Imran Shah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7567780/publications.pdf Version: 2024-02-01

ΙΜΟΛΝ SΗΛΗ

#	Article	IF	CITATIONS
1	The CompTox Chemistry Dashboard: a community data resource for environmental chemistry. Journal of Cheminformatics, 2017, 9, 61.	6.1	674
2	The BioPAX community standard for pathway data sharing. Nature Biotechnology, 2010, 28, 935-942.	17.5	613
3	<i>In Vitro</i> Screening of Environmental Chemicals for Targeted Testing Prioritization: The ToxCast Project. Environmental Health Perspectives, 2010, 118, 485-492.	6.0	519
4	The Next Generation Blueprint of Computational Toxicology at the U.S. Environmental Protection Agency. Toxicological Sciences, 2019, 169, 317-332.	3.1	225
5	Editor's Highlight: Analysis of the Effects of Cell Stress and Cytotoxicity on <i>In Vitro</i> Assay Activity Across a Diverse Chemical and Assay Space. Toxicological Sciences, 2016, 152, 323-339.	3.1	171
6	Computational Toxicology—A State of the Science Mini Review. Toxicological Sciences, 2008, 103, 14-27.	3.1	152
7	Predicting Hepatotoxicity Using ToxCast <i>in Vitro</i> Bioactivity and Chemical Structure. Chemical Research in Toxicology, 2015, 28, 738-751.	3.3	124
8	CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity. Environmental Health Perspectives, 2020, 128, 27002.	6.0	120
9	Toxicokinetic Triage for Environmental Chemicals. Toxicological Sciences, 2015, 147, 55-67.	3.1	117
10	<i>In Vitro</i> and Modelling Approaches to Risk Assessment from the U.S. Environmental Protection Agency ToxCast Programme. Basic and Clinical Pharmacology and Toxicology, 2014, 115, 69-76.	2.5	114
11	Development of an Adverse Outcome Pathway From Drug-Mediated Bile Salt Export Pump Inhibition to Cholestatic Liver Injury. Toxicological Sciences, 2013, 136, 97-106.	3.1	111
12	Systems Toxicology: Real World Applications and Opportunities. Chemical Research in Toxicology, 2017, 30, 870-882.	3.3	93
13	Navigating through the minefield of read-across tools: A review of in silico tools for grouping. Computational Toxicology, 2017, 3, 1-18.	3.3	80
14	High-Throughput Transcriptomics Platform for Screening Environmental Chemicals. Toxicological Sciences, 2021, 181, 68-89.	3.1	79
15	Systematically evaluating read-across prediction and performance using a local validity approach characterized by chemical structure and bioactivity information. Regulatory Toxicology and Pharmacology, 2016, 79, 12-24.	2.7	70
16	In Vitro Perturbations of Targets in Cancer Hallmark Processes Predict Rodent Chemical Carcinogenesis. Toxicological Sciences, 2013, 131, 40-55.	3.1	67
17	Using ToxCastâ"¢ Data to Reconstruct Dynamic Cell State Trajectories and Estimate Toxicological Points of Departure. Environmental Health Perspectives, 2016, 124, 910-919.	6.0	65
18	A comparison of machine learning algorithms for chemical toxicity classification using a simulated multi-scale data model. BMC Bioinformatics, 2008, 9, 241.	2.6	59

