic Matter Reactivity. Environmental Science & Technology, 2018, 52, 9170-9178.	4.6	82
53	Achieving high-rate hydrogen recovery from wastewater using customizable alginate polymer gel matrices encapsulating biomass. Environmental Science: Water Research and Technology, 2018, 4, 1867-1876.	1.2	11
54	Reaction rates and product formation during advanced oxidation of ionic liquid cations by UV/peroxide, UV/persulfate, and UV/chlorine. Environmental Science: Water Research and Technology, 2018, 4, 1310-1320.	1.2	13

#	Article	IF	CITATIONS
55	Effect of nonreactive kaolinite on 4-chloronitrobenzene reduction by Fe(<scp>ii</scp>) in goethite–kaolinite heterogeneous suspensions. Environmental Science: Nano, 2017, 4, 325-334.	2.2	13
56	The Best of the Best in 2016!. Environmental Science and Technology Letters, 2017, 4, 125-126.	3.9	0
57	Quantifying the electron donating capacities of sulfide and dissolved organic matter in sediment pore waters of wetlands. Environmental Sciences: Processes and Impacts, 2017, 19, 758-767.	1.7	16
58	QSARs for phenols and phenolates: oxidation potential as a predictor of reaction rate constants with photochemically produced oxidants. Environmental Sciences: Processes and Impacts, 2017, 19, 324-338.	1.7	44
59	Photochemical Transformation of Four Ionic Liquid Cation Structures in Aqueous Solution. Environmental Science & Technology, 2017, 51, 11780-11787.	4.6	18
60	Reactivity of Triplet Excited States of Dissolved Natural Organic Matter in Stormflow from Mixed-Use Watersheds. Environmental Science & Technology, 2017, 51, 9718-9728.	4.6	57
61	Accessible reactive surface area and abiotic redox reactivity of iron oxyhydroxides in acidic brines. Geochimica Et Cosmochimica Acta, 2017, 197, 345-355.	1.6	11
62	Is the EPA Going To Protect the Environment?. Environmental Science and Technology Letters, 2017, 4, 511-511.	3.9	0
63	The Florence Statement on Triclosan and Triclocarban. Environmental Health Perspectives, 2017, 125, 064501.	2.8	144
64	Abiotic Capture of Stormwater Nitrates with Granular Activated Carbon. Environmental Engineering Science, 2016, 33, 354-363.	0.8	15
65	Performance of a composite bioactive membrane for H ₂ production and capture from high strength wastewater. Environmental Science: Water Research and Technology, 2016, 2, 848-857.	1.2	8
66	Seasonal and spatial variabilities in the water chemistry of prairie pothole wetlands influence the photoproduction of reactive intermediates. Chemosphere, 2016, 155, 640-647.	4.2	42
67	Organic matter and iron oxide nanoparticles: aggregation, interactions, and reactivity. Environmental Science: Nano, 2016, 3, 494-505.	2.2	111
68	Facet-Dependent Oxidative Goethite Growth As a Function of Aqueous Solution Conditions. Environmental Science & Technology, 2016, 50, 10406-10412.	4.6	30
69	Transformation of chlorpyrifos and chlorpyrifos-methyl in prairie pothole pore waters. Environmental Sciences: Processes and Impacts, 2016, 18, 1406-1416.	1.7	4
70	Character of Humic Substances as a Predictor for Goethite Nanoparticle Reactivity and Aggregation. Environmental Science & Technology, 2016, 50, 1200-1208.	4.6	52
71	Contaminants of Emerging Concern: Mass Balance and Comparison of Wastewater Effluent and Upstream Sources in a Mixed-Use Watershed. Environmental Science & Technology, 2016, 50, 36-45.	4.6	67
