William A Arnold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7570912/publications.pdf

Version: 2024-02-01

173 papers 10,301 citations

53 h-index 97 g-index

177 all docs

177 docs citations

177 times ranked

8844 citing authors

#	Article	IF	CITATIONS
1	Pathways and Kinetics of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Fe(0) Particles. Environmental Science &	10.0	604
2	Photochemical Fate of Sulfa Drugs in the Aquatic Environment:Â Sulfa Drugs Containing Five-Membered Heterocyclic Groups. Environmental Science & Environmental Science & 2004, 38, 3933-3940.	10.0	591
3	Reductive Elimination of Chlorinated Ethylenes by Zero-Valent Metals. Environmental Science & Camp; Technology, 1996, 30, 2654-2659.	10.0	409
4	Photodegradation of pharmaceuticals in the aquatic environment: A review. Aquatic Sciences, 2003, 65, 320-341.	1.5	403
5	Photochemical fate of pharmaceuticals in the environment: Naproxen, diclofenac, clofibric acid, and ibuprofen. Aquatic Sciences, 2003, 65, 342-351.	1.5	376
6	Triplet-Sensitized Photodegradation of Sulfa Drugs Containing Six-Membered Heterocyclic Groups:Â Identification of an SO2Extrusion Photoproduct. Environmental Science & Envir	10.0	325
7	Direct and indirect photolysis of sulfamethoxazole and trimethoprim in wastewater treatment plant effluent. Water Research, 2011, 45, 1280-1286.	11.3	262
8	Photochemical Fate of Pharmaceuticals in the Environment:Â Cimetidine and Ranitidine. Environmental Science & Environmental Sc	10.0	245
9	Photochemical conversion of triclosan to 2,8-dichlorodibenzo-p-dioxin in aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 158, 63-66.	3.9	238
10	AQUEOUS PHOTOCHEMISTRY OF TRICLOSAN: FORMATION OF 2,4-DICHLOROPHENOL, 2,8-DICHLORODIBENZO-p-DIOXIN, AND OLIGOMERIZATION PRODUCTS. Environmental Toxicology and Chemistry, 2005, 24, 517.	4.3	236
11	Increased Use of Quaternary Ammonium Compounds during the SARS-CoV-2 Pandemic and Beyond: Consideration of Environmental Implications. Environmental Science and Technology Letters, 2020, 7, 622-631.	8.7	236
12	Terephthalate as a probe for photochemically generated hydroxyl radical. Journal of Environmental Monitoring, 2010, 12, 1658.	2.1	223
13	Pesticide Photolysis in Prairie Potholes: Probing Photosensitized Processes. Environmental Science & Environmental Science	10.0	216
14	Assessing the Contribution of Free Hydroxyl Radical in Organic Matter-Sensitized Photohydroxylation Reactions. Environmental Science & Environmental S	10.0	191
15	Direct photochemistry of three fluoroquinolone antibacterials: Norfloxacin, ofloxacin, and enrofloxacin. Water Research, 2013, 47, 439-448.	11.3	191
16	Hydroxyl Radical Formation upon Oxidation of Reduced Humic Acids by Oxygen in the Dark. Environmental Science & Environmental	10.0	184
17	Pathways of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Zn(0). Environmental Science & Environmental Science	10.0	151
18	Kinetics and Mechanisms of $\langle i \rangle N \langle i \rangle$ -Nitrosodimethylamine Formation upon Ozonation of $\langle i \rangle N \langle i \rangle$, $\langle i \rangle N \langle i \rangle$ -Dimethylsulfamide-Containing Waters: Bromide Catalysis. Environmental Science & Environmental	10.0	147