Imran Shah

#	Article	IF	CITATIONS
19	Considerations for strategic use of high-throughput transcriptomics chemical screening data in regulatory decisions. Current Opinion in Toxicology, 2019, 15, 64-75.	5.0	58
20	Simulating Microdosimetry in a Virtual Hepatic Lobule. PLoS Computational Biology, 2010, 6, e1000756.	3.2	56
21	Predicting Organ Toxicity Using <i>in Vitro</i> Bioactivity Data and Chemical Structure. Chemical Research in Toxicology, 2017, 30, 2046-2059.	3.3	49
22	Using Nuclear Receptor Activity to Stratify Hepatocarcinogens. PLoS ONE, 2011, 6, e14584.	2.5	48
23	Virtual Tissues in Toxicology. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2010, 13, 314-328.	6.5	47
24	Navigating through the minefield of read-across frameworks: A commentary perspective. Computational Toxicology, 2018, 6, 39-54.	3.3	44
25	Current approaches and future role of high content imaging in safety sciences and drug discovery. ALTEX: Alternatives To Animal Experimentation, 2014, 31, 479-493.	1.5	42
26	Generalized Read-Across (GenRA): A workflow implemented into the EPA CompTox Chemicals Dashboard. ALTEX: Alternatives To Animal Experimentation, 2019, 36, 462-465.	1.5	33
27	High-throughput toxicogenomic screening of chemicals in the environment using metabolically competent hepatic cell cultures. Npj Systems Biology and Applications, 2021, 7, 7.	3.0	28
28	Simulating Quantitative Cellular Responses Using Asynchronous Threshold Boolean Network Ensembles. BMC Systems Biology, 2011, 5, 109.	3.0	27
29	Incorporating Biological, Chemical, and Toxicological Knowledge Into Predictive Models of Toxicity. Toxicological Sciences, 2012, 130, 440-441.	3.1	21
30	Transitioning the generalised read-across approach (GenRA) to quantitative predictions: A case study using acute oral toxicity data. Computational Toxicology, 2019, 12, 100097.	3.3	14
31	Extending the Generalised Read-Across approach (GenRA): A systematic analysis of the impact of physicochemical property information on read-across performance. Computational Toxicology, 2018, 8, 34-50.	3.3	13
32	Building Shared Experience to Advance Practical Application of Pathway-Based Toxicology: Liver Toxicity Mode-of-Action. ALTEX: Alternatives To Animal Experimentation, 2014, 31, 500-19.	1.5	13
33	Pathway-Based Approaches for Environmental Monitoring and Risk Assessment. Environmental Science & Technology, 2016, 50, 10295-10296.	10.0	12
34	Generalized Read-Across prediction using genra-py. Bioinformatics, 2021, 37, 3380-3381.	4.1	12
35	Using pathway modules as targets for assay development in xenobiotic screening. Molecular BioSystems, 2012, 8, 531-542.	2.9	11
36	Systems Toxicology from Genes to Organs. Methods in Molecular Biology, 2013, 930, 375-397.	0.9	10

Imran Shah

#	Article	IF	CITATIONS
37	Development of a Quantitative Model of Pregnane X Receptor (PXR) Mediated Xenobiotic Metabolizing Enzyme Induction. Bulletin of Mathematical Biology, 2010, 72, 1799-1819.	1.9	9
38	Pathway-Based Approaches for Environmental Monitoring and Risk Assessment. Chemical Research in Toxicology, 2016, 29, 1789-1790.	3.3	9
39	Quantitative prediction of repeat dose toxicity values using GenRA. Regulatory Toxicology and Pharmacology, 2019, 109, 104480.	2.7	8
40	Repeat-dose toxicity prediction with Generalized Read-Across (GenRA) using targeted transcriptomic data: A proof-of-concept case study. Computational Toxicology, 2021, 19, 100171.	3.3	8
41	Heurstic search for metabolic engineering: de novo synthesis of vanillin. Computers and Chemical Engineering, 2005, 29, 499-507.	3.8	7
42	Estimating Hepatotoxic Doses Using High-Content Imaging in Primary Hepatocytes. Toxicological Sciences, 2021, 183, 285-301.	3.1	5
43	Evaluating adaptive stress response gene signatures using transcriptomics. Computational Toxicology, 2021, 20, 100179.	3.3	5
44	Reproducibility and robustness of high-throughput S1500+ transcriptomics on primary rat hepatocytes for chemical-induced hepatotoxicity assessment. Current Research in Toxicology, 2021, 2, 282-295.	2.7	3
45	Latent Variables Capture Pathway-Level Points of Departure in High-Throughput Toxicogenomic Data. Chemical Research in Toxicology, 2022, 35, 670-683.	3.3	3
46	Predicting molecular initiating events using chemical target annotations and gene expression. BioData Mining, 2022, 15, 7.	4.0	3