72	Sources and transport of contaminants of emerging concern: A two-year study of occurrence and spatiotemporal variation in a mixed land use watershed. Science of the Total Environment, 2016, 551-552, 605-613.	3.9	134

#	Article	lF	CITATIONS
73	Novel Insights into the Distribution of Reduced Sulfur Species in Prairie Pothole Wetland Pore Waters Provided by Bismuth Film Electrodes. Environmental Science and Technology Letters, 2016, 3, 104-109.	3.9	13
74	Phototransformation of pesticides in prairie potholes: effect of dissolved organic matter in triplet-induced oxidation. Environmental Sciences: Processes and Impacts, 2016, 18, 237-245.	1.7	23
75	Quantification of Hydroxylated Polybrominated Diphenyl Ethers (OH-BDEs), Triclosan, and Related Compounds in Freshwater and Coastal Systems. PLoS ONE, 2015, 10, e0138805.	1.1	14
76	Innovation Promoted by Regulatory Flexibility. Environmental Science & Technology, 2015, 49, 13908-13909.	4.6	5
77	Effects of estrone and organic carbon exposure on the transformation of estrone. Environmental Science: Water Research and Technology, 2015, 1, 457-464.	1.2	2
78	Impact of Pahokee Peat humic acid and buffer identity on goethite aggregation and reactivity. Environmental Science: Nano, 2015, 2, 509-517.	2.2	11
79	Estrone Degradation: Does Organic Matter (Quality), Matter?. Environmental Science & Technology, 2015, 49, 498-503.	4.6	26
80	Dissolved Organic Matter Composition Drives the Marine Production of Brominated Very Short-Lived Substances. Environmental Science & amp; Technology, 2015, 49, 3366-3374.	4.6	34
81	Triclosan, chlorinated triclosan derivatives, and hydroxylated polybrominated diphenyl ethers (OH-BDEs) in wastewater effluents. Environmental Science: Water Research and Technology, 2015, 1, 316-325.	1.2	3
82	Sorption of isoflavones to river sediment and model sorbents and outcomes for larval fish exposed to contaminated sediment. Journal of Hazardous Materials, 2015, 282, 26-33.	6.5	3
83	Sediment–water distribution of contaminants of emerging concern in a mixed use watershed. Science of the Total Environment, 2015, 505, 896-904.	3.9	74
84	Performance of a composite bioactive membrane for enhanced BioH2 production and capture from wastewater. Proceedings of the Water Environment Federation, 2015, 2015, 4412-4412.	0.0	0
85	Phytoestrogens in the environment, II: Microbiological degradation of phytoestrogens and the response of fathead minnows to degradate exposure. Environmental Toxicology and Chemistry, 2014, 33, 560-566.	2.2	6
86	Phytoestrogens in the environment, I: Occurrence and exposure effects on fathead minnows. Environmental Toxicology and Chemistry, 2014, 33, 553-559.	2.2	38
87	One electron oxidation potential as a predictor of rate constants of N-containing compounds with carbonate radical and triplet excited state organic matter. Environmental Sciences: Processes and Impacts, 2014, 16, 832-838.	1.7	42
88	Goethite nanoparticle aggregation: effects of buffers, metal ions, and 4-chloronitrobenzene reduction. Environmental Science: Nano, 2014, 1, 478-487.	2.2	42
89	Molecular signature of organic nitrogen in septic-impacted groundwater. Environmental Sciences: Processes and Impacts, 2014, 16, 2400-2407.	1.7	18
90	Identifying sources of emerging organic contaminants in a mixed use watershed using principal components analysis. Environmental Sciences: Processes and Impacts, 2014, 16, 2390-2399.	1.7	31