#	Article	IF	CITATIONS
19	Water Hardness as a Photochemical Parameter:  Tetracycline Photolysis as a Function of Calcium Concentration, Magnesium Concentration, and pH. Environmental Science & Echnology, 2006, 40, 7236-7241.	10.0	144
20	The Florence Statement on Triclosan and Triclocarban. Environmental Health Perspectives, 2017, 125, 064501.	6.0	144
21	Sources and transport of contaminants of emerging concern: A two-year study of occurrence and spatiotemporal variation in a mixed land use watershed. Science of the Total Environment, 2016, 551-552, 605-613.	8.0	134
22	Dioxin Photoproducts of Triclosan and Its Chlorinated Derivatives in Sediment Cores. Environmental Science & Environmental Sci	10.0	130
23	Aquatic photochemistry of chlorinated triclosan derivatives: Potential source of polychlorodibenzoâ€∢i>Pàê€dioxins. Environmental Toxicology and Chemistry, 2009, 28, 2555-2563.	4.3	120
24	Organic matter and iron oxide nanoparticles: aggregation, interactions, and reactivity. Environmental Science: Nano, 2016, 3, 494-505.	4.3	111
25	Reduction of Haloacetic Acids by Fe0:Â Implications for Treatment and Fate. Environmental Science & Environmental Science & Environmental Science & Environmental Science & Environmental Science	10.0	106
26	Aquatic Photochemistry of Nitrofuran Antibiotics. Environmental Science & Envi	10.0	102
27	Polychlorinated ethane reaction with zero-valent zinc: pathways and rate control. Journal of Contaminant Hydrology, 1999, 40, 183-200.	3.3	94
28	Quantification of Triclosan, Chlorinated Triclosan Derivatives, and their Dioxin Photoproducts in Lacustrine Sediment Cores. Environmental Science & E	10.0	89
29	Environmental photodegradation of mefenamic acid. Chemosphere, 2005, 58, 1339-1346.	8.2	82
30	Singlet Oxygen Phosphorescence as a Probe for Triplet-State Dissolved Organic Matter Reactivity. Environmental Science & Envir	10.0	82
31	Kinetics of Haloacetic Acid Reactions with Fe(0). Environmental Science & Eamp; Technology, 2004, 38, 6881-6889.	10.0	80
32	Degradation of Drinking Water Disinfection Byproducts by Synthetic Goethite and Magnetite. Environmental Science & Environment	10.0	80
33	Potential for Abiotic Reduction of Pesticides in Prairie Pothole Porewaters. Environmental Science & E	10.0	80
34	Reductive Dechlorination of $1,1,2,2$ -Tetrachloroethane. Environmental Science & Environmental Scienc	10.0	79
35	Kinetic and Microscopic Studies of Reductive Transformations of Organic Contaminants on Goethite. Environmental Science & Envi	10.0	76
36	Sediment–water distribution of contaminants of emerging concern in a mixed use watershed. Science of the Total Environment, 2015, 505, 896-904.	8.0	74