#	Article	IF	CITATIONS
91	Evidence of Incorporation of Abiotic S and N into Prairie Wetland Dissolved Organic Matter. Environmental Science and Technology Letters, 2014, 1, 345-350.	3.9	66
92	Membrane-Assisted Volatile Organic Compound Removal from Aqueous Acrylic Latex Is Faster Than from Aqueous Solutions. Industrial & amp; Engineering Chemistry Research, 2014, 53, 12420-12427.	1.8	4
93	Clustering Chlorine Reactivity of Haloacetic Acid Precursors in Inland Lakes. Environmental Science & Technology, 2014, 48, 139-148.	4.6	48
94	Pesticide Photolysis in Prairie Potholes: Probing Photosensitized Processes. Environmental Science & Technology, 2013, 47, 6735-6745.	4.6	216
95	Experimental and Theoretical Insights into the Involvement of Radicals in Triclosan Phototransformation. Environmental Science & Technology, 2013, 47, 6756-6763.	4.6	64
96	Quantification of Triclosan, Chlorinated Triclosan Derivatives, and their Dioxin Photoproducts in Lacustrine Sediment Cores. Environmental Science & Technology, 2013, 47, 1833-1843.	4.6	89
97	Impact of Organic Carbon on the Biodegradation of Estrone in Mixed Culture Systems. Environmental Science & Technology, 2013, 47, 12359-12365.	4.6	38
98	Direct photochemistry of three fluoroquinolone antibacterials: Norfloxacin, ofloxacin, and enrofloxacin. Water Research, 2013, 47, 439-448.	5.3	191
99	Microscale Characterization of Sulfur Speciation in Lake Sediments. Environmental Science & Technology, 2013, 47, 1287-1296.	4.6	64
100	Halogenation of Bisphenol-A, Triclosan, and Phenols in Chlorinated Waters Containing Iodide. Environmental Science & Technology, 2013, 47, 6764-6772.	4.6	59
101	Sources and composition of sediment poreâ€water dissolved organic matter in prairie pothole lakes. Limnology and Oceanography, 2013, 58, 1136-1146.	1.6	69
102	Water Chemistry: Fifty Years of Change and Progress. Environmental Science & Technology, 2012, 46, 5650-5657.	4.6	29
103	Potential for Abiotic Reduction of Pesticides in Prairie Pothole Porewaters. Environmental Science & Technology, 2012, 46, 3177-3187.	4.6	80
104	Hydroxyl Radical Formation upon Oxidation of Reduced Humic Acids by Oxygen in the Dark. Environmental Science & Technology, 2012, 46, 1590-1597.	4.6	184
105	Photochemical Formation of Brominated Dioxins and Other Products of Concern from Hydroxylated Polybrominated Diphenyl Ethers (OH-PBDEs). Environmental Science & Technology, 2012, 46, 8174-8180.	4.6	56
106	Direct and Indirect Photolysis of the Phytoestrogens Genistein and Daidzein. Environmental Science & Technology, 2012, 46, 5396-5403.	4.6	63
107	Pesticide Processing Potential in Prairie Pothole Porewaters. Environmental Science & Technology, 2011, 45, 6814-6822.	4.6	67
108	pH-Dependent Equilibrium Isotope Fractionation Associated with the Compound Specific Nitrogen and Carbon Isotope Analysis of Substituted Anilines by SPME-GC/IRMS. Analytical Chemistry, 2011, 83, 1641-1648.	3.2	44

#	Article	IF	CITATIONS
109	Assessing the Contribution of Free Hydroxyl Radical in Organic Matter-Sensitized Photohydroxylation Reactions. Environmental Science & Technology, 2011, 45, 2818-2825.	4.6	191
110	On the Need for a National (U.S.) Research Program to Elucidate the Potential Risks to Human Health and the Environment Posed by Contaminants of Emerging Concern. Environmental Science & Technology, 2011, 45, 3829-3830.	4.6	28
111	Using Nitrogen Isotope Fractionation to Assess the Oxidation of Substituted Anilines by Manganese Oxide. Environmental Science & Technology, 2011, 45, 5596-5604.	4.6	37