#	Article	IF	Citations
37	PFOA and PFOS Are Generated from Zwitterionic and Cationic Precursor Compounds During Water Disinfection with Chlorine or Ozone. Environmental Science and Technology Letters, 2018, 5, 382-388.	8.7	71
38	Sources and composition of sediment poreâ€water dissolved organic matter in prairie pothole lakes. Limnology and Oceanography, 2013, 58, 1136-1146.	3.1	69
39	Neonicotinoid insecticide hydrolysis and photolysis: Rates and residual toxicity. Environmental Toxicology and Chemistry, 2018, 37, 2797-2809.	4.3	68
40	Pesticide Processing Potential in Prairie Pothole Porewaters. Environmental Science & Emp; Technology, 2011, 45, 6814-6822.	10.0	67
41	Contaminants of Emerging Concern: Mass Balance and Comparison of Wastewater Effluent and Upstream Sources in a Mixed-Use Watershed. Environmental Science & Environmental Scie	10.0	67
42	Evidence of Incorporation of Abiotic S and N into Prairie Wetland Dissolved Organic Matter. Environmental Science and Technology Letters, 2014, 1, 345-350.	8.7	66
43	Unexpected Products and Reaction Mechanisms of the Aqueous Chlorination of Cimetidine. Environmental Science & Environmental S	10.0	65
44	Experimental and Theoretical Insights into the Involvement of Radicals in Triclosan Phototransformation. Environmental Science & Experimental Science & 2013, 47, 6756-6763.	10.0	64
45	Microscale Characterization of Sulfur Speciation in Lake Sediments. Environmental Science & Emp; Technology, 2013, 47, 1287-1296.	10.0	64
46	Direct and Indirect Photolysis of the Phytoestrogens Genistein and Daidzein. Environmental Science & E	10.0	63
47	Substituent Effects on Nitrogen Isotope Fractionation During Abiotic Reduction of Nitroaromatic Compounds. Environmental Science & Environmental Scien	10.0	59
48	Halogenation of Bisphenol-A, Triclosan, and Phenols in Chlorinated Waters Containing Iodide. Environmental Science & Environme	10.0	59
49	Evaluation of Functional Groups Responsible for Chloroform Formation during Water Chlorination Using Compound Specific Isotope Analysis. Environmental Science & Environmental Science & 2008, 42, 7778-7785.	10.0	58
50	Reactivity of Triplet Excited States of Dissolved Natural Organic Matter in Stormflow from Mixed-Use Watersheds. Environmental Science & Environmental	10.0	57
51	Photochemical Formation of Halogenated Dioxins from Hydroxylated Polybrominated Diphenyl Ethers (OH-PBDEs) and Chlorinated Derivatives (OH-PBCDEs). Environmental Science & Echnology, 2009, 43, 4405-4411.	10.0	56
52	Photochemical Formation of Brominated Dioxins and Other Products of Concern from Hydroxylated Polybrominated Diphenyl Ethers (OH-PBDEs). Environmental Science & Echnology, 2012, 46, 8174-8180.	10.0	56
53	Variability of Nitrogen Isotope Fractionation during the Reduction of Nitroaromatic Compounds with Dissolved Reductants. Environmental Science & Envir	10.0	55
54	Quantifying photo-production of triplet excited states and singlet oxygen from effluent organic matter. Water Research, 2019, 156, 23-33.	11.3	53

#	Article	IF	Citations
55	Character of Humic Substances as a Predictor for Goethite Nanoparticle Reactivity and Aggregation. Environmental Science & Env	10.0	52
56	Color, chlorophyll <i>a</i> , and suspended solids effects on Secchi depth in lakes: implications for trophic state assessment. Ecological Applications, 2019, 29, e01871.	3.8	50
57	Abiotic reduction of dinitroaniline herbicides. Water Research, 2003, 37, 4191-4201.	11.3	48
58	Clustering Chlorine Reactivity of Haloacetic Acid Precursors in Inland Lakes. Environmental Science &	10.0	48
59	Comprehensive screening of quaternary ammonium surfactants and ionic liquids in wastewater effluents and lake sediments. Environmental Sciences: Processes and Impacts, 2020, 22, 430-441.	3.5	48
60	pH-Dependent Equilibrium Isotope Fractionation Associated with the Compound Specific Nitrogen and Carbon Isotope Analysis of Substituted Anilines by SPME-GC/IRMS. Analytical Chemistry, 2011, 83, 1641-1648.	6.5	44
61	QSARs for phenols and phenolates: oxidation potential as a predictor of reaction rate constants with photochemically produced oxidants. Environmental Sciences: Processes and Impacts, 2017, 19, 324-338.	3.5	44
62	One electron oxidation potential as a predictor of rate constants of N-containing compounds with carbonate radical and triplet excited state organic matter. Environmental Sciences: Processes and Impacts, 2014, 16, 832-838.	3.5	42
63	Goethite nanoparticle aggregation: effects of buffers, metal ions, and 4-chloronitrobenzene reduction. Environmental Science: Nano, 2014, 1, 478-487.	4.3	42
64	Seasonal and spatial variabilities in the water chemistry of prairie pothole wetlands influence the photoproduction of reactive intermediates. Chemosphere, 2016, 155, 640-647.	8.2	42
65	Removal and formation of chlorinated triclosan derivatives in wastewater treatment plants using chlorine and UV disinfection. Chemosphere, 2011, 84, 1238-1243.	8.2	40
66	Degradation of Disinfection Byproducts by Carbonate Green Rust. Environmental Science & Emp; Technology, 2007, 41, 1615-1621.	10.0	39
67	Sedimentary record of antibiotic accumulation in Minnesota Lakes. Science of the Total Environment, 2018, 621, 970-979.	8.0	39
68	Metabolite composition of sinking particles differs from surface suspended particles across a latitudinal transect in the South Atlantic. Limnology and Oceanography, 2020, 65, 111-127.	3.1	39
69	CHANGES IN ANTIBACTERIAL ACTIVITY OF TRICLOSAN AND SULFA DRUGS DUE TO PHOTOCHEMICAL TRANSFORMATIONS. Environmental Toxicology and Chemistry, 2006, 25, 1480.	4.3	38
70	The characterization and quantification of methanotrophic bacterial populations in constructed wetland sediments using PCR targeting 16S rRNA gene fragments. Applied Soil Ecology, 2007, 35, 648-659.	4.3	38
71	Effects of dissolved oxygen and iron aging on the reduction of trichloronitromethane, trichloracetonitrile, and trichloropropanone. Chemosphere, 2007, 66, 2127-2135.	8.2	38
72	Impact of Organic Carbon on the Biodegradation of Estrone in Mixed Culture Systems. Environmental Science & Environmental Scie	10.0	38

#	Article	IF	CITATIONS
73	Phytoestrogens in the environment, I: Occurrence and exposure effects on fathead minnows. Environmental Toxicology and Chemistry, 2014, 33, 553-559.	4.3	38
74	Prediction of Photochemically Produced Reactive Intermediates in Surface Waters via Satellite Remote Sensing. Environmental Science & Environmental Sc	10.0	38
75	Neonicotinoid Insecticides in Surface Water, Groundwater, and Wastewater Across Landâ€Use Gradients and Potential Effects. Environmental Toxicology and Chemistry, 2021, 40, 1017-1033.	4.3	38
76	Using Nitrogen Isotope Fractionation to Assess the Oxidation of Substituted Anilines by Manganese Oxide. Environmental Science & Environmental Science	10.0	37
77	The relative roles of sorption and biodegradation in the removal of contaminants of emerging concern (CECs) in GAC-sand biofilters. Water Research, 2018, 146, 67-76.	11.3	36
78	Dissolved Organic Matter Composition Drives the Marine Production of Brominated Very Short-Lived Substances. Environmental Science & Environmental Sci	10.0	34
79	In Situ Sequestration of Perfluoroalkyl Substances Using Polymer-Stabilized Powdered Activated Carbon. Environmental Science &	10.0	34
80	Inter- and Intraspecies Competitive Effects in Reactions of Chlorinated Ethylenes with Zero-Valent Iron in Column Reactors. Environmental Engineering Science, 2000, 17, 291-302.	1.6	33
81	High Pressure Size Exclusion Chromatography (HPSEC) Determination of Dissolved Organic Matter Molecular Weight Revisited: Accounting for Changes in Stationary Phases, Analytical Standards, and Isolation Methods. Environmental Science & Echnology, 2018, 52, 722-730.	10.0	33
82	Environmental Photochemistry of Tylosin:  Efficient, Reversible Photoisomerization to a Less-Active Isomer, Followed by Photolysis. Journal of Agricultural and Food Chemistry, 2007, 55, 7062-7068.	5.2	32
83	Photolysis of atrazine: Role of triplet dissolved organic matter and limitations of sensitizers and quenchers. Water Research, 2021, 190, 116659.	11.3	32
84	Measurement and Estimation of Henry's Law Constants of Chlorinated Ethylenes in Aqueous Surfactant Solutions. Journal of Chemical & Engineering Data, 2003, 48, 253-261.	1.9	31
85	A Polymer Membrane Containing Fe0as a Contaminant Barrier. Environmental Science & Emp; Technology, 2004, 38, 2264-2270.	10.0	31
86	Identifying sources of emerging organic contaminants in a mixed use watershed using principal components analysis. Environmental Sciences: Processes and Impacts, 2014, 16, 2390-2399.	3.5	31
87	Facet-Dependent Oxidative Goethite Growth As a Function of Aqueous Solution Conditions. Environmental Science & Environmental	10.0	30
88	Enhanced adsorption of perfluoro alkyl substances for <i>in situ</i> remediation. Environmental Science: Water Research and Technology, 2019, 5, 1867-1875.	2.4	30
89	Water Chemistry: Fifty Years of Change and Progress. Environmental Science & Emp; Technology, 2012, 46, 5650-5657.	10.0	29
90	On the Need for a National (U.S.) Research Program to Elucidate the Potential Risks to Human Health and the Environment Posed by Contaminants of Emerging Concern. Environmental Science & Emp; Technology, 2011, 45, 3829-3830.	10.0	28