112	Direct and indirect photolysis of sulfamethoxazole and trimethoprim in wastewater treatment plant effluent. Water Research, 2011, 45, 1280-1286.	5.3	262
113	Removal and formation of chlorinated triclosan derivatives in wastewater treatment plants using chlorine and UV disinfection. Chemosphere, 2011, 84, 1238-1243.	4.2	40
114	Reprint of: Removal and formation of chlorinated triclosan derivatives in wastewater treatment plants using chlorine and UV disinfection. Chemosphere, 2011, 85, 284-289.	4.2	13
115	Barrier properties of poly(vinyl alcohol) membranes containing carbon nanotubes or activated carbon. Journal of Hazardous Materials, 2011, 188, 334-340.	6.5	10
116	Zero-Valent Iron: Impact of Anions Present during Synthesis on Subsequent Nanoparticle Reactivity. Journal of Environmental Engineering, ASCE, 2011, 137, 889-896.	0.7	18
117	TBAA reduction in reactors simulating distribution system pipes. Journal - American Water Works Association, 2010, 102, 99-106.	0.2	3
118	Reactivity of Alkyl Polyhalides toward Granular Iron: Development of QSARs and Reactivity Cross Correlations for Reductive Dehalogenation. Environmental Science & Technology, 2010, 44, 7928-7936.	4.6	21
119	Kinetics and Mechanisms of <i>N</i> -Nitrosodimethylamine Formation upon Ozonation of <i>N</i> , <i>N</i> -Dimethylsulfamide-Containing Waters: Bromide Catalysis. Environmental Science & Technology, 2010, 44, 5762-5768.	4.6	147
120	Dioxin Photoproducts of Triclosan and Its Chlorinated Derivatives in Sediment Cores. Environmental Science & Technology, 2010, 44, 4545-4551.	4.6	130
121	Terephthalate as a probe for photochemically generated hydroxyl radical. Journal of Environmental Monitoring, 2010, 12, 1658.	2.1	223
122	Correlations between in situ sensor measurements and trace organic pollutants in urban streams. Journal of Environmental Monitoring, 2010, 12, 225-233.	2.1	18
123	A comparison of total maximum daily load (TMDL) calculations in urban streams using near real-time and periodic sampling data. Journal of Environmental Monitoring, 2010, 12, 234-241.	2.1	19
124	Sorptive and Reactive Scavenger-Containing Sandwich Membranes as Contaminant Barriers. Journal of Environmental Engineering, ASCE, 2009, 135, 69-76.	0.7	4
125	Aquatic photochemistry of chlorinated triclosan derivatives: Potential source of polychlorodibenzoâ€ <i>P</i> â€dioxins. Environmental Toxicology and Chemistry, 2009, 28, 2555-2563.	2.2	120
126	Photochemical Formation of Halogenated Dioxins from Hydroxylated Polybrominated Diphenyl Ethers (OH-PBDEs) and Chlorinated Derivatives (OH-PBCDEs). Environmental Science & Technology, 2009, 43, 4405-4411.	4.6	56

#	Article	IF	CITATIONS
127	Geomembranes Containing Powdered Activated Carbon Have the Potential to Improve Containment of Chlorinated Aromatic Contaminants. Environmental Science & amp; Technology, 2009, 43, 8916-8922.	4.6	2
128	Photolysis of Chlortetracycline on a Clay Surface. Journal of Agricultural and Food Chemistry, 2009, 57, 6932-6937.	2.4	23
129	Discovering Teleconnected Flow Anomalies: A Relationship Analysis of Dynamic Neighborhoods (RAD) Approach. Lecture Notes in Computer Science, 2009, , 44-61.	1.0	5
130	Substituent Effects on Nitrogen Isotope Fractionation During Abiotic Reduction of Nitroaromatic Compounds. Environmental Science & amp; Technology, 2008, 42, 1997-2003.	4.6	59