#	Article	IF	Citations
91	In Situ Remediation Method for Enhanced Sorption of Perfluoro-Alkyl Substances onto Ottawa Sand. Journal of Environmental Engineering, ASCE, 2018, 144, .	1.4	28
92	Estrone Degradation: Does Organic Matter (Quality), Matter?. Environmental Science & Emp; Technology, 2015, 49, 498-503.	10.0	26
93	DEGRADATION OF CHLOROPICRIN IN THE PRESENCE OF ZERO-VALENT IRON. Environmental Toxicology and Chemistry, 2005, 24, 3037.	4.3	25
94	Quantitative Dissolution of Environmentally Accessible Iron Residing in Iron-Rich Minerals: A Review. ACS Earth and Space Chemistry, 2019, 3, 1371-1392.	2.7	25
95	Degradation of trichloronitromethane by iron water main corrosion products. Water Research, 2008, 42, 2043-2050.	11.3	24
96	Photolysis of Chlortetracycline on a Clay Surface. Journal of Agricultural and Food Chemistry, 2009, 57, 6932-6937.	5.2	23
97	Phototransformation of pesticides in prairie potholes: effect of dissolved organic matter in triplet-induced oxidation. Environmental Sciences: Processes and Impacts, 2016, 18, 237-245.	3.5	23
98	Chapter 3.2 Transformation of pharmaceuticals in the environment: Photolysis and other abiotic processes. Comprehensive Analytical Chemistry, 2007, , 361-385.	1.3	22
99	Reactivity of Alkyl Polyhalides toward Granular Iron: Development of QSARs and Reactivity Cross Correlations for Reductive Dehalogenation. Environmental Science & Environment	10.0	21
100	Photodegradation of pharmaceutical compounds in partially nitritated wastewater during UV irradiation. Environmental Science: Water Research and Technology, 2019, 5, 897-909.	2.4	21
101	A comparison of total maximum daily load (TMDL) calculations in urban streams using near real-time and periodic sampling data. Journal of Environmental Monitoring, 2010, 12, 234-241.	2.1	19
102	Correlations between in situ sensor measurements and trace organic pollutants in urban streams. Journal of Environmental Monitoring, 2010, 12, 225-233.	2.1	18
103	Zero-Valent Iron: Impact of Anions Present during Synthesis on Subsequent Nanoparticle Reactivity. Journal of Environmental Engineering, ASCE, 2011, 137, 889-896.	1.4	18
104	Molecular signature of organic nitrogen in septic-impacted groundwater. Environmental Sciences: Processes and Impacts, 2014, 16, 2400-2407.	3.5	18
105	Photochemical Transformation of Four Ionic Liquid Cation Structures in Aqueous Solution. Environmental Science & Environmental	10.0	18
106	Multiple linear regression models to predict the formation efficiency of triplet excited states of dissolved organic matter in temperate wetlands. Limnology and Oceanography, 2018, 63, 1992-2014.	3.1	18
107	Photochemical fate of quaternary ammonium compounds in river water. Environmental Sciences: Processes and Impacts, 2020, 22, 1368-1381.	3.5	18
108	Assessment of 2,4-Dinitroanisole Transformation Using Compound-Specific Isotope Analysis after <i>In Situ</i> Chemical Reduction of Iron Oxides. Environmental Science & Envir	10.0	17

#	Article	IF	Citations
109	Quantifying the electron donating capacities of sulfide and dissolved organic matter in sediment pore waters of wetlands. Environmental Sciences: Processes and Impacts, 2017, 19, 758-767.	3.5	16
110	Abiotic Capture of Stormwater Nitrates with Granular Activated Carbon. Environmental Engineering Science, 2016, 33, 354-363.	1.6	15
111	Small and large-scale distribution of four classes of antibiotics in sediment: association with metals and antibiotic resistance genes. Environmental Sciences: Processes and Impacts, 2018, 20, 1167-1179.	3.5	15
112	Assessment of the chlorine demand and disinfection byproduct formation potential of surface waters via satellite remote sensing. Water Research, 2019, 165, 115001.	11.3	15
113	Quantification of Hydroxylated Polybrominated Diphenyl Ethers (OH-BDEs), Triclosan, and Related Compounds in Freshwater and Coastal Systems. PLoS ONE, 2015, 10, e0138805.	2.5	14
114	Iron influence on dissolved color in lakes of the Upper Great Lakes States. PLoS ONE, 2019, 14, e0211979.	2.5	14
115	Reprint of: Removal and formation of chlorinated triclosan derivatives in wastewater treatment plants using chlorine and UV disinfection. Chemosphere, 2011, 85, 284-289.	8.2	13
116	Novel Insights into the Distribution of Reduced Sulfur Species in Prairie Pothole Wetland Pore Waters Provided by Bismuth Film Electrodes. Environmental Science and Technology Letters, 2016, 3, 104-109.	8.7	13
117	Effect of nonreactive kaolinite on 4-chloronitrobenzene reduction by Fe(<scp>ii</scp>) in goethite–kaolinite heterogeneous suspensions. Environmental Science: Nano, 2017, 4, 325-334.	4.3	13
118	Redox-induced nucleation and growth of goethite on synthetic hematite nanoparticles. American Mineralogist, 2018, 103, 1021-1029.	1.9	13
119	Reaction rates and product formation during advanced oxidation of ionic liquid cations by UV/peroxide, UV/persulfate, and UV/chlorine. Environmental Science: Water Research and Technology, 2018, 4, 1310-1320.	2.4	13
120	Determination of Hydroxyl Radical Production from Sulfide Oxidation Relevant to Sulfidic Porewaters. ACS Earth and Space Chemistry, 2020, 4, 261-271.	2.7	12
121	Henry's Law Constants of Chlorinated Ethylenes in Aqueous Alcohol Solutions:  Measurement, Estimation, and Thermodynamic Analysis. Journal of Chemical & Engineering Data, 2002, 47, 183-190.	1.9	11
122	Reactivity of Substituted Benzotrichlorides toward Granular Iron, Cr(II), and an Iron(II) Porphyrin:  A Correlation Analysis. Environmental Science & Eamp; Technology, 2006, 40, 4253-4260.	10.0	11
123	Impact of Pahokee Peat humic acid and buffer identity on goethite aggregation and reactivity. Environmental Science: Nano, 2015, 2, 509-517.	4.3	11
124	Accessible reactive surface area and abiotic redox reactivity of iron oxyhydroxides in acidic brines. Geochimica Et Cosmochimica Acta, 2017, 197, 345-355.	3.9	11
125	Achieving high-rate hydrogen recovery from wastewater using customizable alginate polymer gel matrices encapsulating biomass. Environmental Science: Water Research and Technology, 2018, 4, 1867-1876.	2.4	11
126	Barrier properties of poly(vinyl alcohol) membranes containing carbon nanotubes or activated carbon. Journal of Hazardous Materials, 2011, 188, 334-340.	12.4	10