131	Degradation of trichloronitromethane by iron water main corrosion products. Water Research, 2008, 42, 2043-2050.	5.3	24
132	Variability of Nitrogen Isotope Fractionation during the Reduction of Nitroaromatic Compounds with Dissolved Reductants. Environmental Science & Technology, 2008, 42, 8352-8359.	4.6	55
133	Evaluation of Functional Groups Responsible for Chloroform Formation during Water Chlorination Using Compound Specific Isotope Analysis. Environmental Science & Technology, 2008, 42, 7778-7785.	4.6	58
134	Degradation of Halogenated Disinfection Byproducts in Water Distribution Systems. ACS Symposium Series, 2008, , 334-348.	0.5	4
135	Chapter 3.2 Transformation of pharmaceuticals in the environment: Photolysis and other abiotic processes. Comprehensive Analytical Chemistry, 2007, , 361-385.	0.7	22
136	The characterization and quantification of methanotrophic bacterial populations in constructed wetland sediments using PCR targeting 16S rRNA gene fragments. Applied Soil Ecology, 2007, 35, 648-659.	2.1	38
137	Effects of dissolved oxygen and iron aging on the reduction of trichloronitromethane, trichloracetonitrile, and trichloropropanone. Chemosphere, 2007, 66, 2127-2135.	4.2	38
138	Degradation of Disinfection Byproducts by Carbonate Green Rust. Environmental Science & Technology, 2007, 41, 1615-1621.	4.6	39
139	Environmental Photochemistry of Tylosin:  Efficient, Reversible Photoisomerization to a Less-Active Isomer, Followed by Photolysis. Journal of Agricultural and Food Chemistry, 2007, 55, 7062-7068.	2.4	32
140	Unexpected Products and Reaction Mechanisms of the Aqueous Chlorination of Cimetidine. Environmental Science & Technology, 2007, 41, 6228-6233.	4.6	65
141	Diffusion of mobile products in reactive barrier membranes. Journal of Membrane Science, 2007, 291, 111-119.	4.1	7
142	Aquatic Photochemistry of Nitrofuran Antibiotics. Environmental Science & Technology, 2006, 40, 5422-5427.	4.6	102
143	Kinetic and Microscopic Studies of Reductive Transformations of Organic Contaminants on Goethite. Environmental Science & Technology, 2006, 40, 3299-3304.	4.6	76
144	Reactivity of Substituted Benzotrichlorides toward Granular Iron, Cr(II), and an Iron(II) Porphyrin:  A Correlation Analysis. Environmental Science & Technology, 2006, 40, 4253-4260.	4.6	11

#	Article	IF	CITATIONS
145	Water Hardness as a Photochemical Parameter:  Tetracycline Photolysis as a Function of Calcium Concentration, Magnesium Concentration, and pH. Environmental Science & Technology, 2006, 40, 7236-7241.	4.6	144
146	CHANGES IN ANTIBACTERIAL ACTIVITY OF TRICLOSAN AND SULFA DRUGS DUE TO PHOTOCHEMICAL TRANSFORMATIONS. Environmental Toxicology and Chemistry, 2006, 25, 1480.	2.2	38
147	High-Density Polyethylene Membrane Containing Fe0 as a Contaminant Barrier. Journal of Environmental Engineering, ASCE, 2006, 132, 803-809.	0.7	8
148	AQUEOUS PHOTOCHEMISTRY OF TRICLOSAN: FORMATION OF 2,4-DICHLOROPHENOL, 2,8-DICHLORODIBENZO-p-DIOXIN, AND OLIGOMERIZATION PRODUCTS. Environmental Toxicology and Chemistry, 2005, 24, 517.	2.2	236
149	DEGRADATION OF CHLOROPICRIN IN THE PRESENCE OF ZERO-VALENT IRON. Environmental Toxicology and Chemistry, 2005, 24, 3037.	2.2	25
150	Preparation of14C2-cis-1,2-dichloroethylene from14C2-trichloroethylene using a cobalt porphyrin catalyst. Journal of Labelled Compounds and Radiopharmaceuticals, 2005, 48, 353-357.	0.5	2