#	Article	IF	CITATIONS
127	Exploring the Utility of Compound-Specific Isotope Analysis for Assessing Ferrous Iron-Mediated Reduction of RDX in the Subsurface. Environmental Science & Technology, 2021, 55, 6752-6763.	10.0	10
128	Tracking Fluorine during Aqueous Photolysis and Advanced UV Treatment of Fluorinated Phenols and Pharmaceuticals Using a Combined ¹⁹ F-NMR, Chromatography, and Mass Spectrometry Approach. ACS Environmental Au, 2022, 2, 242-252.	7.0	9
129	High-Density Polyethylene Membrane Containing FeO as a Contaminant Barrier. Journal of Environmental Engineering, ASCE, 2006, 132, 803-809.	1.4	8
130	Performance of a composite bioactive membrane for H ₂ production and capture from high strength wastewater. Environmental Science: Water Research and Technology, 2016, 2, 848-857.	2.4	8
131	Effects of encapsulation on the chemical inhibition of anaerobic hydrogen- and methane-producing microbial cells. Bioresource Technology Reports, 2020, 11, 100451.	2.7	8
132	Identifying the spatiotemporal vulnerability of soils to antimicrobial contamination through land application of animal manure in Minnesota, United States. Science of the Total Environment, 2022, 832, 155050.	8.0	8
133	Diffusion of mobile products in reactive barrier membranes. Journal of Membrane Science, 2007, 291, 111-119.	8.2	7
134	Efficient Water Pollution Abatement. Industrial & Engineering Chemistry Research, 2019, 58, 22483-22487.	3.7	7
135	Quantifying and predicting antimicrobials and antimicrobial resistance genes in waterbodies through a holistic approach: a study in Minnesota, United States. Scientific Reports, 2021, 11, 18747.	3.3	7
136	Phytoestrogens in the environment, II: Microbiological degradation of phytoestrogens and the response of fathead minnows to degradate exposure. Environmental Toxicology and Chemistry, 2014, 33, 560-566.	4.3	6
137	Encapsulation technology to improve biological resource recovery: recent advancements and research opportunities. Environmental Science: Water Research and Technology, 2021, 7, 16-23.	2.4	6
138	Permeable Membranes Containing Crystalline Silicotitanate As Model Barriers for Cesium Ion. Environmental Science & Environmen	10.0	5
139	Innovation Promoted by Regulatory Flexibility. Environmental Science & Eamp; Technology, 2015, 49, 13908-13909.	10.0	5
140	Mineralogy and buffer identity effects on RDX kinetics and intermediates during reaction with natural and synthetic magnetite. Chemosphere, 2018, 213, 602-609.	8.2	5
141	Iron filings application to reduce lake sediment phosphorus release. Lake and Reservoir Management, 2021, 37, 143-159.	1.3	5
142	Discovering Teleconnected Flow Anomalies: A Relationship Analysis of Dynamic Neighborhoods (RAD) Approach. Lecture Notes in Computer Science, 2009, , 44-61.	1.3	5
143	Degradation of Halogenated Disinfection Byproducts in Water Distribution Systems. ACS Symposium Series, 2008, , 334-348.	0.5	4
144	Sorptive and Reactive Scavenger-Containing Sandwich Membranes as Contaminant Barriers. Journal of Environmental Engineering, ASCE, 2009, 135, 69-76.	1.4	4