151	Degradation of Drinking Water Disinfection Byproducts by Synthetic Goethite and Magnetite. Environmental Science & Technology, 2005, 39, 8525-8532.	4.6	80
152	Permeable Membranes Containing Crystalline Silicotitanate As Model Barriers for Cesium Ion. Environmental Science & Technology, 2005, 39, 9738-9743.	4.6	5
153	Triplet-Sensitized Photodegradation of Sulfa Drugs Containing Six-Membered Heterocyclic Groups:Â Identification of an SO2Extrusion Photoproduct. Environmental Science & Technology, 2005, 39, 3630-3638.	4.6	325
154	Environmental photodegradation of mefenamic acid. Chemosphere, 2005, 58, 1339-1346.	4.2	82
155	Response to Comment on "A Polymer Membrane Containing Fe0as a Contaminant Barrier― Environmental Science & Technology, 2004, 38, 5264-5264.	4.6	0
156	Kinetics of Haloacetic Acid Reactions with Fe(0). Environmental Science & Technology, 2004, 38, 6881-6889.	4.6	80
157	A Polymer Membrane Containing Fe0as a Contaminant Barrier. Environmental Science & Technology, 2004, 38, 2264-2270.	4.6	31
158	Photochemical Fate of Sulfa Drugs in the Aquatic Environment:Â Sulfa Drugs Containing Five-Membered Heterocyclic Groups. Environmental Science & Technology, 2004, 38, 3933-3940.	4.6	591
159	Photochemical fate of pharmaceuticals in the environment: Naproxen, diclofenac, clofibric acid, and ibuprofen. Aquatic Sciences, 2003, 65, 342-351.	0.6	376
160	Photodegradation of pharmaceuticals in the aquatic environment: A review. Aquatic Sciences, 2003, 65, 320-341.	0.6	403
161	Photochemical conversion of triclosan to 2,8-dichlorodibenzo-p-dioxin in aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 158, 63-66.	2.0	238
162	Photochemical Fate of Pharmaceuticals in the Environment:Â Cimetidine and Ranitidine. Environmental Science & Technology, 2003, 37, 3342-3350.	4.6	245

#	Article	IF	CITATIONS
163	Measurement and Estimation of Henry's Law Constants of Chlorinated Ethylenes in Aqueous Surfactant Solutions. Journal of Chemical & Engineering Data, 2003, 48, 253-261.	1.0	31
164	Abiotic reduction of dinitroaniline herbicides. Water Research, 2003, 37, 4191-4201.	5.3	48
165	Henry's Law Constants of Chlorinated Ethylenes in Aqueous Alcohol Solutions:  Measurement, Estimation, and Thermodynamic Analysis. Journal of Chemical & Engineering Data, 2002, 47, 183-190.	1.0	11
166	Reductive Dechlorination of 1,1,2,2-Tetrachloroethane. Environmental Science & amp; Technology, 2002, 36, 3536-3541.	4.6	79
167	Reduction of Haloacetic Acids by Fe0:Â Implications for Treatment and Fate. Environmental Science & Technology, 2001, 35, 2258-2263.	4.6	106
168	Inter- and Intraspecies Competitive Effects in Reactions of Chlorinated Ethylenes with Zero-Valent Iron in Column Reactors. Environmental Engineering Science, 2000, 17, 291-302.	0.8	33
169	Pathways and Kinetics of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Fe(0) Particles. Environmental Science & Technology, 2000, 34, 1794-1805.	4.6	604
170	Polychlorinated ethane reaction with zero-valent zinc: pathways and rate control. Journal of Contaminant Hydrology, 1999, 40, 183-200.	1.6	94
171	Pathways of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Zn(0). Environmental Science & Technology, 1998, 32, 3017-3025.	4.6	151
172	Reductive Elimination of Chlorinated Ethylenes by Zero-Valent Metals. Environmental Science & Technology, 1996, 30, 2654-2659.	4.6	409
173	Perspective and Identity. Environmental Engineering Science, 0, , .	0.8	Ο