#	Article	IF	Citations
145	Membrane-Assisted Volatile Organic Compound Removal from Aqueous Acrylic Latex Is Faster Than from Aqueous Solutions. Industrial & Engineering Chemistry Research, 2014, 53, 12420-12427.	3.7	4
146	Transformation of chlorpyrifos and chlorpyrifos-methyl in prairie pothole pore waters. Environmental Sciences: Processes and Impacts, 2016, 18, 1406-1416.	3.5	4
147	Modeling alginate encapsulation system for biological hydrogen production. Biotechnology and Bioengineering, 2019, 116, 3189-3199.	3.3	4
148	Mineral identity, natural organic matter, and repeated contaminant exposures do not affect the carbon and nitrogen isotope fractionation of 2,4-dinitroanisole during abiotic reduction. Environmental Sciences: Processes and Impacts, 2019, 21, 51-62.	3.5	4
149	Kinetics and Pathways of the Aqueous Photolysis of Pharmaceutical Pollutants: A Versatile Laboratory or Remote Learning Investigation. Journal of Chemical Education, 2021, 98, 2411-2418.	2.3	4
150	Encapsulation technology for decentralized brewery wastewater treatment: A small pilot experiment. Bioresource Technology, 2022, 347, 126435.	9.6	4
151	TBAA reduction in reactors simulating distribution system pipes. Journal - American Water Works Association, 2010, 102, 99-106.	0.3	3
152	Triclosan, chlorinated triclosan derivatives, and hydroxylated polybrominated diphenyl ethers (OH-BDEs) in wastewater effluents. Environmental Science: Water Research and Technology, 2015, 1, 316-325.	2.4	3
153	Sorption of isoflavones to river sediment and model sorbents and outcomes for larval fish exposed to contaminated sediment. Journal of Hazardous Materials, 2015, 282, 26-33.	12.4	3
154	Quantity, Quality, and Accessibility: Big Data Collection, Analysis, and Synthesis in Environmental Science and Technology. Environmental Science and Technology Letters, 2021, 8, 287-288.	8.7	3
155	Anisotropic oxidative growth of goethite-coated sand particles in column reactors during 4-chloronitrobenzene reduction by Fe(<scp>ii</scp>)/goethite. Environmental Science: Nano, 2022, 9, 275-288.	4.3	3
156	Preparation of 14C2-cis-1,2-dichloroethylene from 14C2-trichloroethylene using a cobalt porphyrin catalyst. Journal of Labelled Compounds and Radiopharmaceuticals, 2005, 48, 353-357.	1.0	2
157	Geomembranes Containing Powdered Activated Carbon Have the Potential to Improve Containment of Chlorinated Aromatic Contaminants. Environmental Science & Environmental Science & 2009, 43, 8916-8922.	10.0	2
158	Effects of estrone and organic carbon exposure on the transformation of estrone. Environmental Science: Water Research and Technology, 2015, 1, 457-464.	2.4	2
159	Characterization of Antibiotic Resistance and Metal Homeostasis Genes in Midwest USA Agricultural Sediments. Water (Switzerland), 2020, 12, 2476.	2.7	2
160	Ice Cover Influences Redox Dynamics in Prairie Pothole Wetland Sediments. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006318.	3.0	2
161	Organic Matter Inhibits Redox Activity and Impacts Heterogeneous Growth of Iron (Oxyhydr)oxides on Nano-Hematite. ACS Earth and Space Chemistry, 2022, 6, 847-860.	2.7	2
162	Response to Comment on "A Polymer Membrane Containing Fe0as a Contaminant Barrier― Environmental Science & Technology, 2004, 38, 5264-5264.	10.0	0

#	Article	IF	CITATIONS
163	The Best of the Best in 2016!. Environmental Science and Technology Letters, 2017, 4, 125-126.	8.7	O
164	Is the EPA Going To Protect the Environment?. Environmental Science and Technology Letters, 2017, 4, 511-511.	8.7	0
165	Awards for the Best Papers in ES&T Letters in 2017!. Environmental Science and Technology Letters, 2018, 5, 194-195.	8.7	O
166	Editor's Choice for the Best Papers Published in ES&T Letters in 2018. Environmental Science and Technology Letters, 2019, 6, 197-198.	8.7	0
167	Our Selections for the Best ES&T Letters Papers of 2019. Environmental Science and Technology Letters, 2020, 7, 358-359.	8.7	O
168	<i>Environmental Science & Description of the control of the contr</i>	8.7	0
169	COVID-19 and Beyond: Our Selections for the Best ES&T Letters Papers in 2020. Environmental Science and Technology Letters, 2021, 8, 604-605.	8.7	O
170	Performance of a composite bioactive membrane for enhanced BioH2 production and capture from wastewater. Proceedings of the Water Environment Federation, 2015, 2015, 4412-4412.	0.0	0
171	Back to Campus and Looking Forward for AEESP. Environmental Engineering Science, 2022, 39, 1-2.	1.6	O
172	Seeking Balance. Environmental Engineering Science, 2022, 39, 195-196.	1.6	0
173	Perspective and Identity. Environmental Engineering Science, 0, , .	1.6	O